Mathematical Reasoning

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Reasoning Mathematical Reasoning Mathematical Reasoning Patterns, Problems, Conjectures, and Proofs Raymond S. Nickerson Psychology Press ¥ Taylor & Francis Croup New York London Psychology Press Psychology Press Taylor & Francis Group Taylor & Francis Group 270 Madison Avenue 27 Church Road New York, NY 10016 Hove, East Sussex BN3 2FA © 2010 by Taylor and Francis Group, LLC This edition published in the Taylor & Francis e-Library, 2011. To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk. Psychology Press is an imprint of Taylor & Francis Group, an Informa business International Standard Book Number: 978-1-84872-827-1 (Hardback) For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza- tion that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Nickerson, Raymond S. Mathematical reasoning : patterns, problems, conjectures, and proofs/ Raymond Nickerson. p. cm. Includes bibliographical references and index. ISBN 978-1-84872-827-1 1. Mathematical analysis. 2. Reasoning. 3. Logic, Symbolic and mathematical. 4. Problem solving. I. Title. QA300.N468 2010 510.1’9--dc22 2009021567 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the Psychology Press Web site at http://www.psypress.com ISBN 0-203-84802-0 Master e-book ISBN CONTENTS The Author vii Preface ix 1 What Is Mathematics? 1 2 Counting 17 3 Numbers 41 4 Deduction and Abstraction 79 5 Proofs 97 6 Informal Reasoning in Mathematics 137 7 Representation in Mathematics 161 v vi Contents 8 Infinity 191 9 Infinitesimals 217 10 Predilections, Presumptions, and Personalities 249 11 Esthetics and the Joys of Mathematics 277 12 The Usefulness of Mathematics 319 13 Foundations and the “Stuff” of Mathematics 343 14 Preschool Development of Numerical and Mathematical Skills 373 15 Mathematics in School 391 16 Mathematical Problem Solving 423 17 Final Thoughts 461 References 471 Appendix: Notable (Deceased) Mathematicians, Logicians, Philosophers, and Scientists Mentioned in the Text 555 Author Index 563 Subject Index 575 THE AUTHOR Raymond S. Nickerson is a research professor at Tufts University, from which he received a PhD in experimental psychology, and is retired from Bolt Beranek and Newman Inc. (BBN), where he was a senior vice presi- dent. He is a fellow of the American Association for the Advancement of Science, the American Psychological Association, the Association for Psychological Science, the Human Factors and Ergonomics Society, and the Society of Experimental Psychologists. Dr. Nickerson was the founding editor of the Journal of Experimental Psychology: Applied (American Psychological Association), the founding and first series editor of Reviews of Human Factors and Ergonomics (Human Factors and Ergonomics Society), and is the author of several books. Published titles include: The Teaching of Thinking (with David N. Perkins and Edward E. Smith) Using Computers: Human Factors in Information Systems Reflections on Reasoning Looking Ahead: Human Factors Challenges in a Changing World Psychology and Environmental Change Cognition and Chance: The Psychology of Probabilistic Reasoning Aspects of Rationality: Reflections on What It Means to Be Rational and Whether We Are vii PREFACE What does it means to reason well? Do the characteristics of good rea- soning differ from one context to another? Do engineers reason differ- ently, when they reason well, than do lawyers when they reason well? Do physicians use qualitatively different reasoning principles and skills when attempting to diagnose a medical problem than do auto mechanics when attempting to figure out an automotive malfunction? Is there any- thing about mathematics that makes mathematical reasoning unique, or at least different in principle from the reasoning that, say, nonmath- ematical biologists do? As a psychologist, I find such questions intriguing. I do not address them directly in this book, but mention them to note the context from which my interest in reasoning in mathematics stems. Inasmuch as I am not a mathematician, attempting to write a book on this subject might appear presumptuous—and undoubtedly it is. My excuse is that I wished to learn something about mathematical reasoning and I believe that one way to learn about anything—an especially good one in my view—is to attempt to explain to others, in writing, what one thinks one is learning. But can a nonmathematician hope to understand mathematical reason- ing in a more than superficial way? This is a good question, and the writ- ing of this book represents an attempt to find out if one can. I beg the indulgence of my mathematically sophisticated friends and colleagues if specific attempts at exposition reveal only mathematical naiveté. I count on their kindness to give