Analysis of ARX Functions: Pseudo-Linear Methods for Approximation, Differentials, and Evaluating Diffusion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Block Ciphers
Block Ciphers Chester Rebeiro IIT Madras CR STINSON : chapters 3 Block Cipher KE KD untrusted communication link Alice E D Bob #%AR3Xf34^$ “Attack at Dawn!!” message encryption (ciphertext) decryption “Attack at Dawn!!” Encryption key is the same as the decryption key (KE = K D) CR 2 Block Cipher : Encryption Key Length Secret Key Plaintext Ciphertext Block Cipher (Encryption) Block Length • A block cipher encryption algorithm encrypts n bits of plaintext at a time • May need to pad the plaintext if necessary • y = ek(x) CR 3 Block Cipher : Decryption Key Length Secret Key Ciphertext Plaintext Block Cipher (Decryption) Block Length • A block cipher decryption algorithm recovers the plaintext from the ciphertext. • x = dk(y) CR 4 Inside the Block Cipher PlaintextBlock (an iterative cipher) Key Whitening Round 1 key1 Round 2 key2 Round 3 key3 Round n keyn Ciphertext Block • Each round has the same endomorphic cryptosystem, which takes a key and produces an intermediate ouput • Size of the key is huge… much larger than the block size. CR 5 Inside the Block Cipher (the key schedule) PlaintextBlock Secret Key Key Whitening Round 1 Round Key 1 Round 2 Round Key 2 Round 3 Round Key 3 Key Expansion Expansion Key Key Round n Round Key n Ciphertext Block • A single secret key of fixed size used to generate ‘round keys’ for each round CR 6 Inside the Round Function Round Input • Add Round key : Add Round Key Mixing operation between the round input and the round key. typically, an ex-or operation Confusion Layer • Confusion layer : Makes the relationship between round Diffusion Layer input and output complex. -
SHA-3 Conference, March 2012, Skein: More Than Just a Hash Function
Skein More than just a hash function Third SHA-3 Candidate Conference 23 March 2012 Washington DC 1 Skein is Skein-512 • Confusion is common, partially our fault • Skein has two special-purpose siblings: – Skein-256 for extreme memory constraints – Skein-1024 for the ultra-high security margin • But for SHA-3, Skein is Skein-512 – One hash function for all output sizes 2 Skein Architecture • Mix function is 64-bit ARX • Permutation: relocation of eight 64-bit words • Threefish: tweakable block cipher – Mix + Permutation – Simple key schedule – 72 rounds, subkey injection every four rounds – Tweakable-cipher design key to speed, security • Skein chains Threefish with UBI chaining mode – Tweakable mode based on MMO – Provable properties – Every hashed block is unique • Variable size output means flexible to use! – One function for any size output 3 The Skein/Threefish Mix 4 Four Threefish Rounds 5 Skein and UBI chaining 6 Fastest in Software • 5.5 cycles/byte on 64-bit reference platform • 17.4 cycles/byte on 32-bit reference platform • 4.7 cycles/byte on Itanium • 15.2 cycles/byte on ARM Cortex A8 (ARMv7) – New numbers, best finalist on ARMv7 (iOS, Samsung, etc.) 7 Fast and Compact in Hardware • Fast – Skein-512 at 32 Gbit/s in 32 nm in 58 k gates – (57 Gbit/s if processing two messages in parallel) • To maximize hardware performance: – Use a fast adder, rely on simple control structure, and exploit Threefish's opportunities for pipelining – Do not trust your EDA tool to generate an efficient implementation • Compact design: – Small FPGA -
Rotational Cryptanalysis of ARX
Rotational Cryptanalysis of ARX Dmitry Khovratovich and Ivica Nikoli´c University of Luxembourg [email protected], [email protected] Abstract. In this paper we analyze the security of systems based on modular additions, rotations, and XORs (ARX systems). We provide both theoretical support for their security and practical cryptanalysis of real ARX primitives. We use a technique called rotational cryptanalysis, that is universal for the ARX systems and is quite efficient. We illustrate the method with the best known attack on reduced versions of the block cipher Threefish (the core of Skein). Additionally, we prove that ARX with constants are functionally complete, i.e. any function can be realized with these operations. Keywords: ARX, cryptanalysis, rotational cryptanalysis. 