The Role of Urban Forests in Conserving and Restoring Biological Diversity in the Lake Tahoe Basin

Final Report March 31, 2007 Patricia N. Manley, Ph.D. Dennis D. Murphy, Ph.D. Matthew D. Schlesinger Lori A. Campbell, Ph.D. Susan Merideth Monte Sanford Kirsten Heckmann Sean Parks

In compliance with CCA 01-CS-11051900-022 (SNPLMA Funding) submitted to:

USFS Lake Tahoe Basin Management Unit Tahoe Regional Planning Agency Nevada Division of State Lands Table of Contents

The Report in Brief …………………………………………………………….…………………. 3 Chapter 1: Introduction …………………………………………………. 161616 Chapter 2: Birds …………………………………………………………. 222222 Chapter 3: Small Mammals ……………………………………………. 747474 Chapter 4: Large Mammals ……………………………………………. 104 Chapter 5: …………………………………………………………. 11130 1303030 Chapter 6: Plants ……………………………………………………….. 133 Chapter 7: Human Use ………………………………………………… 11164 1646464 Chapter 8: Landscape Model …………………………………………. 11171 1717171 Chapter 99:: Key Findings and Management Applications ………….. 201 Literature Cited ………………………………………………....………………………………………………………… 22226 2262626 AppendiAppendicesces ……………………………………………………………… 22242 2424242

2 The Report in Brief Introduction and Methods MultiplestateandfederalagenciesintheLakeTahoebasinhavelandacquisition programsthatpurchaseparcelsofland,whicharesensitivetomanagementorserve importantecologicalservices,suchaswetlandareasinresidentialorcommercialzones, orfloodplainareasinsensitivewatersheds.TheU.S.ForestServicemanagesthe greatestacreageofurbanforestsofanyagencyinthebasin,5200ha(13,000ac)ofland in3500separateparcels,foranaverageparcelsizeof1.5ha(3.7ac).In2002,thisstudy wasinitiatedwiththeintentofevaluatingthecontributionofurbanforestsinsupporting biologicaldiversityintheLakeTahoebasin.TheprojectwasfundedbytheUSFSLake TahoeBasinManagementUnit,USFSSierraNevadaResearchCenter,NevadaDivision ofStateLands,UniversityofNevada,Reno,andTahoeRegionalPlanningAgency.An eightpersonscienceteam,whichconsistsofForestServicescientists,University professors,andgraduatestudents,wasassembledtoaccomplishthetask. Thisfinalreportsummarizestheactivitiesandresultsofthestudy.Five taxonomicgroupswereinvestigatedacrossagradientoflanddevelopment:birds,small mammals,largemammals,ants,andplants.Asamplingframewasestablishedbasedon developmentwithina300mradiusofagivensite.Thenumberofsitessampledforeach taxonomicgrouprangedfrom70to130,withapproximately60sitessampledforalltaxa. SiteswerelocatedallaroundLakeTahoe.Thelevelofdevelopmentatsamplesites rangedfromnodevelopmentwithin500m,tonearly80%developedwithin300m. Manysamplingmethodswereemployedoverthethreeyearperiodofdata collection(20032005).Birdspeciescomposition,density,reproductivesuccess,and behavioralpatternsofpasserineswerecharacterizedatatotalof75sitesusingthree techniques:pointcounts(75sites),nestmonitoring(97sites),andbehavioral observations(75sites).Sciuridpopulationsweresampledoverathreeyearperiodusing Shermanlivetrapgrids(64traps)at65sites,25ofwhichweresampledeachofthree consecutiveyears.Mediumtolargebodiedmammalsweresurveyedoveratwoyear period(20032004)atatotalof77sitesusingtrackandphotographicsurveys(fourtrack plateboxesandtwocameras),andpelletgroupcounts(fordeerandleporids).Ground dwellingantsweresampledoveratwoyearperiod(20032004)atatotalof120sites usingpitfalltrapgrids(12traps).Plantpopulationswerecharacterizedoveratwoyear period(20032004)at100siteswithavarietyofsamplingmethods,includingfixedplots, quadrats,andlineinterceptstocharacterizeplantspeciescompositionandstructure. Humanuseofthesiteswascharacterizedin2003and2004intermsoftypes,intensities, andspatialandtemporaldistributionofanthropogenicdisturbancebyconductingvisual encountersurveysalongtransectsatthesame100sitessampledforplants.Preliminary resultsindicateavarietyofpositiveandnegativerelationshipsbetweendevelopmentand thecompositionandabundanceofplantandspecies.