me some credit for trying. Although much has been written about the importance of the teaching and learning of mathematics at all levels of formal education, and much angst has been expressed about the relatively poor job that is being done in American schools in this regard, especially at the primary and secondary levels, the fact is that mathematics is not of great interest to most people. Hammond (1978) refers to mathematics as an “invisible culture” and raises the question as to what it is in the nature of “this ix x Preface unique human activity that renders it so remote and its practitioners so isolated from popular culture” (p. 15). One conceivable answer is that the fundamental ideas of mathemat- ics are inherently difficult to grasp. Certainly the world of mathematics is populated with objects that are not part of everyday parlance: vectors, tensors, twisters, manifolds, geodesics, and so forth. Even concepts that are relatively familiar can quickly become complex when one begins to explore them; geometry, for example, which we know from high school math deals with properties of such mundane objects as points, lines, and angles, encompasses a host of more esoteric subdisciplines: differential geometry, projective geometry, complex geometry, Lobachevskian geom- etry, Riemannian geometry, and Minkowskian geometry, to name a few. But, even allowing that there are areas of mathematics that are arcane, and will remain so, to most of us, mathematics also offers countless delights and uses for people with only modest mathematical training. I hope I am able to convey in this book some sense of the fascination and pleasure that is to be found even in the exploration of only limited parts of the mathematical domain. Although there are a few significant exceptions, mathematicians generally are notoriously bad about communicating their subject matter to the general public. Why is that the case? Undoubtedly, many math- ematicians are sufficiently busy doing mathematics that they would find an attempt to explain to nonmathematicians what they are doing to be an unwelcome, time-consuming distraction. There is also the possibility that the abstract nature of much of mathematics is extraordinarily dif- ficult to communicate in lay terms. Steen (1978) makes this point and contrasts the “otherworldly vocabulary” of mathematics with the some- what more concrete terms (“molecules, DNA, and even black holes”) that provide chemists, biologists, and physicists with links to material reality with which they can communicate their interests. “In contrast, not even analogy and metaphor are capable of bringing the remote vocabulary of mathematics into the range of normal human experience” (p. 2). Whatever the cause of the paucity of books about the doing of math- ematics or about the nature of mathematical reasoning written by mathema- ticians, we should be especially grateful to those mathematicians who have proved to be exceptions to the rule: G. H. Hardy, Mark Kac, Imre Lakatos, George Polya, and Stanislav Ulam, along with a few contem- porary writers, come quickly to mind. (Hardy wrote about the doing of mathematics only when he considered himself too old to be able to do mathematics effectively, and expressed his disdain for the former activ- ity; nevertheless, his Apology provides many insights into the latter.) I have found the writings of these expositors of mathematical reasoning to be not only especially illuminating, but easy and pleasurable to read. Preface xi I hope in this book to convey a sense of the enriching experience that reflection on mathematics can provide even to those whose mathemati- cal knowledge is not great. I owe thanks to several people who generously read drafts of sections of the book and gave me the benefit of much insightful and helpful feedback. These include Jeffrey Birk, Susan Chipman, Russell Church, Carol DeBold, Francis Durso, Ruma Falk, Carl Feehrer, Samuel Glucksberg, Earl Hunt, Peter Killeen, Thomas Landauer, Duncan Luce, Joseph Psotka, Judah Schwartz, Thomas Sheridan, Richard Shiffrin, Robert Siegler, and William Uttal. I am especially grateful to Neville Moray, who read and commented on the entire manuscript. Stimulating and enlightening conversations on matters of psychology and math with son, Nathan Nickerson, and colleagues at Tufts, especially Susan Butler, Richard Chechile, and Robert Cook, have been most helpful and enjoy- able. Special thanks go also to granddaughters Amara Nickerson for criti- cally reading the chapters on learning math and problem solving from the perspective of a first-year teacher with Teach America, and Laura Traverse for pulling the cited references out of a cumbersome master reference file and catching various grammatical blunders in the manu- script in the process.