1 Introduction A huge number of symmetric primitives using modular additions, bitwise XORs, and intraword rotations have appeared in the last 20 years. The most famous are the hash functions from MD-family (MD4, MD5) and their descendants SHA-x. While modular addition is often approximated with XOR, for random inputs these operations are quite different. Addition provides diffusion and nonlinearity, while XOR does not. Although the diffusion is relatively slow, it is compensated by a low price of addition in both software and hardware, so primitives with relatively high number of additions (tens per byte) are still fast. The intraword rotation removes disbalance between left and right bits (introduced by the ad- dition) and speeds up the diffusion. Many recently design primitives use only XOR, addition, and rotation so they are grouped into a single family ARX (Addition-Rotation-XOR). -
Darxplorer a Toolbox for Cryptanalysis and Cipher Designers
DARXplorer a Toolbox for Cryptanalysis and Cipher Designers Dennis Hoppe Bauhaus-University Weimar 22nd April 2009 Dennis Hoppe (BUW) DARXplorer 22nd April 2009 1 / 31 Agenda 1 Introduction to Hash Functions 2 The ThreeFish Block Cipher 3 Differential Cryptanalysis 4 DARXplorer { DC of ThreeFish 5 Results on ThreeFish 6 Generalization of DARXplorer Dennis Hoppe (BUW) DARXplorer 22nd April 2009 2 / 31 Agenda 1 Introduction to Hash Functions 2 The ThreeFish Block Cipher 3 Differential Cryptanalysis 4 DARXplorer { DC of ThreeFish 5 Results on ThreeFish 6 Generalization of DARXplorer Dennis Hoppe (BUW) DARXplorer 22nd April 2009 3 / 31 Introduction to Hash Functions Hash Functions A hash function H : f0; 1g∗ ! f0; 1gn is used to compute an n-bit fingerprint from an arbitrarily-sized input M 2 f0; 1g∗ Most of them are based on a compression function C : f0; 1gn × f0; 1gm ! f0; 1gn with fixed size input Computation: Hi := C(Hi−1;Mi) C C C H[0] H[1] . H[L-1] H[L] M[1] M[2] . M[L] Dennis Hoppe (BUW) DARXplorer 22nd April 2009 4 / 31 Introduction to Hash Functions { cont'd Compression Functions A crucial building block of iterated hash functions is the compression function C Designer often make use of block ciphers Which properties should be imposed on C to guarantee that the hash function satisfies certain properties? Theorem (Damg˚ard-Merkle) If the compression function C is collision-resistant, then the hash function H is collision-resistant as well. If the compression function C is preimage-resistant, then the hash function H is preimage-resistant as well. -
Security Evaluation of the K2 Stream Cipher
Security Evaluation of the K2 Stream Cipher Editors: Andrey Bogdanov, Bart Preneel, and Vincent Rijmen Contributors: Andrey Bodganov, Nicky Mouha, Gautham Sekar, Elmar Tischhauser, Deniz Toz, Kerem Varıcı, Vesselin Velichkov, and Meiqin Wang Katholieke Universiteit Leuven Department of Electrical Engineering ESAT/SCD-COSIC Interdisciplinary Institute for BroadBand Technology (IBBT) Kasteelpark Arenberg 10, bus 2446 B-3001 Leuven-Heverlee, Belgium Version 1.1 | 7 March 2011 i Security Evaluation of K2 7 March 2011 Contents 1 Executive Summary 1 2 Linear Attacks 3 2.1 Overview . 3 2.2 Linear Relations for FSR-A and FSR-B . 3 2.3 Linear Approximation of the NLF . 5 2.4 Complexity Estimation . 5 3 Algebraic Attacks 6 4 Correlation Attacks 10 4.1 Introduction . 10 4.2 Combination Generators and Linear Complexity . 10 4.3 Description of the Correlation Attack . 11 4.4 Application of the Correlation Attack to KCipher-2 . 13 4.5 Fast Correlation Attacks . 14 5 Differential Attacks 14 5.1 Properties of Components . 14 5.1.1 Substitution . 15 5.1.2 Linear Permutation . 15 5.2 Key Ideas of the Attacks . 18 5.3 Related-Key Attacks . 19 5.4 Related-IV Attacks . 20 5.5 Related Key/IV Attacks . 21 5.6 Conclusion and Remarks . 21 6 Guess-and-Determine Attacks 25 6.1 Word-Oriented Guess-and-Determine . 25 6.2 Byte-Oriented Guess-and-Determine . 27 7 Period Considerations 28 8 Statistical Properties 29 9 Distinguishing Attacks 31 9.1 Preliminaries . 31 9.2 Mod n Cryptanalysis of Weakened KCipher-2 . 32 9.2.1 Other Reduced Versions of KCipher-2 . -