3

Results HumanUse Humanusewasnotcloselyrelatedtolevelsofdevelopment;humanactivities measuredandnumberofvehiclesdocumentedwereonlyslightlymorefrequentinmore developedareas.Therefore,theeffectsofhumanusecouldbeanalyzedindependently fromdevelopment.Thenumberofpeopledetectedpersiterangedfrom0to11people perhour,withtheexceptionofonesitewithover30people/hr.Usebypeoplevaried dependingonthemonth,timeofday,andtimeofweek.UsagepeakedinJuly,followed byAugustandJune.Usewasgreatestontheweekends,anditwasheavierinthe afternoonandeveningthaninthemorning.Thisindicatesthatsummervisitorscomprise alargeproportionofusersoftheseurbanforestparcels,whichisperhapsanew perspectiveonhowmanyvisitorsspendtheirtimeandwhataspectsoflandmanagement inthebasinwillaffectvisitorsatisfaction.Thegreaterlevelofuseinthelatterportionof thedayisconsistentwiththeideathatmostpeoplegoforwalkswithorwithoutpets towardtheendoftheday.Dogsweredetectedonoverhalfofthesamplesites.The numberofdogsdetectedperhourpersiterangedfrom0to4.5,with72%being unrestrained.Dogsweremorelikelytoberestrainedinmoredevelopedareas. Humanusepatternswerepositivelyrelatedtodevelopmentwithin300mofthe sitecenter,andthenumberofvehiclesshowedanevenstrongerpositiverelationshipwith 300mdevelopment.So,althoughusewaspositivelyrelatedtodevelopment,itwasclear thatsomesiteswithlowdevelopmentreceivedhighuse,particularlynonmotorizeduse. Moreover,itappearsthatsometypesofimpactsassociatedwithdogs(e.g.,wildlife harassmentandmortality)canbeasgreatorgreaterinlessdevelopedareasbecausea greaterproportionofdogsareunrestrained. Plants Nativevegetationwasnotgreatlyalteredinremnantforeststhatoccupy undevelopednearurbanparcelsinresponsetoincreasingsurroundingdevelopment. Totalspeciesrichnessincreasedslightlywithdevelopment,primarilyduetoincreased numbersofexoticherbaceousplantsandnativeherbsandgrasses.Urbandevelopment didnotappeartonegativelyaffectpercentcoverofnativeannualherbs,perennialherbs, andshrubs.Inremnantforests,surroundingurbandevelopmentalsohadnoimpacton treespeciescomposition,density,basalarea,orthediversityofheightclassesoccupied byvegetation.Decadencefeaturesinlivetreesshowednoobviouscorrelationswith developmentoranyotherenvironmentalfactors;butdiseasewasprevalent,suggesting thatmanytreesarestressedasaresultofhighdensitiesordroughtstressorboth.Urban developmentwasstronglyassociatedwiththelossofdeadwoodintheformofsnagsand logs;snagdensity,snagvolume,andvolumeofcoarsewoodydebriswereallstrongly negativelycorrelatedwithdevelopment,whilenumberofcutstumpswaspositively correlated.