Recommended publications
  • On Mathematical Problem Posing*
    On Mathematical Problem Posing* EDWARD A. SILVER In mathematics classes at all levels of schooling in all itself an exercise in exploring, conjecturing, examining, and countries of the world, students can be observed solving testing-all aspects of problem solving .. 1 asks should be problems .. The quality and authenticity of these mathemat­ created and presented that are accessible to students and ics problems has been the subject of many discussions and ~xtend their knowledge of mathematics and problem solv­ debates in recent years. Much of this attention has resulted ing. Students should be given opportunities to formulate in a rich, more diverse collection of problems being incor­ problems from given situations and create new problems by porated into school mathematics curricula. Although the modifying the conditions of a given problem [NCIM, problems themselves have received much scrutiny, less 1991, p. 95] attention has been paid to diversifying the sources for the Despite this interest, however, there is no coherent, com­ problems that students are asked to consider in school Stu­ prehensive account of problem posing as a prut of mathe­ dents are almost always asked to solve only the problems matics curriculum and instruction nor has there been sys­ that have been presented by a teacher or a textbook Stu­ tematic research on mathematical problem posing [Kil­ dents are rarely, if ever, given opportunities to pose in patrick, 1987] For the past several years, I have been some public way their own mathematics problems. Tradi­ working with colleagues and students on a number of tional transmission/reception models of mathematics investigations into various aspects of problem posing .
    [Show full text]
  • Ludwig.Wittgenstein.-.Philosophical.Investigations.Pdf
    PHILOSOPHICAL INVESTIGATIONS By LUDWIG WITTGENSTEIN Translated by G. E. M. ANSCOMBE BASIL BLACKWELL TRANSLATOR'S NOTE Copyright © Basil Blackwell Ltd 1958 MY acknowledgments are due to the following, who either checked First published 1953 Second edition 1958 the translation or allowed me to consult them about German and Reprint of English text alone 1963 Austrian usage or read the translation through and helped me to Third edition of English and German text with index 1967 improve the English: Mr. R. Rhees, Professor G. H. von Wright, Reprint of English text with index 1968, 1972, 1974, 1976, 1978, Mr. P. Geach, Mr. G. Kreisel, Miss L. Labowsky, Mr. D. Paul, Miss I. 1981, 1986 Murdoch. Basil Blackwell Ltd 108 Cowley Road, Oxford, OX4 1JF, UK All rights reserved. Except for the quotation of short passages for the purposes of criticism and review, no part of this publication may be NOTE TO SECOND EDITION reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or THE text has been revised for the new edition. A large number of otherwise, without the prior permission of the publisher. small changes have been made in the English text. The following passages have been significantly altered: Except in the United States of America, this book is sold to the In Part I: §§ 108, 109, 116, 189, 193, 251, 284, 352, 360, 393,418, condition that it shall not, by way of trade or otherwise, be lent, re- 426, 442, 456, 493, 520, 556, 582, 591, 644, 690, 692.
    [Show full text]
  • Download Article (PDF)
    Advances in Social Science, Education and Humanities Research, volume 104 2nd Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL 2017) Development of Learning Devices Oriented Problem Based Learning to Increase Student’s Combinatorial Thinking in Mathematical Problem Solving Ability Ammamiarihta Department of Mathematics Education Universitas Negeri Medan Medan, Indonesia Corresponding Email: [email protected] Edi Syahputra Department of Mathematics Education Universitas Negeri Medan Medan, Indonesia Edy Surya Department of Mathematics Education Universitas Negeri Medan Medan, Indonesia Abstract–This research study is research and students, and learn the initial knowledge of students, all this development learning devices. This study aimed to describe will unravel its implementation in the learning device[1]. how the validity, practically, and effectiveness of learning Learning devices should not only provide materials devices oriented of problem based learning which is developed instantly, but be able to lead students to the ability to and knowing about increase students’ combinatorial thinking understand learned concepts. It aims to determine the extent in mathematical problem solving ability after using learning to which learning devices have been presented, what devices which is developed. The product that produce in this indicators to be achieved, to how the follow-up will be done study is lesson plan, handbook’s teacher, student’s book, and by the teacher. worksheet. Learning devices development using 4D model which developed by Thiagarajan, Semmel and Semmel with In the development of quality learning devices need four step, that is define, design, develop and disseminate. This an assessment of products developed. In order to make the study was conducted in two trials in two different class .
