Do Not Eat Too Much! the Key to Success – Suitable Land Use Systems Research for the Scarce Large Blue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars
Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars András Tartally ( [email protected] ) University of Debrecen Norbert Szabó University of Debrecen Anna Ágnes Somogyi University of Debrecen Ferenc Báthori University of Debrecen Danny Haelewaters Ghent University András Mucsi Bezerédi str. 10, Cibakháza Ágnes Fürjes-Mikó University of Sopron-Forest Research Institute David R. Nash University of Copenhagen Research Article Keywords: Complex interactions, Maculinea, Myrmica scabrinodis, Parasitology, Phengaris alcon, Rickia wasmannii Posted Date: July 20th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-712976/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Exploitation of organisms by multiple parasite species is common in nature, but interactions among parasites have rarely been studied. Myrmica ants are rich in parasites. Among others, the ectoparasitic Rickia wasmannii fungus and the socially parasitic caterpillars of myrmecophilous Phengaris butteries often infect the same Myrmica colonies. In this study, we examined the effects of R. wasmannii on the adoption, long-term development, and survival of P. alcon. In laboratory conditions, caterpillars introduced into nests of Myrmica scabrinodis uninfected with R. wasmannii survived signicantly longer compared to caterpillars introduced into infected nests. In the eld, joint infection was less common than expected if both parasites exploited M. scabrinodis colonies independently. Pre-pupal caterpillars of P. alcon were somewhat larger in nests infected with R. wasmannii than those found in uninfected nests. Based on these results it seems that R. wasmannii infection of M. scabrinodis affects the survival and development of P. -
Intensive Mowing Effect of One Patch on the Metapopulations of Two Phengaris Species*
ENVIRONMENTAL SCIENCES INTENSIVE MOWING EFFECT OF ONE PATCH ON THE METAPOPULATIONS OF TWO PHENGARIS SPECIES* T. Bubová, M. Kulma, D. Koleška, V. Vrabec Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic In the second half of the 20th century, change of land use in the name of intensive agriculture was one of the most important factors caused significant loss of butterfly diversity in Europe. Phengaris nausithous and Phengaris teleius belong among the flagship species associated with wet meadows and are directly threatened by the intensive agriculture practises or management abandonment. Due to their very specific lifecycle, they are closely linked to their habitats and appropriate mowing manage- ment on their patches is thus crucial for their survival. Our research took place in Dolní Labe, Děčín, Czech Republic, on 16 patches and has been performed using Mark-Release-Recapture since 2009. This paper will illustrate how intensive mow- ing management, applied on only one of the patches, which forms only 9.4% of total locality size, can influence the entire local Phengaris metapopulation. The selected patch was intentionally mowed in the middle of flight season annually for four years. Even though, no significant effect was identified after the first year of study, after the second and third seasons, there was evidence of population decline of both studied species. Mark-Release-Recapture, land use management, Lepidoptera, conservation doi: 10.2478/sab-2018-0027 Received for publication on September 13, 2017 Accepted for publication on December 17, 2017 INTRODUCTION primarily due to patch destructions or other irrevers- ible changes performed on these meadows (S a l a et Cultural landscape and agricultural lands are histori- al., 2000; S u t c l i f f e et al., 2015). -
The Large Blue Butterfly Maculinea Alcon in Belgium: Science and Conservation
