(South Sakhalin) Syngenesis
Total Page:16
File Type:pdf, Size:1020Kb
bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre. 66: 109-127, 1996 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen, aardwetenschappen. 66: 109-127, 1996 Cretaceous ammonoid succession in the Far East (South Sakhalin) and the basic factors of syngenesis by Yuri D. ZAKHAROV, Alexander V. IGNATYEV, Nataliya G. UKHANEVA & Tamara B. AFANASEVA Abstract Characteristics of the marine Palaeosuccession At the Maastrichtian-Danian boundary in Sakhalin Island radical fau- In the Albian-Danian South Sakhalin mollusk succession nal changes are visible. The repeated influence of three basic factors several can (drop of température, oxygen deficit and enormous eustatic level phases be distinguished, reflecting the diver- fluctuation provoked by thermal perturbation at the core/mantle boun¬ sity in the marine communities at that time. dary and change in rotation regime of the Earth) seems to be the main reason for a great extinction in many groups of marine and terrestrial organisms during the time of the Cretaceous-Tertiary transition. Key-words: K/T boundary - faunal changes - stable isotopes - Sakhalin. Résumé Dans les dépôts de Sakhalin la transition Maastrichtien/ Danien montre un changement radical dans les faunes. Trois facteurs (diminution de la température, un déficit dans la quantité d'oxygène et de fortes fluctua¬ BERING tions eustatiques résultant de la perturbation thermique à la transition SEA noyau-manteau et au changement dans le régime de rotation terrestre) semblent être les causes majeures pour une grande extinction dans de nombreux groupes d'organismes marins et terrestres au moment de la transition Crétacé-Tertiaire. Mots-clefs: Transition K/T - changements fauniques - isotopes stables - Sakhalin. 1000 km Introduction A more than 4000 m thick, well exposed late Early Cretaceous - Late Cretaceous - Early Palaeogene se- quence is present along the Naiba River in Dolinsk ré¬ gion, South Sakhalin (Text-fig. 1). This famous section (Matsumoto, 1938; Vereschagin, 1977; Zakharov et SEA OF al., 1978, 1981. 1984a; Salnikov & Tikhomolov, 1987) OKHOTSK is considered as the basic section for the Upper Creta¬ ceous in the "Far East". This sequence has been sub- divided into four formations : (1) Ai (Albian), (2) Naiba (Albian-Cenomanian), (3) Bykov (Turonian-Santonian), and (4) Krasnoyarka (Campanian-Danian). The present work analyses the Cretaceous palaeosuc¬ 200 km cession of the Far East on the basis of data for the Sakhalin cephalopod fauna and stable isotopes recogni- zed in brachiopod, ammonoid and bivalve shells from South Sakhalin (Naiba, Krasnoyarka and Sary Rivers) Text-fig. 1 — Location of the Naiba River, Sakhalin (1) and and from the Koryak Uplands. Pahacha River, Koryak Uplands (2) sequences. ou o- 0Q m Om 0' o o * BED •• E STAGE MEMBER 0 BB FORMATION LITHOLOGY THICKNESS, • © K» © © fji (A oö O ï i 00 CO Oè Bykov m O h* 4^ -o£o- O oK O Ou! 03 &'iv 3> *>3 •-0 r^'Jt •>3 o ŒD-O O &o O SCF OO iO 0 aO c£ SO- £o O oo-o- £o O o—— -aO a AoavHMVz E2ö <A°^ t^O a Ê Ac. K> ™a O 4- Ut oo vo sanctorum ©O Marshallites-A.s. &o êo- so (A O O ÖÖ O 0W9^ O Oto OO OS OtA O O o<v