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • An Unexplored Aspect of Following a Rule by Rachael Elizabeth Driver
    An Unexplored Aspect of Following a Rule by Rachael Elizabeth Driver Bachelor of Science, University of New South Wales, 2001 Bachelor of Liberal Studies (Honours), University of Sydney, 2006 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Rachael Elizabeth Driver It was defended on July 27, 2020 and approved by Robert Batterman, Distinguished Professor of Philosophy Warren Goldfarb, Walter Beverly Pearson Professor of Modern Mathematics and Mathematical Logic, Harvard University Erica Shumener, Assistant Professor of Philosophy Dissertation Co-Directors: Thomas Ricketts, Professor of Philosophy Mark Wilson, Distinguished Professor of Philosophy ii Copyright © by Rachael Elizabeth Driver 2020 iii An Unexplored Aspect of Following a Rule Rachael Elizabeth Driver, PhD University of Pittsburgh, 2020 Though Wittgenstein has been most often identified as opposing Platonism in his writings about mathematics, I argue that Wittgenstein’s radical contextualism about mathematics finds its most natural opponent not in Platonism, but in a variety of formalism. One of Wittgenstein’s obvious formalist targets is his colleague the mathematician G. H. Hardy. If we discard this—still influential—picture of mathematics and replace it with a more nuanced account of mathematical activity as exemplified in the metamathematical thinking of the nineteenth century mathematician Augustus De Morgan, the example of the wayward pupil takes on a different significance. Against a more complex background, the wayward pupil can be reinterpreted as representing an exemplar of mathematical discovery.
    [Show full text]
  • Wittgenstein on Rules and Private Language
    SAUL A. KRIPKE Wittgenstein on Rules and Private Language An Elementary Exposition Harvard University Press Cambridge, Massachusetts Contents Copyright © 1982 by Saul A. Kripke All rights reserved Preface Vll EIGHTH PRINTING, 1995 1 Introductory 1 Printed in the United States of America 2 The Wittgensteinian Paradox 7 3 The Solution and the 'Private Language' Argument 55 Postscript Wittgenstein and Other Minds Library ofCongress Cataloging in Publication Data 114 Index Kripke, Saul A., 1940- 147 Wittgenstein on rules and private language. Includes bibliographical references and index. Wittgenstein, Ludwig, 1889-1951. I. Title B3376.W564K74 192 81-20070 AACR2 ISBN 0-674-95401-7 (paper) - To my parents Preface The main part ofthis work has been delivered at various places as lectures, series oflectures, or seminars. It constitutes, as I say, 'an elementary exposition' ofwhat I take to be the central thread of Wittgenstein's later work on the philosophy of language and the philosophy of mathematics, including my interpretation of the 'private language argument', which on my view is principally to be explicated in terms ofthe problem of 'following a rule'. A postscript presents another problem Wittgenstein saw in the conception ofprivate language, which leads to a discussion of some aspects of his views on the problem ofother minds. Since I stress the strong connection in Wittgenstein's later philosophy between the philosophy of psychology and the philosophy of mathematics, I had hoped to add a second postscript on the philosophy ofmathematics. Time has not permitted this, so for the moment the basic remarks on philosophy ofmathematics in the main text must suffice.