BULLETfN DE L'JNSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE BIOLOGIE, 72-S VPPL. : 183-1 85, 20Q ~ BULLETIN VAN HET KONINKLJJK BELGISCH INSTITVUT VOOR NATUURWETENSC HAPPEN BIOLOGLE, 72-S UPPL.: 183-1 85, 2002 The large blue butterfly Maculinea alcon in Belgium: science and conservation W. V ANREUSEL, H. VAN DYCK & D. MAES Introduction According to the Flemish Red List, M. alcon is threa tened. It is one of the few legally protected butterflies. In Belgium, the obligate ant-parasitic butterfly Maculinea Since 1996, both its complex life history and conserva alcon is confined to NE-Flanders (Kempen) and has tion biology have been studied rather intensively by our decreased considerably in distribution (fig. 1) and abun research team. Several populations went extinct, no less dance. than 9 did so in the 1990s including extinctions in nature reserves. Our analyses indicate that populations of smal- . ler, more isolated sites have a significantly higher extinc tion probability. At present, only 12 populations remain in 8 areas, including 5 nature reserves and 3 military areas (table I). Based on detailed egg counts, most populations show negative trends. We have recently finalised a Spe cies Action Plan for Maculinea a/con funded by the Flemish Ministry of Nature Conservation (VAN REUSEL et al. 2000). It was the first action plan for an invertebrate, but Flanders has only little experience with the imple mentation of such plans and with the integration of spe before 1991 cies-specific knowledge into site-oriented conservation. Hence, the M. a/con plan will be an important test-case. -
Effects of Timing and Frequency of Mowing on the Threatened Scarce
Agriculture, Ecosystems and Environment 196 (2014) 24–33 Contents lists available at ScienceDirect Agriculture, Ecosystems and Environment journa l homepage: www.elsevier.com/locate/agee Effects of timing and frequency of mowing on the threatened scarce large blue butterfly – A fine-scale experiment a,b, c d e f Ádám KÅrösi *, István Szentirmai , Péter Batáry , Szilvia Kövér , Noémi Örvössy , g László Peregovits a MTA–ELTE–MTM Ecology Research Group, Pázmány Péter s. 1/C, Budapest 1117, Hungary b Field Station Fabrikschleichach, Biocenter, University of Würzburg, Glasshüttenstr. 5, Rauhenebrach 96181, Germany c Ärség National Park Directorate, Siskaszer 26/A, Äriszentpéter 9941, Hungary d Agroecology, Georg-August University, Grisebachstr. 6, Göttingen 37077, Germany e Institute of Biology, Szent István University, Rottenbiller u. 50, Budapest 1077, Hungary f Institute of Ecology and Botany, MTA Centre for Ecological Research, Alkotmány u. 2-4, Vácrátót 2163, Hungary g Pars Limited, Rózsa u. 17, Nagykovácsi 2094 Hungary A R T I C L E I N F O A B S T R A C T Article history: As part of a major transformation of the EU agriculture in the last few decades, traditional land-use types Received 5 December 2013 disappeared due to either intensification or abandonment. Grasslands are highly affected in this process Received in revised form 18 June 2014 and are consequently among the most threatened semi-natural habitats in Europe. However, Accepted 23 June 2014 experimental evidence is scarce on the effects of management types on biodiversity. Moreover, Available online 5 July 2014 management types need to be feasible within the recently changed socio-economic circumstances in Hungary. -
The IUCN Red List of Threatened Species™ European Assessment Update – March 2010 © Tom Nygaard Kristensen Species Facts
The IUCN Red List of Threatened Species™ European Assessment Update – March 2010 © Tom Nygaard Kristensen Species Facts © Jean-Pierre Boudot What do butterflies, beetles and dragonflies have in common? Butterflies, beetles and dragonflies play an important role in contributing to Europe’s rich biodiversity. Through pollination, nutrient-cycling and pest control, respectively, they help to maintain vital balances within the ecosystems upon which we all depend. Unfortunately, according to the IUCN Red List of Threatened Species™ - the world’s most comprehensive information source on the global conservation status of animals and plants - all three taxonomic groups are considered to be in decline in Europe. Furthermore, recent analyses found that 9% of Europe’s butterflies, 11% of its saproxylic beetles and 14% of its dragonflies are threatened with extinction. There are 482 butterfly species in Europe, with the highest diversity being found in the mountainous areas of southern