<<

bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre. 66: 109-127, 1996 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen, aardwetenschappen. 66: 109-127, 1996

Cretaceous ammonoid succession in the Far East (South Sakhalin) and the basic factors of syngenesis by Yuri D. ZAKHAROV, Alexander V. IGNATYEV, Nataliya G. UKHANEVA & Tamara B. AFANASEVA

Abstract Characteristics of the marine Palaeosuccession

At the -Danian boundary in Sakhalin Island radical fau- In the Albian-Danian South Sakhalin mollusk succession nal changes are visible. The repeated influence of three basic factors several can (drop of température, oxygen deficit and enormous eustatic level phases be distinguished, reflecting the diver- fluctuation provoked by thermal perturbation at the core/mantle boun¬ sity in the marine communities at that time. dary and change in rotation regime of the Earth) seems to be the main reason for a great extinction in many groups of marine and terrestrial organisms during the time of the -Tertiary transition.

Key-words: K/T boundary - faunal changes - stable isotopes - Sakhalin.

Résumé

Dans les dépôts de Sakhalin la transition Maastrichtien/ Danien montre un changement radical dans les faunes. Trois facteurs (diminution de la température, un déficit dans la quantité d'oxygène et de fortes fluctua¬ BERING tions eustatiques résultant de la perturbation thermique à la transition SEA noyau-manteau et au changement dans le régime de rotation terrestre) semblent être les causes majeures pour une grande extinction dans de nombreux groupes d'organismes marins et terrestres au moment de la transition Crétacé-Tertiaire.

Mots-clefs: Transition K/T - changements fauniques - isotopes stables

- Sakhalin.

1000 km Introduction

A more than 4000 m thick, well exposed late Early Cretaceous - Late Cretaceous - Early Palaeogene se- quence is present along the Naiba River in Dolinsk ré¬ gion, South Sakhalin (Text-fig. 1). This famous section (Matsumoto, 1938; Vereschagin, 1977; Zakharov et SEA OF al., 1978, 1981. 1984a; Salnikov & Tikhomolov, 1987) OKHOTSK is considered as the basic section for the Upper Creta¬ ceous in the "Far East". This sequence has been sub- divided into four formations : (1) Ai (Albian), (2) Naiba (Albian-Cenomanian), (3) Bykov (Turonian-), and (4) Krasnoyarka (Campanian-Danian). The present work analyses the Cretaceous palaeosuc¬ 200 km cession of the Far East on the basis of data for the Sakhalin fauna and stable isotopes recogni- zed in brachiopod, ammonoid and bivalve shells from South Sakhalin (Naiba, Krasnoyarka and Sary Rivers) Text-fig. 1 — Location of the Naiba River, Sakhalin (1) and and from the Koryak Uplands. Pahacha River, Koryak Uplands (2) sequences. ou

o- 0Q m Om 0'

o o * BED ••

E STAGE MEMBER 0 BB FORMATION LITHOLOGY THICKNESS, •

©

K» © © fji (A

O ï i 00

CO

Oè Bykov m O h* 4^ -o£o-

O oK O Ou! 03 &'iv 3> *>3 •-0 r^'Jt •>3 o ŒD-O O &o O SCF OO iO 0 aO c£ SO- £o O oo-o- £o O o—— -aO a AoavHMVz E2ö ™a O 4- Ut

oo vo sanctorum

©O Marshallites-A.s. &o êo-

so

(A O O ÖÖ O 0W9^ O Oto OO OS OtA O O o Ut •>3

Sp M © «O w w © © hO" K) N> ts> ►O

CO- O Naiba uO

ipomcum tibilis OO ularis©•- ±.0~ Turjilitescf. ©O— 00 ZeLindites 055costatus Da/nesifis mihoensis damesi ©O CD^- 55O— (AQ- Nipponites Mikasaites ALBIAN jç.tDesmoceras(P.) Gaudrycerasteruiliratum mirt orbh © wO- 3©o o- Cretaceous ammonoid succession in Far East 111

Phase 1

Text-fig. 2 — Lithofacies, distribution and relative abundance of ammonoid taxa for the Upper Ai, Naiba and During phase 1 (Ai and Lower Naiba formations, Albian), Lower Bykov Formations (Albian-Cenoma- most marine nian). Désignation of the beds: T.c. = Turrilites groups in South Sakhalin were poorly di- costatus, Marshallites - A.s. = Marshallites - versified, possibly due to a shallowing marine basin and Acanthoceras sanctorum. Lithology: a - conglo- periodical fresh-water influence during the latest Early merate, b - sandstone, c - sandy siltstone, d - Cretaceous. The main body of the community was for- tuffaceous siltstone, tuffaceous sandstone, tuf- med by foraminifers (about 30 species) (Turenko, 1987), fite, tuffs, e - siltstone, f - mudstone with no¬ radiolarians (about 14 dules; location: g - Naiba River basin, h - species) (Kazintsova, 1987), cri- noids neigbouring territories in South Sakhalin, i - (1 species), echinoids (1 species), bivalves (12 questionably present. Relative abundance of species) (Salnikova, 1987), including some fresh-water ammonoid - very rare, - rare, - species: j k 1 taxa - Anodonta oraria Kalishevich (Zakharov et al., occasional, m - common, n - abundant. 1978, 1981), gastropods (2 species) (Poyarkova, 1987), Species: 1 - Brewericeras ex gr. hulense An¬ and scarce ammonoids dersom 2 - Cleoniceras (Neosaynella?) sp. 3 - ("Phylloceras'' aff. tanit Pervin¬ Puzosia subcorbarica Matsumoto, 4 - Cleoni¬ quière, Anagaudryceras? sp., Parajaubertella cf. kawa¬ ceras? sp., 5 - Desmoceras kossmati Matsumo¬ kitana Matsumoto, Puzosia subcarbarica Matsumoto, to, 6 - Pachydesmoceras cf. denisonianum (Sto- Pachydesmoceras cf. denisonianum (Stoliczka), Brewe¬ liczka), 7 - Parajaubertella kawakitana Matsu¬ riceras ex gr. hulense Anderson, Desmoceras kossmati moto, 8 - "Phylloceras" aff. tanit Pervin- Matsumoto, sp., sp., quière, 9 - Nipponites mirabilis Yabe, 10 - Anahoplitesl Cleoniceras Neogas- Mikasaites orbicularis Matsumoto, 11 - Ana- troplites sp.) (Text-fig. 2) (Zakharov et al., 1978, 1984a; gaudryceras sacya (Forbes), 12 - Marshallites Mirolyubov, 1987). sp., 13 - Epigoniceras sp., 14 - Desmoceras (Pseudouhligella) japonicum Yabe, 15 - Dame- Phase 2 sites damesi (Jimbo) (Pl. 2, Fig. 2-3), 16 - Gaudryceras tenuiliratum Yabe, 17 - Turrilites cf. acutus (Passy), 18-7". cf. costatus (La- Phase 2 (Upper Naiba, Bykov, and Lower Krasnoyarka marck), 19 - Puzosia tenuis Shimizu, 20 - Des¬ Formations, Cenomanian-Campanian) is characterised by moceras aff. inane (Stoliczka), 21 - Puzosia an abundance and high taxonomie diversity of a.o. bival¬ planulata (J. de C. Sowerby), 22 - Marshallites ves (including inoceramids) and ammonoids. This part of cf. olcostephanoides Matsumoto, 23 - "Phyllo¬ the invertebrate succession is ceras" cf. ellipticum Kossmat, 24 - Zelandites represented by foraminifers mihoensis Matsumoto, 25 - Anagaudryceras (about 38 species) (Turenko, 1987), radiolarians (more sp., 26 - Puzosia ex gr. bhima (Stoliczka), 27 than 100 species) (Kazintsova, 1987), crinoids (1 spe¬