Analysis of Arx Round Functions in Secure Hash Functions
ANALYSIS OF ARX ROUND FUNCTIONS IN SECURE HASH FUNCTIONS by Kerry A. McKay B.S. in Computer Science, May 2003, Worcester Polytechnic Institute M.S. in Computer Science, May 2005, Worcester Polytechnic Institute A Dissertation submitted to the Faculty of The School of Engineering and Applied Science of The George Washington University in partial satisfaction of the requirements for the degree of Doctor of Science May 15, 2011 Dissertation directed by Poorvi L. Vora Associate Professor of Computer Science The School of Engineering and Applied Science of The George Washington University certifies that Kerry A. McKay has passed the Final Examination for the degree of Doctor of Science as of March 25, 2011. This is the final and approved form of the dissertation. ANALYSIS OF ARX ROUND FUNCTIONS IN SECURE HASH FUNCTIONS Kerry A. McKay Dissertation Research Committee: Poorvi L. Vora, Associate Professor of Computer Science, Dissertation Director Gabriel Parmer, Assistant Professor of Computer Science, Committee Member Rahul Simha, Associate Professor of Engineering and Applied Science, Committee Member Abdou Youssef, Professor of Engineering and Applied Science, Committee Member Lily Chen, Mathematician, National Institute of Standards and Technology, Committee Member ii Dedication To my family and friends, for all of their encouragement and support. iii Acknowledgements This work was supported in part by the NSF Scholarship for Service Program, grant DUE-0621334, and NSF Award 0830576. I would like to thank my collaborators Niels Ferguson and Stefan Lucks for our collaborative research on the analysis of the CubeHash submission to the SHA-3 competition. I would also like to thank the entire Skein team for their support. -
Bruce Schneier 2
Committee on Energy and Commerce U.S. House of Representatives Witness Disclosure Requirement - "Truth in Testimony" Required by House Rule XI, Clause 2(g)(5) 1. Your Name: Bruce Schneier 2. Your Title: none 3. The Entity(ies) You are Representing: none 4. Are you testifying on behalf of the Federal, or a State or local Yes No government entity? X 5. Please list any Federal grants or contracts, or contracts or payments originating with a foreign government, that you or the entity(ies) you represent have received on or after January 1, 2015. Only grants, contracts, or payments related to the subject matter of the hearing must be listed. 6. Please attach your curriculum vitae to your completed disclosure form. Signatur Date: 31 October 2017 Bruce Schneier Background Bruce Schneier is an internationally renowned security technologist, called a security guru by the Economist. He is the author of 14 books—including the New York Times best-seller Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World—as well as hundreds of articles, essays, and academic papers. His influential newsletter Crypto-Gram and blog Schneier on Security are read by over 250,000 people. Schneier is a fellow at the Berkman Klein Center for Internet and Society at Harvard University, a Lecturer in Public Policy at the Harvard Kennedy School, a board member of the Electronic Frontier Foundation and the Tor Project, and an advisory board member of EPIC and VerifiedVoting.org. He is also a special advisor to IBM Security and the Chief Technology Officer of IBM Resilient. -
ASBE Defeats Statistical Analysis and Other Cryptanalysis