CENOMANIAN u> Ut •>3 Sp M © «O w w © © hO" K) N> ts> ►O CO- O Naiba uO ipomcum tibilis OO ularis©•- ±.0~ Turjilitescf. ©O— 00 ZeLindites 055costatus Da/nesifis mihoensis damesi ©O CD^- 55O— (AQ- Nipponites Mikasaites ALBIAN jç.tDesmoceras(P.) Gaudrycerasteruiliratum mirt orbh © wO- 3©o o- Cretaceous ammonoid succession in Far East 111 Phase 1 Text-fig. 2 — Lithofacies, distribution and relative abundance of ammonoid taxa for the Upper Ai, Naiba and During phase 1 (Ai and Lower Naiba formations, Albian), Lower Bykov Formations (Albian-Cenoma- most marine nian). Désignation of the beds: T.c. = Turrilites groups in South Sakhalin were poorly di- costatus, Marshallites - A.s. = Marshallites - versified, possibly due to a shallowing marine basin and Acanthoceras sanctorum. Lithology: a - conglo- periodical fresh-water influence during the latest Early merate, b - sandstone, c - sandy siltstone, d - Cretaceous. The main body of the community was for- tuffaceous siltstone, tuffaceous sandstone, tuf- med by foraminifers (about 30 species) (Turenko, 1987), fite, tuffs, e - siltstone, f - mudstone with no¬ radiolarians (about 14 dules; location: g - Naiba River basin, h - species) (Kazintsova, 1987), cri- noids neigbouring territories in South Sakhalin, i - (1 species), echinoids (1 species), bivalves (12 questionably present. Relative abundance of species) (Salnikova, 1987), including some fresh-water ammonoid - very rare, - rare, - species: j k 1 taxa - Anodonta oraria Kalishevich (Zakharov et al., occasional, m - common, n - abundant. 1978, 1981), gastropods (2 species) (Poyarkova, 1987), Species: 1 - Brewericeras ex gr. hulense An¬ and scarce ammonoids dersom 2 - Cleoniceras (Neosaynella?) sp. 3 - ("Phylloceras'' aff. tanit Pervin¬ Puzosia subcorbarica Matsumoto, 4 - Cleoni¬ quière, Anagaudryceras? sp., Parajaubertella cf. kawa¬ ceras? sp., 5 - Desmoceras kossmati Matsumo¬ kitana Matsumoto, Puzosia subcarbarica Matsumoto, to, 6 - Pachydesmoceras cf. denisonianum (Sto- Pachydesmoceras cf. denisonianum (Stoliczka), Brewe¬ liczka), 7 - Parajaubertella kawakitana Matsu¬ riceras ex gr. hulense Anderson, Desmoceras kossmati moto, 8 - "Phylloceras" aff. tanit Pervin- Matsumoto, sp., sp., quière, 9 - Nipponites mirabilis Yabe, 10 - Anahoplitesl Cleoniceras Neogas- Mikasaites orbicularis Matsumoto, 11 - Ana- troplites sp.) (Text-fig. 2) (Zakharov et al., 1978, 1984a; gaudryceras sacya (Forbes), 12 - Marshallites Mirolyubov, 1987). sp., 13 - Epigoniceras sp., 14 - Desmoceras (Pseudouhligella) japonicum Yabe, 15 - Dame- Phase 2 sites damesi (Jimbo) (Pl. 2, Fig. 2-3), 16 - Gaudryceras tenuiliratum Yabe, 17 - Turrilites cf. acutus (Passy), 18-7". cf. costatus (La- Phase 2 (Upper Naiba, Bykov, and Lower Krasnoyarka marck), 19 - Puzosia tenuis Shimizu, 20 - Des¬ Formations, Cenomanian-Campanian) is characterised by moceras aff. inane (Stoliczka), 21 - Puzosia an abundance and high taxonomie diversity of a.o. bival¬ planulata (J. de C. Sowerby), 22 - Marshallites ves (including inoceramids) and ammonoids. This part of cf. olcostephanoides Matsumoto, 23 - "Phyllo¬ the invertebrate succession is ceras" cf. ellipticum Kossmat, 24 - Zelandites represented by foraminifers mihoensis