- Holcodiscoides popillatus (Stoliczka), 28 - cies), crustaceans (1 species), bivalves (more than 100 Mikasaites matsumotoi Vereschagin, 29 - Acanthoceras hippocastanum (J. de C. Sower¬ species) (Zakharov et ai, 1984a; Salnikova, 1987; by), 30 - A. sussexiense (Mantell), 31 - A. cf. Zonova, 1987), scaphopods (5 species), gastropods (25 rotomagense (Defrance), 32 - Tetragonites ex species) (Poyarkova, 1987), ammonoids (177 species of gr. timotheanus (Pictet), 33 - Eogunnarites uni- Hauericeras, Hypophylloceras, Neophylloceras, Zelandi¬ cus (Yabe), 34 - Eucalycoceras cf. vergonsense tes, Parajaubertella, Anagaudryceras, Gaudryceras, Te¬ Collignon, 35 - Calycoceras asiaticum (Jimbo), tragonites, Saghalinites, Neocrioceras, 36 - Marshallites japonicus Matsumoto, 37 - Turrilites, Anapa- Pachydesmoceras pachydiscoides Matsumoto, chydiscus, Puzosia, Pachydesmoceras, Jimboiceras, 38 - Hypophylloceras seresitense (Pervin- Mesopuzosia, Microdesmoceras, Marshallites, Holcodis¬ quière), 39 - Microdesmoceras applanatum coides, Eogunnarites, Kossmaticeras, Yokoyamaoceras, Grabovskaya, 40 - Jimboiceras planulatiforme Jacobites, Canadoceras, Anapachydiscus, , Tes- (Jimbo), 41 - Hypophylloceras ononense (Stan- hioites, Urakawites, Mikasaites, Nipponites, Hyphanto- ton), 42 - H. simplificatum Grabovskaya, 43 - Metapuzosia sp., 44 - Anagaudryceras cf. ol¬ ceras, Scalarites, Bostrychoceras, Diplomoceras, Scaphi- costephanoides Matsumoto, 45 - Anagaudryce¬ tes, Ryugasella, Desmoscaphites, Polyptychoceras, Pseu- ras buddha (Forbes), 46 - Puzosia nipponica doxybeloceras, Pseudaspidoceras, Otoscaphites, Peroni- Matsumoto, 47 - Puzosia sp., 48 - Phyllopa- ceras, Calycoceras, Eucalycoceras, Acanthoceras, Fage- chyceras ezoense (Yokoyama), 49 - Hypophyl¬ sia, Submortoniceras, Schlueterella (Text-figs. 3-4) loceras sp., 50 - "Phylloceras" cf. diegoi Boule, Lemoine & Thévenin, 51- Zelandites (Vereschagin, 1977; Zakharov et al., 1984a; Miro- inflatus Matsumoto, 52 - Anagaudryceras uta- yubov, 1987), nautiloids (7 species), and belemnitoids turense Shimizu, 53 - Puzosia cf. furnitana (1 species). Pervinquière, 54 - P. aff. octosulcata Sharpe, Within the ammonoid group, a change of dominance 55 - Desmoceras pseudinane Shimizu, 56 - took Jacobites sp., 57 - Acanthoceras sanctorum place several times: (1) Desmoceras (Pseudouhli¬ Matsumoto & Obata, 58 - Mesopuzosia pacifica gella) japonicum (within the Turrilites costatus beds and

Matsumoto, 59 - M. indopacifica (Kossmat), 60 Marshallites - Acanthoceras sanctorum beds, Cenoma-

- Tetragonites sp., 61 - Kossmaticeras sp., 62 - nian - bioevent "a") —> Tetragonites epigonus (within Polyptychoceras obstractum (Jimbo), 63 - Neo- the Jimboiceras planulatiforme beds, Turonian - bioevent phylloceras ramosum (Meek), 64 - Epigonice¬ -> ras epigonum (Kossmat), 65 - E. glabrum (Jim¬ "b") (3) Gaudryceras tenuiliratum (within the Jim¬ bo), 66 - Jimboiceras planulatiforme (Jimbo). boiceras mihoense beds, Anapachydiscus naumanni beds TURONIAN CONIACIAN Jimboiceras planulatiforme E m. B y k o v

D ?smoceras (Ps< nidouhlige 'la) japonicum

Puzosia sp - Phyllopt chyceras ezoe îse-^O-O Dani esites damesi ~ Jimboiciras planulatiforme Scalantes venustus —-ap- o- Gaudrycerc s striatum

Damesites semicostatus

Nipponites mirabilis

aphites yonekurai

Yokoyamao •erasjimboi

O—Anagaidryceras limatun Tetragonites sp. Kossmat ceras sp.

Epigoniceras glabrum

0~~ Hypophylloct ras sp,

■Nipponites bacchus Scaphites yokayamai

/» AcmvHWz a ™a zu Cretaceous ammonoid succession in Far East 113 and Canadoceras kossmati beds (lower part), Coniacian- Pachydiscus) found in the restricted Late Maastrichtian Early Campanian - bioevents "c-e") -> (4) Baculites group, represented in the Pachydiscus subcompressus zhuravlevi [within the Canadoceras kossmati beds (upper beds. part), Late Campanian - bioevent "f" ]. The community structure changed radically at the Maastrichtian-Danian boundary which appears in Sakha- Phase 3 lin Island at the base of the Sinegorsk horizon (Upper Krasnoyarka Formation). During phase 3 (Middle Krasnoyarka Formation, Maas¬ trichtian), a sharp réduction in taxonomie diversity and Phase 4 abundance of ail main groups inhabiting this basin took place. The succession of phase 3 is represented by fora- At the beginning of the next (fourth) phase of early minifers (12 species) (Turenko, 1987), bivalves (about Danian time (Pseudoaphrodina extrema beds), inocera- 43 species), scaphopods (2 species), gastropods (14 spe¬ mid bivalves and ammonoids disappeared. The body of cies), and ammonoids (43 species of Phyllopachyceras, the community was formed by foraminifers (32 species) Neophylloceras, Gaudryceras, Anagaudryceras, Zelandi- (Turenko, 1987), bivalves (16 species) (Kalishevich et tes, Tetragonites, Saghalinites, Baculites, Pachydiscus, al., 1981), and gastropods (2 species). Radiolarians have Neodesmoceras, Canadoceras, Damesites, Anapachydis- not been recorded. In the middle part of the Sinegorsk cus, Polyptychoceras, Diplomoceras, Pseudoxybeloce- horizon (Thyasira uncinata beds) a much more diverse ras, Neancyloceras) (Text-fig. 5) (Vereschagin, 1977; bivalve assemblage (38 species) (Kalishevich et al., Zakharov et al., 1984a; Mirolyubov, 1987). The num- 1981) was discovered in association with foraminifer, ber of ammonoid species was reduced by about four and coral, scaphopod, gastropod, and shark remains. Danian the number of bivalve species - increased by 2.3 fold in radiolarians were possibly absent in this basin. comparison with phase 2. Within the Early Maastrichtian ammonoid group Zelandites japonicus Matsumoto domi- nated (Zelandites japonicus beds). However, it is difficult to décidé, which ammonoid species became prédominant Plant Palaeosuccession among the 20 species (belonging to Neophylloceras, Anagaudryceras, Gaudryceras, Zelandites, Tetragonites, On the basis of finds of terrestrial plant fossils in marine Saghalinites, Baculites, Diplomoceras, Neancyloceras, sediments of the Naiba River région (Zakharov et al., Pseudoxybeloceras, Neodesmoceras, Canadoceras, and 1981, 1984a) and of some data on floral assemblages

Text-fig. 3 — Lithofacies, distribution and relative abundance of ammonoid taxa for the Middle Bykov Formation (Turonian- Coniacian). 1 - Stage, 2 - Bed, 3 - Formation, 4 - Member, 5 - Lithology, 6 - Thickness, m. Abbreviated bed name: J.m. = Jimboiceras mihoense.