4 Inthesurroundinglandscape,foreststructurechangedfarmoredramaticallyin associationwithincreaseddevelopment.Unlikeremnantforestslandscape,shrubcover canopycover,andthedensityofsmallandmediumdiametertreesdeclinedinthe surroundinglandscapewithincreasingdevelopment.Althoughthedensityandcondition ofsnagsandlogsdeclinedinremnantforestsby5075%,theydeclinedmoredrastically inthesurroundinglandscape(>80%).Theseresultsindicatethatremnantforestsserve toretainmanycharacteristics,functions,andservicesintheurbanizinglandscapethat wouldotherwisebelost.Retentionofsnagsandlogs,andcarefulmonitoringand controlofexoticplantspecies,couldenhancethecontributionsthatremnantforestsmake inurbanizingareasoftheLakeTahoebasin. Birds Wedetected67nativelandbirdspecies,excludingwaterbirdsandraptors. Speciesrichnessrangedfrom5to28speciesandabundanceranged5.3to59.0 individualspersite.Welocatedandmonitorednestsinthesesites,andanadditional22 sites,foratotalof97sites.Atotalof566nestswerediscoveredandmonitoredfor productivity.Birdspeciesrichnessdeclinedsubstantiallywithincreasingdevelopment, withthespeciesnegativelyaffectedprimarilygroundassociatedorcavitynesting species.Wedidnotseeastrongpatternofassociationbetweentotalbirdabundanceand development,butabundancewascloselyassociatedwithlandscapevegetationand secondarilyassociatedwithhumanuse.Landscapevegetationassociationssuggestthat theamountandtypeofvegetationretainedintheurbanizinglandscapeaffectsbird abundance,aswellasspeciesrichness.Abundanceofindividualspeciesgroupswere associatedwithlocalvegetationfeaturesmostrelevanttotheirniche–invertivores respondedtocanopycover,groundnestersrespondedtoherbcover,cavitynesters respondedtosnagdensities.Humanusewasconsistentlymoreimportantinexplaining abundanceofspeciesgroupsthanpercentdevelopment.Theabundanceofsomebird speciesandspeciesgroupsrespondedpositivelytohumanuse(e.g.,groundforaging omnivores),whileothersrespondednegatively(e.g.,groundnesters). TheGISbasedpredictivemodelforspeciesrichnessanddominanceshowed similarlystrongassociationswithdevelopment.Forspeciesrichnessanddominance,we observedastronginfluenceofbothenvironmentalfactorsandurbandevelopment.The finalGISmodelsforcavitynesterandgroundnesterrichnessweremorestrongly associatedwithhabitat,butshowedassociationswithurbandevelopmentatlargerscales (3001000m). Productivityasafunctionofnestsuccesswasevaluated,withspecieseither neutralornegativelyaffectedbynearbydevelopment.Nestsuccesswashighforcavity nestersandconsiderablylowerforopennesters,whosesuccesswaslowerwithincreased development.Amongopennesters,shrubandgroundnestersfaredworsethantree nesters.Developmentwithincloseproximitytonests(50m)hadanegativeeffecton dailysurvivalrateofopennesterandcavitynesterspeciesgroups,withopennesting speciesthatareassociatedwithshrubandgroundlocationsfaringworsethanthose locatedintheunderstory.Nestsuccessdeclinedwithdevelopmentforthreeofthe10 individualbirdspeciesexaminedindetail(Darkeyedjunco,Pygmynuthatch,and Westernwoodpewee),andmanyothercommonspeciessimplydidnotnestinurban forests.DuskyFlycatcherdidnotnestinareaswith>10%development.Human