    [Show full text]
  • Problem Posing As a Means for Developing Mathematical
    PROBLEM POSING AS A MEANS FOR DEVELOPING MATHEMATICAL KNOWLEDGE OF PROSPECTIVE TEACHERS Ilana Lavy and Atara Shriki Emek Yezreel Academic College / Oranim Academic College of Education Abstract In the present study we aim at exploring the development of mathematical knowledge and problem solving skills of prospective teachers as result of their engagement in problem posing activity. Data was collected through the prospective teachers’ reflective portfolios and weekly class discussions. Analysis of the data shows that the prospective teachers developed their ability to examine definition and attributes of mathematical objects, connections among mathematical objects, and validity of an argument. However, they tend to focus on common posed problems, being afraid of their inability to prove their findings. This finding suggests that overemphasizing the importance of providing a formal proof prevents the development of inquiry abilities. Introduction Problem posing (PP) is recognized as an important component of mathematics teaching and learning (NCTM, 2000). In order that teachers will gain the knowledge and the required confidence for incorporating PP activities in their classes, they have to experience it first. While experiencing PP they will acknowledge its various benefits. Hence such an experience should start by the time these teachers are being qualified towards their profession. Therefore, while working with prospective teachers (PT) we integrate activities of PP into their method courses. In addition, accompanying the process with reflective writing might make the PT be more aware to the processes they are going through (Campbell et al, 1997), and as a result increase the plausibility that the PT will internalize the effect of the processes that are involved in PP activities.
    [Show full text]
  • Problem Solving Strategies Students Use When Solving
    PROBLEM SOLVING STRATEGIES STUDENTS USE WHEN SOLVING COMBINATORIAL PROBLEMS by GARY YUEN A THESIS SUBMITTED iN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in THE FACULTY OF GRADUATE STUDIES (Mathematics Education) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 © Gary Yuen, 2008 ABSTRACT This research is a case study that examines the strategies that three grade 11 students use to manoeuvre through a series of three combinatorial problems. Grade 11 students were chosen as participants because they have had no formal training in solving this class of math problems. Data includes video recordings of each participant’s problem solving sessions along with each participant’s written work. Through analysis of this data, several themes related to problem solving strategies were identified. First, students tend to rely on algebraic representation and methods as they approach a problem. Second, students use the term “guess and check” to describe any strategy where the steps to a solution are not clearly defined. Thirdly, as students negotiate problems, they tend to search for patterns that will streamline their methods. Fourthly, students approach complicated problems by breaking up the problem into smaller parts. Finally, students who verify their work throughout the problems solving process tend to experience more success than those who do not. From these findings, I suggest that mathematics teachers need to ensure that they are not over-emphasizing algebraic strategies in the classroom. In addition, students need to be given the opportunity to explore various solution strategies to a given problem. Finally, students should be taught how to verify their work, and be encouraged to perform this step throughout the problem solving process.
    [Show full text]
  • Karl Popper and the Philosophy of Mathematics Proceedings of the Conference Held in Klagenfurt, 5 – 7 April, 2018
    Symposium Karl Popper and the Philosophy of Mathematics Proceedings of the Conference held in Klagenfurt, 5 – 7 April, 2018 Edited by Reinhard Neck Alpen-Adria-Universität Klagenfurt 2018 Contents Preface ................................................................................................................ v Programme ...................................................................................................... vii Abstracts and Preliminary Papers .................................................................. 1 Schroeder-Heister, Peter Popper on deductive logic and logical education ...................................................... 2 Binder, David A Critical Edition of Popper's Work on Logic .......................................................... 3 Brîncuş, Constantin and Toader, Iulian Non-normal Interpretations of Positive Logic .......................................................... 8 Pimbé, Daniel Popper and “absolute proofs” ................................................................................. 12 Albert, Max Critical Rationalism and Decision Theory .............................................................. 25 Del Santo, Flavio The physical motivations for a propensity interpretation of probability ................. 26 Afisi, Oseni Taiwo Prospensity Probability and Its Applications of Knowledge in Ifa ......................... 32 Miller, David Independence (Probabilistic) and Independence (Logical) ..................................... 36 Burgoyne, Bernard From cosmic paths to psychic
    [Show full text]
  • The Influence of Teaching Mathematical Problem Solving Strategies on Students’ Attitudes in Middle School
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2012 Mathematic Strategies For Teaching Problem Solving: The Influence Of eachingT Mathematical Problem Solving Strategies On Students' Attitudes In Middle School Kelly Lynn Klingler University of Central Florida Part of the Science and Mathematics Education Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Klingler, Kelly Lynn, "Mathematic Strategies For Teaching Problem Solving: The Influence Of eachingT Mathematical Problem Solving Strategies On Students' Attitudes In Middle School" (2012). Electronic Theses and Dissertations, 2004-2019. 2316. https://stars.library.ucf.edu/etd/2316 MATHEMATIC STRATEGIES FOR TEACHING PROBLEM SOLVING: THE INFLUENCE OF TEACHING MATHEMATICAL PROBLEM SOLVING STRATEGIES ON STUDENTS’ ATTITUDES IN MIDDLE SCHOOL by KELLY LYNN KLINGLER B.A. Mount Vernon Nazarene University, 2006 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Education in the School of Teaching, Learning and Leadership in the College of Education at the University of Central Florida Orlando, Florida Spring Term 2012 © 2012 Kelly L. Klingler ii ABSTRACT The purpose of this action research study was to observe the influence of teaching mathematical problem solving strategies on students’ attitudes in middle school. The goal was to teach five problem solving strategies: Drawing Pictures, Making a Chart or Table, Looking for a Pattern, Working Backwards, and Guess and Check, and have students reflect upon the process.