Species: 67 - Gaudryceras striatum (Jimbo), 68 - Scaphites puerculus (Yabe), 69 - S. cf. planus (Yabe), 70 - Scalarites scalaris (Yabe), 71 - Otoscaphites yonekurai (Yabe), 72 - Fagesia sp., 73 - Hypophylloceras sp., 74 - Nipponites bacchus Matsumoto, 75 - Scalarites venustus (Yabe), 76 - Gaudryceras denseplicatum (Jimbo), 77 - Pseudaspidoceras cf. armatum Pervinquière, 78 - Damesites laticarinatus Matsumoto (PI. 2, Fig.4), 79 - D. semicostatus Matsumoto, 80 - Puzosial ambigua Matsumoto, 81 - haradai (Jimbo), 82 - Eupa- chydiscus sp., 83 - Paramammites? sp., 84 - Scalarites mihoensis Wright & Matsumoto, 85 - Polyptychoceras pseudogaultinum (Yokoyama), 86 - Yokoyamaoceras jimboi Matsumoto, 87 - Scalarites densicostatus Matsumoto, 88 - Romaniceras (Yubariceras) ornatissimum (Stoliczka), 89 - Yokoyamaoceras kotoi (Jimbo), 90 - Scaphites yokoyamai Jimbo, 91 - Otoscaphites teshioensis Yabe, 92 - Otoscaphites sp. indet. Yabe, 93 - Subptychoceras yubarense (Yabe), 94 - Phyllopachyceras forbesianum (d'Orbigny), 95 - Otoscaphites pseudoaequalis Yabe, 96 - Zelandites kawanoi (Jimbo), 97 - Anagaudryceras limatum (Yabe), 98 - Hauericeras cf. pseudogardeni (Schlueter), 99 - Damesites sugata (Forbes), 100 - Neopuzosia ishikawai (Jimbo) (Pl. 1, Fig. 3; PI. 2, Fig. 1), 101 - Hauericeras (Gardeniceras) angustum Yabe (PI. 2, Fig. 5), 102 - Bostrychoceras otsukai Yabe, 103 - Diplomoceras coscadense Anderson, 104 - Tetragonites krystofovitschi Yabe, 105 - Zelandites matsumotoi Grabovskaya, 106 - Jimboiceras mihoense Matsumoto (Pl. 1, Figs. 1 - 2), 107 - Otoscaphites cf. puerculus (Jimbo), 108 - Pseudoxybeloceras bicostatum Henderson, 109 - Neopuzosia japonica (Spath), 110 - Polyptychoceras obstrictum (Jimbo), 111 - Pseudoxybeloceras cf. quadrinodosum (Jimbo), 112 - Otoscaphites cf. pseudoequalis Yabe, 113 - Desmophyllites diphylloides (Forbes). Other désignations as in Text-fig. 2. SANTONIAN CAMPANI AN

Anapach. naumanni - Peroniceras Canadoceras kossmati (O

B Y K O V KRASNOYARKA

C' Desmoceras (P.) japonicum

K) 1 Aiggaudryceras-t- sacya U\ •o o 8 NO 8 00 8o- Ln on -O—O o- Phylirezoense •^3 on •z<# -^8 ol -O k) Oux £ SO Gaudryceras intermedium

Zelandites mats îmotoi osQ o- Damesites semicos :atus L SD(-VO O—oo^o- M 1*8 to se -oo-S30 -O Nippe nites mirabilis ^ cO Z -oso- Canaaocana îras newberryanum i^_0 O hh - ClCanadoceifascompressum o a So- 00 o—~o5 -ti Scalarites mihoensis W O O Pseudoxybeloceras qicostatum S o3 oo wamaoce ras jimboi q wOO- ^aghalir ites saghalinens^ - -oo—o-

-Oc 00 —O— Kossmaticeras ;p. o —o -b 00 to s Epigoniceras gmprum -q

Neopuzosia japonica

O- Pseudox. cf. qiladrinodosum -q

-O- eras g-^^Desm. diphylloiqes —O Anagaudryc yokoyamai — u) On Subptychoceras yubarense -D—O—O -O O— O OCD— 00 -jzrO—O Pachydisci s aff. gollevillensis CD- u>

o- U> Tetrago: îites popetensis OO -o Hypophyllocer is nera DiO- K>0- to •^3

7Ü ^ AO^VH^VZ Q t711 Cretaceous ammonoid succession in Far East 115

recognised in terrestrial formations (Lower Arkovo - Text-fig. 4 — Lithofacies, distribution and relative abundance Coniacian, Upper Arkovo - Lower Santonian, Zhonkyer of ammonoid taxa for the Upper Bykov - Lower - Upper Santonian, Avgustovka coal bearing member - Krasnoyarka Formations (Santonian-Campa- nian). Abbreviated bed name: Anapach.. nau- Upper Maastrichtian and Boshnyakovo - Danian) (Kras- manni - Peroniceras = Anapachydiscus nau- silov, 1979) of adjacent régions one can judge the floral manni - Peroniceras. succession of the neighbouring sea shore. Species: 114 - Peroniceras! sp., 115 - Hypo- The following plant palaeosuccession can be recogni¬ phylloceras aff. hetonaiense Matsumoto, 116- sed in the Naiba River région for the Cretaceous: (1) Bostrychoceras oshimai (Yabe), 117 - Polypty- Ginkgo and fern (Gleichenites) forest - late Albian —> choceras haradanum (Yokoyama), 118 - P. jimboi Matsumoto, 119 - Desmoscaphites aff. (2) predominantly fern (Sagenopteris, Caytoniales) forest

- bassleri Reeside, 120 - Hypophylloceras nera Cenomanian -*■ (3) mixed coniferous - Ginkgo (Gink- (Forbes), 121 - H. subramosum (Shimizu), 122 goites ex gr. adiantoides (Unger) Seward, Sequoia sp.)

- Anapachydiscus yezoensis Matsumoto, 123 - forest - early Turonian -» (4) mixed coniferous-platano- A. fascicostatus (Yabe), 124 - Scalarites sp., phyllous-fern (Sequoia reichenbachii (Geinitz) Heer, 125 - Gaudryceras sachalinense (Schmidt), 126 - Bostrychoceras sp., 127 - Gaudryceras IProtophyllum schmidtianum (Heer) comb. Krassilov, intermedium (Yabe), 128 - Anapachydiscus Cyathea sp.) forest - late Turonian - Coniacian —> (5)

naumanni - (Yokoyama), 129 - Kossmaticeras mixed coniferous Ginkgo - ?laurophyllous (Sequoia japonicum Matsumoto, 130 - Zelandites varuna reichenbachii, Ginkgo sp., 'lAraliaephyllum polevoi (Forbes), 131 - Anapachydiscus sutneri (Yo¬ (Kryshtofovich) Krassilov, IMagnoIiaephyllum magnifi- koyama), 132 - Tetragonites sphaeronotus cum (Dawson) Krassilov, IDebeya pachyderma Krassi¬ (Jimbo), 133 - Neocrioceras spinigerum (Jim- bo), 134 - Bostrychoceras otsukai Yabe, 135 - lov) forest - Santonian -* (6) predominantly coniferous B. serpentinum Matsumoto, 136 - Anagaudry- (iSequoia reichenbachii) forest - early Campanian -> (7) ceras yokoyamai (Yabe), 137 - Tetragonites fern - laurophyllous - Ginkgo (Oncolea, Ginkgoites, etc) popetensis Yabe, 138 - Canadoceras newber- forest - late Campanian —> (8) mixed coniferous - ?pla- ryanum (Meek). 139 - Saghalinites saghalinen- tanophyllous (Sequoia reichenbachii, ?Trochodendroi- sis (Shimizu), 140 - Eupachydiscus haradai des, (Jimbo), 141 - Menuites naibutensis Matsumo¬ ?Protophyllum) forest - Maastrichtian -> (9) mixed to, 142 - Mesopuzosia campanica Matsumoto, coniferous - ?platanophyllous (Metasequoia, ?Platanus)