5 structureswereusedfornestingbysixspecies,mostlycavitynesters;thereduceddensity ofsnagsandsmalltreesinmoredevelopedareasmayprecipitategreateruseofbuildings andotherstructures. SmallMammals From20032005,over31,000trapnightsresultedinthecaptureof6,400 individualsand19species.Totalspeciesrichnessaveraged5.3speciespersite(range=2 to9),andspeciesrichnessforsquirrelsandchipmunksaveraged4speciespersite.On averageover95%ofindividualscapturedweresquirrelsandchipmunks,asopposedto voles,woodrats,orshrews.Longearedchipmunkswerethemostevenlydistributed acrossthebasin,followedbyCaliforniagroundsquirrels,deermice,andDouglas squirrels.Communitycompositionwassignificantlyinfluencedbydevelopment.Species occurringlessfrequentlywithdevelopmentwereshadowchipmunk,deermouse,long earedchipmunk,andnorthernflyingsquirrel.Speciesoccurringmorefrequentlywith developmentwerevoles,Douglassquirrel,andyellowpinechipmunk. Wefoundthatdevelopmentaffectedsmallmammalspeciesrichnessand abundanceinacomplexmanner.Therangeofspeciesrichnessvaluesdecreasedwith development:richnessvalueswentfromarangeof2to10speciesatlowerdevelopment to4to7speciesathigherdevelopmentsites.Thissuggeststhatsensitivespeciesdrop outandspeciesbenefitingfromdevelopmentoccurmoreregularly.Furthermore,species richnesswaspositivelyassociatedwithdevelopmentwithin1km,butsurvivorship declinedwithdevelopmentatthesamescaleformostspecies.Thisindicatesthathigher levelsofdevelopmentinthelargerlandscapemayresultinspeciespackinginthe remainingundevelopednativeforests,andthatremnantforestswithgreatersurrounding developmentarelikelytobecomepopulationsinks(thepersistenceofspeciesatthese sitesisdependentuponimmigrationfromlessdevelopedareas). Abundancedecreasedanddominanceshiftedwiththefrequencyofsiteuseby peoplemorethatitrespondedtodevelopment.YellowpinechipmunkandCalifornia groundsquirrelweremorefrequentlynumericallydominantasdevelopmentincreased, whilelongearedchipmunkandshadowchipmunkwerelessfrequentlydominant. Severalhabitatfactorsinfluencedsmallmammalspeciesrichnessandabundance. Landscape(habitat)variablesthatmoststronglyaffectedsmallmammalcommunity measureswerecoverofbaregroundandoverallhabitatheterogeneity,whichboth positivelyaffectedsmallmammalspeciesrichnessandabundance. Thepatternsofspeciesrichnessandrelativeabundancesuggestthatremnant forestsmakeanimportantcontributiontosustainingsmallmammalpopulationsinlower elevationportionsofthebasin.Reductionintheextentofremnantforestsarelikelyto havenegativeeffectsonsmallmammalpopulations,particularlymorevulnerable species,suchasshadowchipmunksandlodgepolechipmunks.Asdevelopmentexpands, naturalhabitatpatchesdecreaseinareaandsurvivalisexpectedtodecline,likely resultinginamorepronouncedchangeintherichnessandabundanceofsmallmammal species.