Europe, mainly the Pyrenees, the Alps and the Balkans. Butterflies go through three main stages of development – from caterpillar to chrysalis to adult – and have very different habitat requirements during each of these stages. Saproxylic beetles depend upon decaying wood, particularly in forests, for their survival. These beetles play an important role in the decomposition and nutrient- cycling processes which occur in natural ecosystems, and many are also involved in pollination. Dragonflies are relatively large insects, recognized for their striking colours and equilibristic flight. Most of them make their homes in freshwater environments, and thus serve as good indicators for environmental change both above and below the water’s surface. THE IUCN RED LIST OF THREATENED SPECIES™ What is the main threat? The main threat to all three groups of species is habitat loss, although climate change is set to become an increasing threat in the future. -
At Home on Foreign Meadows: the Reintroduction of Two Maculineae Butterfly Species
At Home onForeign Meadows: theReintroduction oftwo Maculinea ButterflySpecies CENTRALE LANDBOUWCATALOGUS 0000 0872 4219 Promotores: Prof. Dr. H.H.T.Prin s Hoogleraar in het Natuurbeheer ind eTrope ne n Ecologieva n Vertebraten Wageningen Universiteit Prof.Dr . P.M.Brakefiel d Hoogleraar Evolutiebiologie Universiteit Leiden Promotie commissie: Prof. Dr. L.E.M.Ve t Wageningen Universiteit Prof. Dr. J.M.va nGroenendae l Katholieke Universiteit Nijmegen Dr.J.A . Thomas NERC Centre of Ecology and Hydrology, England Dr. M.M. Kwak Rijksuniversiteit Groningen y; VX.JO27XV ,3o -> yAfHom e onForeign Meadows: theReintroduction oftwo Maculinea ButterflySpecies Irmgard Wynhoff Proefschrift ter verkrijging van degraa dva n doctor opgeza g van de rector magnificusva nWageninge n Universiteit Prof. Dr. Ir. L. Speelman, in hetopenbaa r te verdedigen opvrijda g 5oktobe r 2001 des namiddagst evie r uur ind eAul a Abstract Wynhoff, I.,2001 . At Home on Foreign Meadows:th e Reintroduction oftw o MaculineaButterfl y species. Doctoral Thesis. ISBN90-5808-461-2 . Wageningen Agricultural University, The Netherlands. Maculinea butterflies live asobligat e parasites of specific Myrmica hostant s in meadow and heathland habitat maintained by low intensity landuse.Change s in agriculture causedth edeclin e and extinction of many populations. InTh e Netherlands, Maculinea nausithousan d M.te/e/t/s disappeare d inth e 1970s.I n 1990,the ywer e reintroduced following the recommendations ofth e IUCN.Thi s study focuses onth eevaluatio n ofthi s reintroduction intoth e nature reserve Moerputten inth e province of Northern Brabant. Population establishment and dispersalwer e monitoredan daccompanie d by researcho nth e impact ofth e reintroduction onspecies-specifi c genetic composition and behaviour.Maculinea teleiusimmediatel y established itself onon e meadow, where the population still occurs today. -
Hymenoptera: Formicidae)
Heteropterus Revista de Entomología 2004 Heteropterus Rev. Entomol. 4: 81-83 ISSN: 1579-0681 NOTA Primer registro de Myrmica karavajevi (Arnoldi, 1930) en la Península Ibérica (Hymenoptera: Formicidae) X. ESPADALER1, I. ZABALEGUI2, F. CALVO SÁNCHEZ3 1Unitat d’Ecologia y CREAF; Universitat Autònoma de Barcelona; 08193 Bellaterra (Barcelona); E-mail: [email protected] 2Zikuñaga 44, 4º A; 20120 Hernani (Gipuzkoa); E-mail: [email protected] 3Avda. Galtzaraborda 97, 1º B; 20100 Errenteria (Gipuzkoa); E-mail: [email protected] Resumen Se menciona por primera vez la presencia de la especie parásita social Myrmica karavajevi (Arnoldi, 1930), en la Península Ibérica. Es la población más meridional que se conoce. La especie fue recolectada en un prado de monta- ña, a 1000 m de altitud, en la Sierra de Entzia (Álava). La especie huésped era Myrmica scabrinodis (Nylander, 1846). Palabras clave: Formicidae, Myrmicinae, parásita social, España, Myrmica scabrinodis. Laburpena Myrmica karavajeviren (Arnoldi, 1930) lehenengo aipua Iberiar Penintsulan Parasito soziala den Myrmica karavajevi (Arnoldi, 1930) espeziea lehenengo aldiz aurkitu da Iberiar Penintsulan. Populazio ezagunen artean, hegoaldekoena da. Espeziea Entzia Mendikateko (Araba) mendi-larre batean harra- patu zen, 1000 m-ko altitudean. Ostalaria Myrmica scabrinodis (Nylander, 1846) espeziea zen. Gako-hitzak: Formicidae, Myrmicinae, parasito soziala, Espainia, Myrmica scabrinodis. Abstract First record of Myrmica karavajevi (Arnoldi, 1930) in the Iberian Peninsula The presence of the social parasite Myrmica karavajevi (Arnoldi, 1930) is recorded for the first time in the Iberian Peninsula. The species was collected in a mountain meadow, at 1000 m altitude, in the Sierra de Entzia (Álava). The host species was Myrmica scabrinodis (Nylander, 1846). -