143 - Texanites (Plesiotexanites) kawasakii forest - early Danian (Text-fig. 6). (Kawada), 144 - Scalarites venustus (Yabe), 145 - Tragodesmoceratoides subcostatus Mat¬ sumoto (Pl. 2, Figs. 6-7), 146 - Glyptoxoceras Geomagnetic Polarity Sequence, volcanic Activity and sp., 147 - Polyptychoceras susuense (Yokoya¬ eustatic ma), 148 - Damesites sp., 149 - Submortonice- Changes of the Sea Level ras fukazawai (Yabe et Shimizu), 150 - Cana¬ doceras kossmati (Yabe). 151 - Canadoceras On the basis of literature data (Irving & Pullaiah, 1976; compression Matsumoto, 152 - Gaudryceras Larson, 1976; Harland et al., 1982; Geological Time ornatum (Yabe), 153 - Canadoceras mysticum Scale, 1983; Molostovsky & Khramov, 1984; Lerbek- Matsumoto, 154 - Menuites japonicus Matsu¬ mo & Coulter, 1985), it moto, 155 - Gaudryceras sp., 156 - Menuites is known that the relatively long rotalinoides (Yabe), 157 - Bostrychoceras Aptian-Santonian interval is characterised by a more or sp. indet., 158 - Menuites ryugasensis (Matsu¬ less stable normal polarity (Text-fig. 6). The frequent moto), 159 - Pachydiscus aff. egertoni (For¬ polarity reversais have been predominantly recognised bes), 160 - Ryugasella ryugasensis Matsumoto, in the Maastrichtian - Lower Danian interval. Judging 161 - Canadoceras multicostatum Matsumoto, from data on the 162 - C. ? yokoyamai (Jimbo), 163 - Cymatoce- Krasnoyarka formation lithology in Sakhalin ras sp., 164 - Damesites cf. hetonaiensis Mat¬ (characterised by the presence of andesite-daci- sumoto, 165 - Anapachydiscus subtililobatus tic, rarely acidic tuffs, tuffites, tuffaceous sandstones and (Jimbo), 166 - Baculites zhuravlevi Grabovs- conglomérâtes) (Zakharov et al., 1984b; Salnikov & kaya, - - 167 B. cf. chikoensis Trask, 168 Tikhomolov, 1987; Utkina, 1987) it may be assumed, Schlueterella kawadai Matsumoto et Miyauchi, that the formation was deposited against a background of 169 - Teshioites ryngasense Matsumoto, 170 - Anapachydiscus arrialoorensis (Stoliczka), strong predominantly médiate volcanic activity and ré¬ 171 - Polyptychoceras ryngusense (Wright et gression. Matsumoto). 172 - Urakawaites rotalinoides (Yabe), 173 - Brahmaites brahma (Forbes),

174 - Baculites occidentalis Meek, 175 - Neo- Isotopic Composition of the Cretaceous invertebrate phylloceras aff. surya (Forbes), 176 - Pachy¬ shells from Sakhalin and the discus subcompressus Matsumoto, 177 - Para- Koryak Uplands jaubertella sp.. 178 - Pseudoxybeloceras linea- tum (Gabb), 179 - P. cf. binodosum Matsumoto, Isotopic investigations were made on the basis of the well 180 - Diplomoceras sp., 181 - Neancyloceras preserved brachiopod, bivalve and aragonitic ammonoid cf. pseudoarmatum (Schlüter), 182 - Neocrio¬ shells of South Sakhalin (Zakharov et ai, 1984b) and on ceras (Schlueterella) sachalinicum Jimbo. 183 a - Pachydiscus aff. gollevillensis (d'Orbigny). single aragonitic ammonoid shell from the Koryak Other désignation as in Text-figs. 2 and 3. Upland (Pl. 1, Fig. 4; Tables 1-3). A low index of 813C Ammonoid species

-C c

N >

S VI X 3 S (J > 8 VJ *3d 70 u c a> O a « r200 < "S ■fi E 3 3 o O a> o e — m -fi V a 3 V M *3 cö 0 u

u S » ^ .M 8 E -u 8- « "® E. s ■o ■o o e « e -c-* 3 CÖ c i £ S 1910 « o «2 s 136|183m 175 o fe s ?o o 9 O >0 0 O o p 3 p V 192 193 E — 194.2 3 C L* % * I 3 u B 3 a> E B S u 8. IZ) u S o <» S ■o fi 2 ÖJD • ■■M m u u v a U S 3 — 3 u '-3 3 n a 'E tu h C» B U o -c 3) E S 3 u O 55 "£> u ■O es 3 fi « 33 U CL "S. .S fc« 3 On S e« e u £ 3 -s Q. O « 3 9- Mr. U 181 M ■<108 p-Sfêb p 9 p?9?9fl O? P PÔ? 188 186 187 m Lî 1 184 156 176 16 161 150 164 170 178 85 180 63 64 65 174 94 137

Text-fig. 5 — Lithofacies, distribution and relative abundance of ammonoid taxa for the Upper Krasnoyarka Formation (Maastrichtian-Danian). Abbreviated name of beds: Z.j. = Zelandites japonicus, Pachydiscus subcompressus - P.b. = Pachydiscus subcompressus - Pleurogrammatodon bykovensis.

Species: 184 - Zelandites - japonicus Matsumoto, 185 Neodesmoceras japonicum Matsumoto, 186 - Canadoceras subcompressum Matsumoto, 187 - Pseudoxybe- loceras (Jimbo), 188 - quadrinodosum Saglialinites cf. cala (Forbes), 189 - Zelandites aff. dozei (Fallot), 190 - Gaudryceras crassicostatum Jimbo, 191 - Gaudryceras hamanakense Matsumoto et Yoshida, 192 - Gaudryceras sp. 193 - Damesites sp., 194 - Pachydiscus cf. neubergicus (Hauer). Other désignation as in Text-figures 2-4. GEOLOGICAL AMMONOID SUCCESSION TERRESTRIAL TIME BASIC FACTORS OF Quantity rc (SEASHORE) SCALE BEDS N SYNGENESIS DOMINANT (genera, PLANT TYPE (with magnetic PHASE polarity data) species)

BIOEVENT - Destruction of the marine communities FORMATION - 0 0 0 6 Rare specimens as a resuit of shallowing and bogging. ip r? - Homeostatic <= - development under Thyasira - Multidentata 0 0 0 5 Mixed coniferous influence of increase of warmth. i RÉÉrN7 uncinata ornata es Y///A r» (Metasequoia)- Q WA R6 - Pseudaphrodina - Rare specimens 0 0 0 platanophyllous Né 4 forest Destruction of marine communities as a TERTIARY H extrema 1*1 Rs resuit of température fall during early PALAEOGENE 17 26 6.0- Mixed coniferous Maastrichtian and Cretaceous-Tertiary Pachydiscus Pachydiscus •S ■ h N (Sequoia)- boundary time (because of next portions of subcompressus-P. b. subcompressus (16) (17) 9.3 'S =ES|^N7 Krasnoyarka 3 volcanic activity) and, apparently, ?platanophyllous *&V//A Ra g Zelandites 19 23 1.2N 5.3 1 Zelandites japonicus japon. forest fluctuating anoxie conditions. jgjp Baculites (18) (23) Fern-laurophyllous- f ION 18.1 N2 Canadoceras zhuravlevi 28 54 Ginkgo forest 5*3 il 3 kossmati (30) 5.4-5.9 Predominantly O (19) 25N H ^vyy/ ^ e 28 50 coniferous forest U 2 Y/// c1—mâà % 2 the beginning of volcanic activity, which Sfl (24) (29) fern forest 3 Coniacian n followed the rise of the unstable palaeo- g Jimboiceras Epigoniceras magnetic field. The increase of warmth in late ■ b 32 65 15N 11.7 planulatiforme epigonum Mixed coniferous- Campanian was probably provoked by the hotbed effect of sf|_BNl (13) (16) atmosphère as a resuit of the H« ■ Marshallites- Desmoceras ^ Ginkgo forest increase of carbonic acid concentration of 2I Acanthoceras san. volcanic ce a (Pseudouhligella) origin. eH 30 6 7N Predominantly o Turrilites c japonicum fern forest - :■ costatus (3) (3) Ginkgo and fern Destruction of the marine communities as a TH 1 - 0.3N LOWER Cleoniceras Rare specimens 5 7 forest resuit of the récurrent fresh-water influence. CRETACEOUS «i NaibaAi 118 Yuri D. ZAKHAROV et al.