Introduction | Statistical Analysis ASBE Defeats Statistical Analysis and Other Cryptanalysis By: Prem Sobel, CTO MerlinCryption, LLC Introduction ASBE, Anti-Statistical Block Encryption, uses blocks [Ref 33, p.43-82] as part of the algorithm. These blocks are manipulated in ways different from all currently known and published existing encryption algorithms in a variable way which depends on the key. The ASBE algorithm is designed to be exponentially stronger than existing encryption algorithms and to defeat known Statistical Analysis and Cryptanalysis. The purpose of this white paper is to describe how ASBE succeeds in these goals. Statistical Analysis Early encryption techniques are typically variations of substitution ciphers. Statistical analysis attempts to defeat such substitution ciphers, based on statistical knowledge of the language (for example, English) [Ref-1] [Ref-2] [Ref-3] [Ref-32, p.10-13]. These techniques include substitution ciphers such as: . Letter frequency, . Letter frequency of first letter of a word, . Most likely duplicate letter pairs (such as LL EE SS OO TT FF RR NN PP CC in English), . Most likely different letter pairs (in English: TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR TI HI AS TO) and non-occurring letter pairs (for example, XJ QG HZ in English), . Most likely letter triples and non-occurring letter triples, . Most likely letter quadruples and non-occurring letter quadruples, and . Most frequent words. Clearly these statistics and patterns of multi-letter sequences are language-dependent. In the early days of cryptography, there were several limitations and/or assumptions made that are no longer valid today, due to the availability of digital communications. -
Performance Evaluation of Newly Proposed Lightweight Cipher, BRIGHT
Received: January 22, 2019 71 Performance Evaluation of Newly Proposed Lightweight Cipher, BRIGHT Deepti Sehrawat1* Nasib Singh Gill1 1Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India * Corresponding author’s Email: [email protected] Abstract: Lightweight security algorithms are tailored for resource-constrained environment. To improve the efficiency of an algorithm, usually, a tradeoff is involved in lightweight cryptography in terms of its memory requirements and speed. By adopting several performance enhancement techniques, a security framework for IoT enabled applications is presented in this paper. Proposed BRIGHT family of ciphers is comparably better than existing lightweight ciphers and support a range of block and key sizes for constraint environment. It enables users to match their security needs with application requirements by supporting a range of cryptographic solutions. The BRIGHT family of ciphers is a software-oriented design. The performance of BRIGHT family of lightweight ciphers is evaluated on different parameters. All versions of BRIGHT family ciphers fulfill Strict Avalanche Criteria, key sensitivity test, and randomness test. BRIGHT family ciphers show better performance in terms of memory requirements, cost and speed as compared to existing lightweight ciphers. Keywords: Performance evaluation, BRIGHT, Cryptographic solutions, Lightweight block cipher, ARX, GFN, Feistel block ciphers. devices information security is evidently necessary 1. Introduction [3]. To provide high security and privacy, cryptographic solutions must be used. However, due In IoT field, various resource constraints devices to very low available energy, the limited size of ROM communicate in the network using RFID (Radio and RAM consumption and high-security demand in Frequency Identification Devices) which is a fast- a resource-constrained environment, lightweight growing technology that allows automated cryptographic security solutions are required [4]. -
Network Security H B ACHARYA
Network Security H B ACHARYA NETWORK SECURITY Day 2 NETWORK SECURITY Encryption Schemes NETWORK SECURITY Basic Problem ----- ----- ? Given: both parties already know the same secret How is this achieved in practice? Goal: send a message confidentially Any communication system that aims to guarantee confidentiality must solve this problem NETWORK SECURITY slide 4 One-Time Pad (Vernam Cipher) ----- 10111101… ----- = 10111101… 10001111… = 00110010… 00110010… = Key is a random bit sequence as long as the plaintext Decrypt by bitwise XOR of ciphertext and key: ciphertext key = (plaintext key) key = Encrypt by bitwise XOR of plaintext (key key) = plaintext and key: plaintext ciphertext = plaintext key Cipher achieves perfect secrecy if and only if there are as many possible keys as possible plaintexts, and every key is equally likely (Claude Shannon, 1949) NETWORK SECURITY slide 5 Advantages of One-Time Pad Easy to compute ◦ Encryption and decryption are the same operation ◦ Bitwise XOR is very cheap to compute As secure as theoretically possible ◦ Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s computational resources ◦ …if and only if the key sequence is truly random ◦ True randomness is expensive to obtain in large quantities ◦ …if and only if each key is as long as the plaintext ◦ But how do the sender and the receiver communicate the key to each other? Where do they store the key? NETWORK SECURITY slide 6 Problems with One-Time Pad Key must be as long as the plaintext ◦ Impractical in most realistic -
Applied Cryptography and Data Security
Lecture Notes APPLIED CRYPTOGRAPHY AND DATA SECURITY (version 2.5 | January 2005) Prof. Christof Paar Chair for Communication Security Department of Electrical Engineering and Information Sciences Ruhr-Universit¨at Bochum Germany www.crypto.rub.de Table of Contents 1 Introduction to Cryptography and Data Security 2 1.1 Literature Recommendations . 3 1.2 Overview on the Field of Cryptology . 4 1.3 Symmetric Cryptosystems . 5 1.3.1 Basics . 5 1.3.2 A Motivating Example: The Substitution Cipher . 7 1.3.3 How Many Key Bits Are Enough? . 9 1.4 Cryptanalysis . 10 1.4.1 Rules of the Game . 10 1.4.2 Attacks against Crypto Algorithms . 11 1.5 Some Number Theory . 12 1.6 Simple Blockciphers . 17 1.6.1 Shift Cipher . 18 1.6.2 Affine Cipher . 20 1.7 Lessons Learned | Introduction . 21 2 Stream Ciphers 22 2.1 Introduction . 22 2.2 Some Remarks on Random Number Generators . 26 2.3 General Thoughts on Security, One-Time Pad and Practical Stream Ciphers 27 2.4 Synchronous Stream Ciphers . 31 i 2.4.1 Linear Feedback Shift Registers (LFSR) . 31 2.4.2 Clock Controlled Shift Registers . 34 2.5 Known Plaintext Attack Against Single LFSRs . 35 2.6 Lessons Learned | Stream Ciphers . 37 3 Data Encryption Standard (DES) 38 3.1 Confusion and Diffusion . 38 3.2 Introduction to DES . 40 3.2.1 Overview . 41 3.2.2 Permutations . 42 3.2.3 Core Iteration / f-Function . 43 3.2.4 Key Schedule . 45 3.3 Decryption . 47 3.4 Implementation . 50 3.4.1 Hardware . -
Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1
International Journal of Grid and Distributed Computing Vol. 10, No. 11 (2017), pp.79-98 http://dx.doi.org/10.14257/ijgdc.2017.10.11.08 Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1 Rahul Saha1, G. Geetha2, Gulshan Kumar3 and Hye-Jim Kim4 1,3School of Computer Science and Engineering, Lovely Professional University, Punjab, India 2Division of Research and Development, Lovely Professional University, Punjab, India 4Business Administration Research Institute, Sungshin W. University, 2 Bomun-ro 34da gil, Seongbuk-gu, Seoul, Republic of Korea Abstract Cryptography has always been a core component of security domain. Different security services such as confidentiality, integrity, availability, authentication, non-repudiation and access control, are provided by a number of cryptographic algorithms including block ciphers, stream ciphers and hash functions. Though the algorithms are public and cryptographic strength depends on the usage of the keys, the ciphertext analysis using different functions and operations used in the algorithms can lead to the path of revealing a key completely or partially. It is hard to find any survey till date which identifies different operations and functions used in cryptography. In this paper, we have categorized our survey of cryptographic functions and operations in the algorithms in three categories: block ciphers, stream ciphers and cryptanalysis attacks which are executable in different parts of the algorithms. This survey will help the budding researchers in the society of crypto for identifying different operations and functions in cryptographic algorithms. Keywords: cryptography; block; stream; cipher; plaintext; ciphertext; functions; research problems 1. Introduction Cryptography [1] in the previous time was analogous to encryption where the main task was to convert the readable message to an unreadable format.