Bird Checklists of the World Country Or Region: Myanmar
Avibase Page 1of 30 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Myanmar 2 Number of species: 1088 3 Number of endemics: 5 4 Number of breeding endemics: 0 5 Number of introduced species: 1 6 7 8 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Myanmar. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN®ion=mm [23/09/2021]. Make your observations count! Submit your data to ebird. -
View a Copy of This Licence, Visit
Plazio et al. Movement Ecology (2020) 8:50 https://doi.org/10.1186/s40462-020-00234-6 RESEARCH Open Access Sex-biased topography effects on butterfly dispersal Elisa Plazio1* , Terezie Bubová2, Vladimír Vrabec2 and Piotr Nowicki1 Abstract Background: Metapopulation persistence in fragmented landscapes is assured by dispersal of individuals between local populations. In this scenario the landscape topography, although usually neglected, may have an important role in shaping dispersal throughout the matrix separating habitat patches. Due to inter-sexualdifferencesinoptimalreproductive strategies, i.e., males maximizing the number of mating opportunities and females maximizing the offspring survival chances, topography-related constraints are expected to exert a different effect on male and female dispersal behaviour. We tested sex-biased topography effects on butterfly dispersal, with the following hypotheses: (1) females are constrained by topography in their movements and avoid hill crossing; (2) male dispersal is primarily driven by two-dimensional spatial structure of the habitat patches (i.e. their geometric locations and sizes) and little influenced by topography. Methods: Following intensive mark-recapture surveys of Maculinea (= Phengaris) nausithous and M. teleius within a landscape characterised by an alternation of hills and valleys, we investigated sex-specific patterns in their inter-patch movement probabilities derived with a multi-state recapture model. In particular, we (1) analysed the fit of dispersal kernels based on Euclidean (= straight line) vs. topography-based (= through valley) distances; (2) compared movement probabilities for the pairs of patches separated or not by topographic barriers; and (3) tested the differences in the downward and upward movement probabilities within the pairs of patches. -
Simultaneous Exploitation of Myrmica Vandeli and M. Scabrinodis
NOTE Eur. J. Entomol. 101: 693–696, 2004 ISSN 1210-5759 Simultaneous exploitation of Myrmica vandeli and M. scabrinodis (Hymenoptera: Formicidae) colonies by the endangered myrmecophilous butterfly Maculinea alcon (Lepidoptera: Lycaenidae) MARCIN SIELEZNIEW1 and ANNA M. STANKIEWICZ2 1Department of Applied Entomology, SGGW – Warsaw Agriculture University, Nowoursynowska 166, PL-02787 Warszawa, Poland; e-mail: [email protected] 2Laboratory of Social and Myrmecophilous Insects, Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, PL-00679 Warszawa, Poland; e-mail: [email protected] Key words. Maculinea alcon, host-ant specificity, Myrmica scabrinodis, Myrmica vandeli, Ichneumon, myrmecophily, endangered species, Poland Abstract. Host-ant specificity of Maculinea alcon, an endangered obligatory myrmecophilous lycaenid butterfly, was studied at two sites in southern Poland (ĝwiĊtokrzyskie Mts near Kielce). M. alcon larvae and pupae were found in nests of both Myrmica vandeli and M. scabrinodis, which is the typical host in Poland and Southern Europe. To our knowledge this is the first record of M. vandeli as a host of M. alcon. Our