Text-fig. 7 Corrélation of isotopic/chemical shifts, volcanic activity intervais, main changes in climate and mass extinction in South Sakhalin and adjacent - territory during late Cretaceous early Tertiary. 1 - ammonoids from South Sakhalin, 2 - ammonoid from Koryak - Upland, 3 brachiopods from South Sakhalin, 4 - bivalves from South Sakhalin. 5 -

sedimentary rock from South Sakhalin, 6 - non-inoceramid bivalve species, 7 - inoceramid bivalve species, 8 - ammonoid species, (stable isotope analyses were made in the Far Eastern Geological Institute, FEB RAS. Vladivostok).

was found in the shells from the Turonian (- 5.95%), hansli et ai, 1989; Yang Zunyi & Liang-Pang Ye, Lower Campanian (- 2.6%), and middle Maastrichtian 1992; Wignall & Hallam, 1993; Hallam, 1994; Ko- (- 2.4%) of the north-west Circum-Pacific. There are ur, 1994; Yin Hongfu et al., 1994; Zakharov et al., in grounds to consider that the Maastrichtian-Danian boun- press), marked in turn by concentrations of iridium and dary in this région is also characterised by a low index other metals in marine sédiments. Anoxia at the Creta- 8I3C (Fig. 7) (Zachos et al., 1989). The drop in 813C ceous/Tertiary boundary is supported by the sulfur iso¬ which suggests the reduced biological productivity is tope record (Kajiwara & Kaiho, 1992). probably related to oceanic anoxia et A (Magaritz al., high index of 8lxO was recognised in the shells 1981, 1983, 1988; Magaritz & Turner, 1982; Holser which were found in Lower Campanian and Middle & Magaritz, 1985; Holser et al., 1986, 1989, Maastrichtian. A 1991; fall of température can be expected at Magaritz & Holser, 1991; Baud et al., 1989; Berner, the beginning of the Campanian and in Middle Maas¬ 1989; Delaney, 1989; Gruszczynski et al., 1989; Obe- trichtian. Based on the réduction in taxonomie diversity

Text-fig. 6 — Faunal and floral succession during the Cretaceous and early Tertiary in South Sakhalin. Normal magnetic polarity is indicated by black colour (Geological Time Scale, 1983). Data in brackets indicate the number of species in common Cretaceous ammonoid succession in Far East 119

of Sakhalin invertebrates one can also assume the exi¬ on Santonian ô180 have not yet been reported from stence of the climatic "pessimum" in Coniacian and the Sakhalin, but some palaeobotany data (the presence of time of the Maastrichtian-Danian boundary beds. The Ginkgo, Araliaephyllum and Magnoliaephyllum in the climatic optima in Sakhalin fall during the Turonian, forest) confirm the existence of a climatic optimum at Santonian and Middle Campanian. Relatively low tem¬ that time. The Santonian, in the same way as some pre- pérature (till 11.7° C) of the near bottom waters of the vious Cretaceous stages, is characterised by a magnetic shelf in Koryak Upland occurred in the Turonian, during field with prédominant normal polarity. a climatic optimum, and may be explained by the climatic During the Early Campanian phase (bioevent "e"), a zonation existing at least in middle Cretaceous time, also noticeable réduction in abundance and taxonomie diver¬ confirmed by palaeobotanical data (Krassilov, 1985; sity of some ammonoid groups took place. This drop in Naidin et al., 1986). A sharp fall in température in the organic productivity is correlated with a zone of 5I3C Maastrichtian-Danian transition existed just after a warm¬ values (anoxie conditions) and high values of 8lsO. The ing during the middle Late Maastrichtian. latter shows that the water température was about 5.4° C. The Late Campanian phase (bioevent "g") is characte¬ rised by a marked increase in abundance and taxonomie diversity of bivalves and ammonoids which coincide with Conclusions positive shifts of carbon isotopes, négative oxygen iso¬ tope excursion, sea-level régression, rapid polarity chan¬ An indirect causal link between the mass extinction at the ges and the beginning of a strong volcanic activity. The end of the Cretaceous and the massive volcanism, sea- latter fact may have provoked the lower température in level régressions, reversais of the geomagnetic field, 813C the first steps of the phase, but during the most of the and 5lsO fluctuations, as shown below, seems to exist. phase a climatic optimum (with température about 18°C) In the Santonian phase (bioevent "d"), basic commu- existed, apparently, because of hotbed effect of atmos¬ nity elements acquire an extremely high diversity (a peak phère as a resuit of the increase of carbonic acid concen¬ of "Megaclimax", sensu Zakharov, 1983, 1986). Data tration of volcanic origin (greenhouse summer).

Table 1. Carbon and oxygen isotope analysis of a Turonian aragonitic ammonoid shell (Mesopuzosiapacifica Matsumoto) from the right bank of the Upper Pakhacha River, Koryak Upland.

Sample Location Colour Aragonite 513C Ô180 5180 T°C contents, % (PDB) (SMOW) (PDB) (D and H in mm) %0 %o %0

940-1 Septa cream- 91 - 2.5 29.6 +0.1 11.56*(14.95**) (D=79; H= 31) coloured

940-3 Dorsal wall id. 95 - 6.0 29.8 +0.3 10.78 (14.09) (D=79; H=31)

940-4 Latéral wall id. 95 - 4.1 29.5 0 11.96 (15.39) (D=71.6;H=27.8)

940-5 Dorsal wall id. 91 - 8.1 29.6 +0.1 11.56 (14.95) (D=71.6;H=27.8)

940-6 Latéral wall id. 90 - 5.9 29.3 -0.2 12.75 (16.26) (D=32.5;H=14.0)

940-7 Latéral wall id. 84 - 7.8 29.7 +0.2 11.17 (14.52) (D=31.0;H=13.0)

940-8 Latéral wall id. 92 - 7.3 29.5 0 11.96 (15.39) (D=28.9;H=12.0)

940-2 Ventro-lateral cream 15 -11.4 28.5 -1.0 "T"0C= part (D=79;H=31). coloured (admixture 16.00 (19.73) and oc-Si02) brown

* Anderson & Arthur (1983); ** Grossman & Ku (1986) Table 2. ts> o Carbon and oxygen isotope analysis of invertebrate shells from the Campanian-Maastrichtian of South Sakhalin.