Matsumoto, 25 - Anagaudryceras (about 38 species) (Turenko, 1987), radiolarians (more sp., 26 - Puzosia ex gr. bhima (Stoliczka), 27 than 100 species) (Kazintsova, 1987), crinoids (1 spe¬ - Holcodiscoides popillatus (Stoliczka), 28 - cies), crustaceans (1 species), bivalves (more than 100 Mikasaites matsumotoi Vereschagin, 29 - Acanthoceras hippocastanum (J. de C. Sower¬ species) (Zakharov et ai, 1984a; Salnikova, 1987; by), 30 - A. sussexiense (Mantell), 31 - A. cf. Zonova, 1987), scaphopods (5 species), gastropods (25 rotomagense (Defrance), 32 - Tetragonites ex species) (Poyarkova, 1987), ammonoids (177 species of gr. timotheanus (Pictet), 33 - Eogunnarites uni- Hauericeras, Hypophylloceras, Neophylloceras, Zelandi¬ cus (Yabe), 34 - Eucalycoceras cf. vergonsense tes, Parajaubertella, Anagaudryceras, Gaudryceras, Te¬ Collignon, 35 - Calycoceras asiaticum (Jimbo), tragonites, Saghalinites, Neocrioceras, 36 - Marshallites japonicus Matsumoto, 37 - Turrilites, Anapa- Pachydesmoceras pachydiscoides Matsumoto, chydiscus, Puzosia, Pachydesmoceras, Jimboiceras, 38 - Hypophylloceras seresitense (Pervin- Mesopuzosia, Microdesmoceras, Marshallites, Holcodis¬ quière), 39 - Microdesmoceras applanatum coides, Eogunnarites, Kossmaticeras, Yokoyamaoceras, Grabovskaya, 40 - Jimboiceras planulatiforme Jacobites, Canadoceras, Anapachydiscus, Menuites, Tes- (Jimbo), 41 - Hypophylloceras ononense (Stan- hioites, Urakawites, Mikasaites, Nipponites, Hyphanto- ton), 42 - H. simplificatum Grabovskaya, 43 - Metapuzosia sp., 44 - Anagaudryceras cf. ol¬ ceras, Scalarites, Bostrychoceras, Diplomoceras, Scaphi- costephanoides Matsumoto, 45 - Anagaudryce¬ tes, Ryugasella, Desmoscaphites, Polyptychoceras, Pseu- ras buddha (Forbes), 46 - Puzosia nipponica doxybeloceras, Pseudaspidoceras, Otoscaphites, Peroni- Matsumoto, 47 - Puzosia sp., 48 - Phyllopa- ceras, Calycoceras, Eucalycoceras, Acanthoceras, Fage- chyceras ezoense (Yokoyama), 49 - Hypophyl¬ sia, Submortoniceras, Schlueterella (Text-figs. 3-4) loceras sp., 50 - "Phylloceras" cf. diegoi Boule, Lemoine & Thévenin, 51- Zelandites (Vereschagin, 1977; Zakharov et al., 1984a; Miro- inflatus Matsumoto, 52 - Anagaudryceras uta- yubov, 1987), nautiloids (7 species), and belemnitoids turense Shimizu, 53 - Puzosia cf. furnitana (1 species). Pervinquière, 54 - P. aff. octosulcata Sharpe, Within the ammonoid group, a change of dominance 55 - Desmoceras pseudinane Shimizu, 56 - took Jacobites sp., 57 - Acanthoceras sanctorum place several times: (1) Desmoceras (Pseudouhli¬ Matsumoto & Obata, 58 - Mesopuzosia pacifica gella) japonicum (within the Turrilites costatus beds and Matsumoto, 59 - M. indopacifica (Kossmat), 60 Marshallites - Acanthoceras sanctorum beds, Cenoma- - Tetragonites sp., 61 - Kossmaticeras sp., 62 - nian - bioevent "a") —> Tetragonites epigonus (within Polyptychoceras obstractum (Jimbo), 63 - Neo- the Jimboiceras planulatiforme beds, Turonian - bioevent phylloceras ramosum (Meek), 64 - Epigonice¬ -> ras epigonum (Kossmat), 65 - E. glabrum (Jim¬ "b") (3) Gaudryceras tenuiliratum (within the Jim¬ bo), 66 - Jimboiceras planulatiforme (Jimbo). boiceras mihoense beds, Anapachydiscus naumanni beds TURONIAN CONIACIAN Jimboiceras