results show that M. scabrinodis and M. vandeli are about equally suitable as hosts. We hypothesize that both host ant species are closely related and have similar chemical profiles, and that the M. alcon “scabrinodis-vandeli” populations we studied belong to the M. alcon “scabrinodis” race. More than half of the M. alcon pupae, both from M. vandeli and M. scabri- nodis nests, were parasitized by a single wasp species of the genus Ichneumon, which also suggests that the cuticular chemistry of the two ant species is similar. INTRODUCTION alcon. We suggested that this ant species is the most important host throughout the country but stressed the need for further The Alcon Blue, Maculinea alcon (Denis & Schiffermüller, studies (Sielezniew & Stankiewicz, 2002). -
Adoption of Parasitic Maculinea Alcon Caterpillars (Lepidoptera: Lycaenidae) by Three Myrmica Ant Species
ANIMAL BEHAVIOUR, 2001, 62, 99–106 doi:10.1006/anbe.2001.1716, available online at http://www.idealibrary.com on Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species THOMAS DAMM ALS*, DAVID R. NASH*† & JACOBUS J. BOOMSMA*† *Department of Ecology and Genetics, University of Aarhus †Zoological Institute, Department of Population Ecology, University of Copenhagen, Denmark (Received 10 July 2000; initial acceptance 14 October 2000; final acceptance 31 January 2001; MS. number: 6631R) Maculinea butterflies are parasites of Myrmica ant nests. The Alcon blue, Maculinea alcon, is unusual in that it parasitizes the nests of several Myrmica species, using M. rubra, M. ruginodis and M. scabrinodis as hosts in different parts of Europe. In Denmark it uses M. rubra and M. ruginodis, but never M. scabrinodis. Some populations use one of these species exclusively, despite the presence of the alternative host, while others use both hosts simultaneously. To examine the basis of this specificity, and local coadaptation between host and parasite, we offered freshly emerged caterpillars of M. alcon from three populations differing in their host use to laboratory nests of all three recorded host ant species collected from each of the M. alcon populations. We measured the attractiveness of the caterpillars to their host ants as the time taken for them to be adopted by each ant colony. Caterpillars from all populations took longer to be adopted to M. scabrinodis nests than to nests of the other two ant species. Adoption times to M. rubra and M. ruginodis colonies differed: caterpillars from each of the two populations that used a single host species were adopted most quickly by that species when local ant colonies were used. -
Large Blue Priority Species Factsheet
t e e h s t c a f Large Blue Maculinea arion Conservation status Priority Species in UK Biodiversity Action Plan. Fully protected under Section 9 of the Wildlife and Countryside Act (1981). Bern Convention (Annexe IV) and 1995-9 Restoration EC Habitats and Species Directive (Annexe IV). sites 1970-82 °+ Pre 1970 This is the largest and rarest of our blue butterflies, distinguished by the unmistakable row of black spots on its upper forewing. The Large Blue has a remarkable life cycle that involves spending most of the year within the nests of red ants, where the larvae feed on ant grubs. The species has always been rare in Britain but declined rapidly during the twentieth century and became extinct in 1979. It has since been reintroduced successfully as part of a major conservation programme and by 2004 occurred on 9 sites. The Large Blue is declining throughout its world range and is a globally Endangered species. Life cycle The Large Blue is single brooded with adults flying from mid-June until late July. Eggs Foodplants are laid on the young flower buds of Wild Thyme. The larvae subsequently burrow into Larvae feed initially on the flower-heads of the flower head to feed on the flowers and developing seeds. Females lay eggs on Wild Thyme Thymus polytrichus but later feed plants growing in a range of vegetation heights, but survival is best in short turf where on ant grubs within the nests of the Myrmica the host ant M.sabuleti is most abundant. When the larvae are around 4 mm long they red ants.