Sample Species Stage, Formation, Location Aragonite Calcite 513C (PDB) 8180 (SMOW) 5,80 (PDB) T°C Locality (H & L mm) % % %0 %0 %c

A. Ammonites

101.952.1 Pachvdiscus (P.) L. Campanian, Bykov L.W. 99 1 -2.3 - +2.7 2.05*(3.67)** gollevillensis Fm., bed 11.6; H=80 Naiba River

tt 101.952.2 same shell H=76 99 1 -2.2 - +1.7 5.55 (8.01)

„ „ tt 101.952.9 H=70 99 1 -2.5 - +1.3 7.00 (9.75)

tt 101.952.11 H=62 99 1 -2.6 - +2.0 4.48 (6.71)

101.952.18 »i it H=42 96 4 -2.5 +1.3 7.00 (9.75)

(• «i 101.952.20 H=30? - - -3.0 - +1.5 6.27 (8.88)

111.952.50 Pachvdiscus (P.) L.Campanian, Bykov L.W. 89 11 -2.6 - +1.6 5.91 (8.44) gollevillensis Fm., bed 11.1; H>45 Naiba River

103.952.28 Pachvdiscus (P.) Maastrichtian, L.W. 99 1 -1.1 - +1.6 5.91 (8.44) gollevillensis Krasnoyarka Fm., bed H=160 5.11; Naiba River

« 103.952.31 same shell H>50 99 1 -2.4 - +1.8 5.19 (7.58)

tt 107.952.36 Pachvdiscus (P.) H=70 99 1 -2.8 - +1.9 4.83 (7.14) gollevillensis

" " 108.952.39 Septa 99 1 -2.8 - +1.9 4.84 (7.14) H>120

•i 110.952.45 Maastrichtian, L.W. 98 2 -2.0 - +1.6 5.91 (8.44) Krasnoyarka Fm., bed H=85 5-10; Naiba River

114.952.50 Pachvdiscus Maastrichtian, L.W. 97 3 -2.2 - +1.8 5.19 (7.58) (Neodesmoceras) Krasnoyarka Fm., bed iaponicus 5-9; Naiba River

105.952.32 Pachvdiscus (P.) sp. Maastrichtian, L.W. 99 1 -2.5 - +1.5 6.27 (8.88) Krasnoyarka Fm., bed H>105 5-7; Naiba River

" 106.952.35 Pachvdiscus (P.) sp. H>106 98 2 -2.5 - +1.4 6.64 (9.31) " » 106.952.42 H>80 98 2 -2.2 - +1.8 5.19 (7.58)

B. Brachiopods

KL10.6.1 Rhynchonellacea U. Maastrichtian, L=13 0 100 +0.6 29.7 +0.2 11.17* (smooth) Krasnoyarka Fm. (Krasnoyarka River, just below the mine)

KL10.6.2. » » L=14 0 100 +1.8 30.0 +0.5 10.01

KL10.6.3 •• " L=11.8 0 100 +1.4 29.0 +0.3 10.78

" KL111.1 U. Maastrichtian, L=11.5 0 100 +1.1 29.8 +0.3 10.78 Krasnoyarka Fm., bed 111.1 (Naiba River)

KL111.2 » - L=12.0 0 100 +1.4 29.8 +0.3 10.78

KL111.3 » » L=12.? 0 100 +1.4 29.7 +0.2 11.17

KL6 Rhynchonellacea U. Maastrichtian, L=11.0 0 100 0 30.5 +1.0 8.12 (coarse ribs) Krasnoyarka Fm., loc. 6 (Sary River)

141.952.65 Rhynchonellacea U. Campanian, few shells 0 100 -0.6 - +0.7 9.25 (coarse ribs) Krasnoyarka Fm., bed 5.6 (Naiba River)

tt 6.3 U. Campanian L=11.0 0 100 +0.9 28.0 -1.5 18.09 Krasnoyarka Fm., bed 6.3 (Naiba River)

* Anderson & Arthur (1983); ** Grossman & Ku (1986). L. W.: latéral wall 122 Yuri D. ZAKHAROV et al.

Table 3. Carbon and oxygen isotope analysis of diagenetically slightly altered bivalve and brachiopod shells (with natural value for ôl3C) from the Campanian-Maastrichtian of Naiba River, South Sakhalin.

Sample Species (rock) Stage, formation Calcite contents 813C S18 O % (PDB) (PDB) %0 %0

7.1 Inoceramus sp. L. Campanian 100 -1.7 -2.4 Upper Bykov Fm., bed 7.1

tt 6.13 U. Campanian 100 -0.9 -4.2 L. Krasnoyarka Fm., bed 6.13

ii 6.11 U. Campanian 100 + 1.0 -4.1 L. Krasnoyarka Fm., bed 6.11

15.1003 Acila (Truncacila) munda Danian, U. Krasnoyarka Fm., 100 +0.2 -4.3 M. Sinegorsk horizon, bed 108

140.952 Rhynchonellacea U. Campanian, L. Krasnoyarka 100 +0.3 -3.8 (smooth) Fm., bed 6.11

141.952 Marly limestone U. Maastrichtian, Krasnoyarka 100 -1.0 + 0.1 Fm., bed 5.6

During the Early Maastrichtian phase (bioevent "g"), deficit and enormous eustatic level fluctuation, provoked the next sharp réduction in abundance and taxonomie by thermal perturbation at the core/mantle boundary and diversity of ail groups inhabiting this basin took place a change in rotation regime of the Earth (speed of Earth against a background of a drop in température (till 5.2° C) rotation) (Krassilov, 1985; Zakharov, 1986; Cana- and in conditions of volcanic activity, during fluctuation han et al., 1994), as in case of the - of the sea level and at a time of rapid polarity changes boundary interval, is the main reason for the destruction (volcanic winter). Carbon isotope data from ammonoid of epicontinental sea ecosystems at the end of the Cre- shells suggest that there was a sharp drop in organic taceous. productivity at that time (including, obviously, terrestrial The lower 8I3C (- 2.4%) value found in Late Maas¬ plant and phytoplankton productivity) which resulted in trichtian invertebrates of Sakhalin island, when compared atmospheric and oceanic anoxia apparently because of with those from both planktonic and benthic foraminifera photosynthesis réduction. of Cretaceous-Tertiary boundary beds in the North Paci¬ The Late Maastrichtian phase (bioevent "h") was the fic Shatsky Rise (Zachos, Arthur & Dean, 1989) can be time of the last diversification of ammonoids under explained by more strongly expressed anoxie conditions conditions of rising température (till 10-11° C), of the in the epicontinental basins (near the sea floor) than continuation of volcanic activity, of fluctuation of sea- existing in those from the open océan, due to a weaker level and of rapid palaeomagnetic polarity changes. Dur¬ water circulation. ing the Late Maastrichtian, the mollusk productivity Judging from the very low value of S13C (- 5.9%) seems to be two times lower in comparison with that of obtained from a Late Cretaceous ammonoid from Koryak the Late Campanian, but the 8I3C index of Late Maas¬ Upland. the most oxygen depleted marine waters at that trichtian organogenic carbonate is relatively high (1.8%). time were spread in high latitudes. A général high marine organic productivity at this time was compensated, apparently, by a microorganism pro¬ ductivity just before the biodiversity crisis of terminal Acknowledgments Mesozoic. Thanks are due to G.V. Popova (Guseva) for some materials from It seems justified to assume that the repeated influence Koryak Upland, to V.A. Piskunova for linguistic corrections, and to of the three basic factors: drop of température, oxygen MA. Popova and L.I. Sokur for technical help. Cretaceous ammonoid succession in Far East 123