    [Show full text]
  • HISTORY-BASED PROBLEMS in the TEACHING of SENIOR HIGH SCHOOL Mathematics in Mainland China Xiaoqin Wang
    HISTORY-BASED PROBLEMS IN THE TEACHING OF SENIOR HIGH SCHOOL Mathematics in Mainland China Xiaoqin Wang To cite this version: Xiaoqin Wang. HISTORY-BASED PROBLEMS IN THE TEACHING OF SENIOR HIGH SCHOOL Mathematics in Mainland China. History and Pedagogy of Mathematics, Jul 2016, Montpellier, France. hal-01349273 HAL Id: hal-01349273 https://hal.archives-ouvertes.fr/hal-01349273 Submitted on 27 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HISTORY-BASED PROBLEMS IN THE TEACHING OF SENIOR HIGH SCHOOL Mathematics in Mainland China Xiaoqin Wang Department of Mathematics East China Normal University, Shanghai 200241 汪晓勤 [email protected] ABSTRACT This paper deals with the integration of history in mathematics teaching. Four possible approaches are considered: complementation, replication, accommodation, reconstruction. The main focus is on the relation between. mathematical problems posed on the basis of historical information (history-based problems) and mathematics teaching from the HPM perspective. In this paper 20 HPM lessons are analysed. 1 Introduction Integrating the history of mathematics into mathematics teaching is one of the important research fields in HPM. As shown in table 1, four ways are identified in which historical information is used in classroom teaching in Mainland China.
    [Show full text]
  • Philosophy of Mathematics, Mathematics Education, and Philosophy of Mathematics Education Yuxin Zheng Nanjing University
    Humanistic Mathematics Network Journal Issue 9 Article 9 2-1-1994 Philosophy of Mathematics, Mathematics Education, and Philosophy of Mathematics Education Yuxin Zheng Nanjing University Follow this and additional works at: http://scholarship.claremont.edu/hmnj Part of the Logic and Foundations of Mathematics Commons, Mathematics Commons, Scholarship of Teaching and Learning Commons, and the Science and Mathematics Education Commons Recommended Citation Zheng, Yuxin (1994) "Philosophy of Mathematics, Mathematics Education, and Philosophy of Mathematics Education," Humanistic Mathematics Network Journal: Iss. 9, Article 9. Available at: http://scholarship.claremont.edu/hmnj/vol1/iss9/9 This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Humanistic Mathematics Network Journal by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Philosophy of Mathematics, Mathematics Education and Philosophy of Mathematics Education Zheng Yuxin (Y. Zheng) Department of Philosophy Nanling University. China (P. R. C.) As a philosopher of mathematics. I have been the great infl uence of the philosophy of thinking about, or rather, worried about the mathematics on mathematics education. The third follow ing qu esti on: is there any important section discusses the problem of how to develop rel ation ship between the philosophy of the subject 'philosophy of mathematics education , mathematics and actual mathematical activities which in fact can be regarded as an impetus from (including mathematical research, teaching and mathematics education to the further development learning)? Or, does the philosophy of mathematics of philosophy of mathematics and philosophy in have any important infl uence on act ual general.
    [Show full text]