References

Anderson, T. F. & Arthur, M. A., 1983. Stable isotopes of rez] (Référencé section of Cretaceous deposits in Sakhalin oxygen and carbon and their application to sedimentologic and [Naiba section]). Nauka. Leningrad, p. 93-96 (in Russian). palaeoenvironmental problems. In: Arthur, M. A. et al. (eds.). Kozur, H. 1994. The Permian/ Triassic boundary and possible Stable isotopes in sedimentary geology. SEPM Short Course causes of the faunal change near the P/T boundary. Permophi- 10: 1 - 151. les, 24: 51-54. Baud, A.M., Magaritz, M. & Holser, W.T. 1989. Permian- Krassilov, V. A., 1979. Melovaya flora Sakhalina (The Cre¬ Triassic of the Tethys: carbon isotope stratigraphy. Geologische taceous flora from Sakhalin). 183 pp. Nauka, Moskva (in Rundschau 78: 649-677. Russian). Berner. R.A. 1989. Drying, 02 and mass extinction. Nature Krassilov, V.A. 1985. Melovoj period. Evolyutsiya zemnoi 340. n° 6235: 603-604. kory i biosphery (Cretaceous évolution of the Earth-crust and Canaghan, P.J., Shaw, S.E. & Veevers, J.J. 1994. Sedimenta¬ biosphère). 240 pp., Nauka, Moskva (in Russian). ry evidence of the Permian/Triassic global crisis induced by the Larson, R.L. 1976. Deep sea drilling results related to the Siberian hotspot. Canadian Society of Petroleum Geologists, paleomagnetie and paleontologie stratigraphy at Gubbio. Me¬ Memoir 17: 785-795. morie Societa Geologica Italiana 5: 61-68. Delaney, M. L., 1989. Extinctions and carbon cycling. Nature Lerbekmo, J.F. & Coulter, C. 1985. Late Cretaceous to early 337 (6202): 18-19. Tertiary magnetostratigraphy of a continental sequence: Red Geological Time Scale. 1983. Geological Society of America, Deep Valley, Alberta, Canada. Canadian Journal of Earth Boulder, 2 pp. Sciences 22: 567-583. Grossman, E. L. & Ku, T.-L., 1986. Oxygen and carbon Magaritz, M., Anderson, R.Y., Holser, W.T. et al. 1983. isotope fractionation in biogenic aragonite: température effect. Isotope shifts in the Late Permian of the Delaware Basin, Texas, Chemical Geology 59: 59-74. precisely timed by varved sédiments. Earth and Planetary Science Letters 66: 111-124. Gruszczynski, M., Halas, S., Hoffman, A. & Malkowski, K. 1989. A brachiopod calcite record of the oceanic carbon and Magaritz, M., Bar, R„ Baud. A. & Holser, W.T. 1988. The oxygen isotope shifts at the Permian/Triassic transition. Nature carbon-isotope shift at the Permian/Triassic boundary in the 337, n° 6202: 64-68. southern Alps is graduai. Nature 331. n° 6154: 337-339. Hallam, A. 1994. The Earliest Triassic as an anoxie event. and Magaritz, M. & Holser, W.T. 1991. The Permian-Triassic of its relationship to the end-Palaeozoic mass extinction. Cana¬ the Gartnerkofel-1 Core (Carnic Alps, Austria): carbon and dian Society Petroleum Geologists, Memoir 17: 797-804. oxygen isotope variation. Abhandlungen der geologische Bun¬ desanstalt 45: 149-163. Harland. W.B.. Cox, A.V.. Llewellyn, P.G.. Pickton, C.A., Smith, A.G., & Walters, R. 1982. A geological time scale. Magaritz, M., Turner, P. & Kading, K.-Ch. 1981. Carbon Cambridge University Press., Cambridge, 131 pp. isotopic change at the base of the Upper Permian Zechstein Holser, W. & Magaritz, M. 1985. The Late Permian carbon sequence. Geologisches Jahrbuch 16: 243-254. isotope anomaly in the Bellerophon basin, Carnic and Dolomite Magaritz, M. & Turner, P. 1982. Carbon cycle changes of the Alps. Jahrbuch der geologische Bundesanstalt 128: 75-82. Zechstein Sea: isotopic transition zone in the Marl Slate. Nature 297. n° 5865: 389-390. Holser, W.T., Magaritz, M. & Clark, D.L. 1986. Carbon- isotope stratigraphie corrélations in the Late Permian. American Matsumoto, T. A., 1938. A biostratigraphic study on the Journal of Science 286: 390-402. Cretaceous deposits of the Naibuti valley, South Karahuto. Holser, W.T., Schönlaub. H.-P., Attrep, M. et al. 1989. A Proceedings of the Impérial Academy 14 (15): 190-194. unique geochemical record at the Permian/Triassic boundary. Matsumoto, T.. 1954. Selected Cretaceous leading ammonites Nature 337, n° 6202: 39-44. in Hokkaido and Saghalien. In: T. Matsumoto (comp.): The Cretaceous Holser, W.T., Schönlaub, H.P., Boeckelmann, K. & Maga¬ System in the Japanese islands. Japanese Society for the Promotion of Science, Ueno. Tokyo, pp. 244-313. ritz, M. 1991. The Permian-Triassic of the Gartnerkofel-1 Core: synthesis and conclusions. Abhandlungen der geologi¬ Mirolyubov, Y.G. 1987. Ammonoids. In: Z.N. Poyarkova sche Bundesanstalt 45: 213-232. (éd.), Oporny razrez melovykh otlozhenij Sakhalina [Naibinskij Irving, E. & Pullaiah, G. 1976. Reversais of the geomagnetic razrez] (Référencé section of Cretaceous deposits in Sakhalin field, magnetostratigraphy, and relative magnitude of paleose- [Naiba section]). Nauka, Leningrad, p. 83-87 (in Russian). cular variation in the Phanerozoic. Earth-Science Reviews 12: Molostovsky, E. A. & Khramov, A. N„ 1984. Paleomagnetie 35-64. scale of the Phanerozoic and the problem of magnetic strati¬ Kajiwara, Y. & Kaiho, K. 1992. Oceanic anoxia at the Cre¬ graphy. 27th International Geological Congress, Reports Stra¬ taceous/ Tertiary boundary supported by the sulfur isotopic tigraphy Section C., vol. 1: 16-23. record. Palaeogeography, Palaeoclimatolology, Palaeoecolo- naidin, D.p., pokhialainen, V.p., kats, Y.l. & krassilov, gy, 99: 151-162. V.A. 1986. Melovoj period. Paleogeographiya i paleookeano- Kalishevich, T. G., Zaklinskaya, E.D. & Serova, M. Y., logiya (Cretaceous. Paleogeography and paleooceanology). Nauka, Moskva, 262 pp. (in Russian). 1981. Razvitiye organicheskogo mira Tikhookeanskogo poyasa na rubezhe mezozoya i kainozoya (Organic évolution of the Oberhansli, H., Hsü, K.J., Piasecki, S. & Weissert, H. 1989. Circum-Pacific during the Mesozoic-Cenozoic transition). Carbon-isotope anomaly in Greenland and in the Southern 164 pp.. Nauka, Moskva. (in Russian). Alps. Historica! Biology 2: 37-49. Kazintsova, L.I. 1987. Radiolarians. In: Z.N. Poyarkova (éd.), Poyarkova, Z.N. 1987. Gastropods. In: Z.N. Poyarkova (éd.), Oporny razrez melovykh otlozheniy Sakhalina [Naibinskij raz- Oporny razrez melovykh otlozhenij Sakhalina [Najbinskij raz- 124 Yuri D. ZAKHAROV et al.

rez] (Référencé section of Cretaceous deposits in Sakhalin 1981. Successional row of the marine organisms from the Naiba [Naiba section]). Nauka, Leningrad, p.87-89 (in Russian). and Bykov Formations of the basic Upper Cretaceous section in Salnikov, V.A. & Tikhomolov, Y.l. 1987. Description of the Sakhalin. In: V.A.Krassilov (éd.), Evolyutsiya organizmov i section. In: Z.N. Poyarkova (éd.), Oporny razrez melovykh biostratigraphiya melovogo perioda (Evolution of the Creta¬ otlozhenij Sakhalina [Naibinskij razrez] (Référencé section of ceous biota and biostratigraphy). DVNC Akademii Nauk SSSR, Cretaceous deposits in Sakhalin [Naiba section]). Nauka, Le¬ Vladivostok, p. 47-85 (in Russian). ningrad, p. 13-49 (in Russian). Zakharov, Y. D., Grabovskaya, V. S. & Kalishevich, T. G., Salnikova, N.B. 1987. Non-inoceramid bivalves. In: Z.N. 1984a. Late Cretaceous succession row of the marine commu- Poyarkova (éd.), Oporny razrez melovykh otlozheij Sakhalina nities of the North-West Circum Pacific. In: M. N. Gramm & Y. [Naibinskij razrez] (Référencé section of Cretaceous deposits in D. Zakharov (eds.) Sistematika i evolyutsiya bezpozvonoch- Sakhalin [Naiba section]). Nauka, Leningrad, p. 75-83 (in nykh Dal'nego Vostoka (Systematics and évolution of Far Russian). Eastern invertebrates. DVNC Akademii Nauk SSSR, Vladivos¬ Turenko, T.V. 1987. Foraminifera. In: Z.N. Poyarkova (éd.), tok, p. 41-90 (in Russian). Oporny razrez melovykh otlozhenij Sakhalina [Naibinskij raz¬ Zakharov, Y. D., Ignatyev, A. V. & Khudolozhkin, V. O. rez].(Référencé section of Cretaceous deposits in Sakhalin 1984b. The stable oxygen and carbon isotopes of invertebrate [Naiba section]). Nauka, Leningrad, p. 89-93 (in Russian). shells from the Cretaceous-Paleogene of Sakhalin island. Izves- Utkina, A.I. 1987. Lithological characteristics. In: Z.N. Poyar¬ tia Akademii Nauk SSSR, Ser. Geol. 2: 24-34 (in Russian). kova (éd.), Oporny razrez melovykh otlozhenij Sakhalina [Nai¬ binskij razrez] ( Référencé section of Cretaceous deposits in Zakharov, Y. D„ Ignatyev, A. V., Kotlyar, G. V., Ukhane- va, N. G. & Cherbadzhi, A. K. (in Sakhalin [Naiba section]). Nauka, Leningrad, p. 49-53 (in press). The stable carbon Russian). isotopes and Ca/Mg ratios of Permian-Triassic carbonates and mass extinction. - Tikhookeanskaya Geologiya (in Russian). Vereschagin, V.N. 1977. Melovaya sistema Dalnego Vostoka (The Cretaceous of Far East). Trudy Vsegei, N. S. 242. 207 Zakharov, Y. D., Kalishevich, T. G. & Krivoshapkina, V. S. pp. (in Russian). 1978. Lower Cretaceous - Upper Cretaceous boundary in the Wignall, P.B & Hallam, A. 1993. Griesbachian (Earliest Sakhalin sections. Doklady Akademii Nauk SSSR 238: 660-662 Triassic) palaeoenvironmental changes in the Sait Range, Pa¬ (in Russian). kistan and southeast China and their bearing on the Permo- Zonova, T.D. 1987. Inoceramids. In: Z.N. Poyarkova (ed.), Triassic mass extinctions. Palaeogeography, Palaeoclimatolo- Oporny razrez melovykh otlozhenij Sakhalina [Naibinskij raz¬ gy, Palaeoecology, 102: 215-237. rez] (Référencé section of Cretaceous deposits in Sakhalin Yang ZuNYi & Lian-Pang Ye. 1992. Carbon isotope event | Naiba section]). Nauka, Leningrad, p. 13-49 (in Russian). markers near the K/T boundary at Shanshan section, Kingjiang, Zonova, T. D„ Kazintsova, L. I. & China.- 29th Int. Geological Congress, Kyoto. Abstracts 1: 236. Jazykova, E. A., 1993. Atlas Yin rukovodyasschikd grupp melovoj fauny Sakhalina (Atlas Hongfu, Wu Shunbao, Din Meihua et al. 1994. The of index fossils in the Cretaceous fauna of Sakhalin). 327 pp., Meishan section candidate of the global stratotype section Nedra, St. Petersburg (in Russian). and point (GSSP) of the Permian-Triassic boundary (PTB). Albertiana 14: 15-31. Yuri D. Zakharov, Zachos, J. C„ Arthur, M. A. & Dean, W. E., 1989. Chemical Alexander V. Ignatyev, evidence for suppression of pelagic marine productivity at the Nataliya G. Ukhaneva, Cretaceous/Tertiary boundary. Nature 337 (6202): 61-64. Tamara B. Afanaseva Zakharov, Y. D. 1983. Palaeosuccessions and the basic factors Far Eastern Geological Institute, of syngenesis during the time of the Permian Triassic bounda¬ Far Eastern Branch of the Rus¬ ry.- Sitzungsberichte Oesterreichische Akademie der Wissen¬ sian Academy of Sciences, schaften (Math-naturw. Kl., (1). 192/1-4: 37-58. Vladivostok 690022, Zakharov, Y. D. 1986. Macroevolution and the major boun- Russia daries in the Phanerozoic. Eclogae geologicae Helvetiae 79: 227-235. Typescript submitted: August 1, 1995 Zakharov, Y. D., Grabovskaya, V. S. & Kalishevich, T. G., Corrected typescript received: November 20, 1995

Explanation of Plates

All the figured specimens are preserved in the collections of the Far Eastern Geological Institute in Vladivostok, Russia.

DVGI: Dal'nevostochny geologicheskij institut = Far Eastern Geological Institute, Far Eastern Branch. Russian Academy of Sciences, Vladivostok

Plate I

Figs. 1-2 — Jimboiceras mihoense Matsumoto: 1 - DVGI 11-27/952, x 1; 2 - 11-12/952, x 1; Sakhalin, Naiba River, Middle Bykov Formation, Coniacian, Jimboiceras mihoense beds. Cretaceous ammonoid succession in Far East 125

Fig. 3 Neopuzosia ishikawai (Jimbo), DVGI 10-22/952, x L; Sakhalin, Naiba River, Upper Bykov Formation. Santonian, Anapachydiscus naumanni beds. Fig. 4 Mesopuzosia pacifica Matsumoto, DVGI 1/953, x 1 ; Kamchatka région, Koryak Upland, Pakhaeha River, right bank, 12 km above the Eehviyam Creek mouth; Turonian block in deep-sea Vatyn Series (G.I. Popova (Guseva)'s collection).

Plate 2

Fig. 1 Neopuzosia ishikawai (Jimbo), DVGI 92-4/952, x 1 ; Sakhalin, Naiba River, Lower Bykov Formation, Turonian, Jimboiceras planulatiforme beds.

Figs. 2-3 Damesites damesi (Jimbo): 2 - DVGI 179/952, x 1; Sakhalin. Naiba River, Upper Bykov Formation, Santonian,

Canadoceras kossmati beds; 3 - DVGI 179/951, x 1; Krasnoyarka River, Upper Bykov Formation, Santonian, Canadoceras kossmati beds. Fig. 4 Hauericeras (Gardeniceras) angustum Yabe, DVGI 26-1/952, x 1; Sakhalin, Naiba River, Upper Bykov Formation, Santonian, Anapachydiscus naumanni beds. Fig. 5. Damesites laticarinatus Matsumoto, DVGI 116-8/952, x 1; Sakhalin, Kuma River. Upper Bykov Formation, Santonian, Anapachydiscus naumanni beds. Figs. 6-7 Tragodesmoceratoides subcostatus Matsumoto: 6 - DVGI 506/951, x 1; Sakhalin, Krasnoyarka River, Upper Bykov Formation, Santonian, Anapachydiscus naumanni beds; 7 - DVGI 57-5/952, x 1; Naiba River, Middle Bykov Formation, Turonian, Jimboiceras planulatiforme beds. 126 Yuri D. ZAKHAROV et al.

Plate 1. Cretaceous ammonoid succession in Far East 127

Plate 2.