6 LargeMammals Largemammalsweresampledat86samplesitesacrossthedevelopmentgradient. Tencarnivoresweredetected:eightnativespecies,andthedomesticdogandcat;in addition,rabbits,hares,anddeerweredetected.Domesticdogswerethemostcommonly detected,followedbycoyotes,blackbears,raccoons,andrabbitsandhares.Theleast commonlydetectedspecieswerebobcats,weasels,andspottedskunks. Speciesrichness,rangingfrom1to6species,didnotdiffersignificantlyalongthe developmentgradient;however,changesinspeciescompositionandtheassociationof bothcarnivoreandherbivorespeciesrichnesswithlocalforestconditionssuggeststhat undevelopedparcelswithindevelopedareasareimportanttotheoccurrenceofthese species.Carnivorespeciescompositiondifferedalongthedevelopmentgradient,with compositionatsitesatthelowerendofthedevelopmentgradientdifferedfromsiteswith moderateorhighdevelopmentlevels.Thisindicatesthatlossesoccurredatlowlevelsof development(<30%),forexample,martensandskunkswereonlydocumentedatsites wheredevelopmentwas<30%.Martensweremorefrequentlydetectedattheleast developedsites(<1%developed,accountingfor48%ofdetections),whereasdomestic dogsaccountedforthemajorityofdetectionsinareaswithhigherdevelopment. Speciesrichnessandoccurrencewereinfluencedbyavarietyofhabitatfeatures. Carnivorerichnesswasmostcloselyassociatedwithmicrohabitatcharacteristics, specificallythevolumeofcoarsewoodydebris,andthedensityoflargeandsmalltrees. Thebestmodelformartenoccurrencewasacombinedmodelofhumanactivitiesand totalsnagdensity,andthebestmodelforblackbearoccurrencewascomprisedof macrohabitatcompositionvariables,includingsnags. Herbivorerichnesswasequivalentlyrelatedtomanyenvironmentalvariables, althoughnotwellpredictedoverall.Rabbitsandhares(leporids)weremorestrongly associatedwithlocalandlandscapelevelvegetationthanwithhumanactivityor development;however,theybothwerenegativelyaffectedbythepresenceofdogsand vehicles.Bothgroupswerenegativelyaffectedbylocaldevelopmentandpositively associatedwithdevelopmentatlargerscales,suggestingtheimportanceofremnant nativehabitatswithindevelopedareas. Developmentappearedtoaffectbehavior,asreflectedinthetimeofdaythat individualwereactive.Raccoonsareactiveprimarilyatnight,butappearedto beactivemorefrequentlyduringdaylighthoursatmoredevelopedsites.Incontrast, coyotesandbearsweredetectedmorefrequentlyduringthedayatlessdevelopedsites. Dogsweregenerallydetectedduringdaylighthours. Theregressionmodelsformakinglandscapepredictionsweredevelopedforthree speciesthatrespondedtodevelopment:martens,blackbears,andcoyotes.InGISbased models,coyoteswerepositivelyassociatedwithopenhabitatsanddevelopmentatlarger scales,butnegativelyassociatedwithlocaldevelopment,suggestingthatcoyotesbenefit fromaninterspersionofnativeandurbanelements.Martenoccurrencewasnegatively associatedwithdevelopmentatmultiplespatialscales,butblackbearoccurrencewas moststronglyassociatedwithhabitatfeatures. Ants

7 Atotalof32,023individualsrepresenting46specieswererecordedfromthe101 sitessampled.Sitespeciesrichnessrangedfrom3to20species,andabundancewasa stronglycorrelatedwithspeciesrichness.abundancewasnotsignificantlycorrelated withpercentdevelopmentatanyscale.Conversely,speciesrichnessincreasedin associationwithdevelopmentatlargerscales,butdeclinedathigherlevelsoflocal development,reflectinglossesofrarespecies,whichdeclinedwithincreasing development.Manyfactorsaccompanyhigherlevelsofdevelopment,includingground disturbanceandreductionsincoarsewoodydebris(logs),bothofwhichimpactground associatedantspecies.Speciesrichnessalsodeclinedsignificantlyasthetotalareaof compactedsurfaceincreasedwithin30m.Speciesrichnessandabundancedeclinedin proximitytoroadsandresidentialdevelopments. Theregressionmodelsallowingforlandscapepredictionsweredevelopedfor threeantcommunitymetrics:antspeciesrichness,lognesterabundance,andthatch nesterabundance.IntheseGISbasedmodels,allthreegroupsweredrivenprimarilyby habitatfeatures,butfeaturesknowntobeaffectedbydevelopment(e.g.,NDVI,canopy cover),soitwouldbeinformativetoincludeantsinevaluationsoftheeffectsof landscapemanagementscenariosonbiologicaldiversity. Management Applications HumanUse Giventhelargenumberandmagnitudeofbiologicalresponsesassociatedwith humanuse,itseemsadvisablethathumanusebemonitoredaspartofroutine managementactivitiesinundevelopedparcels.Monitoringcouldincludemeasuresofthe typeandintensityofdirectusebypeople(e.g.,walking,jogging,bicycling),anddogson andoffleash.Monitoringgrounddisturbancecausedbyhumanusesisalso recommended,givenitsdirectlinktouses,andthelikelihoodthatiswasresponsiblefor atleastsomeoftherelationshipsobservedbetweenhumanuseandbioticmeasures. Unleasheddoguseappearstohavesubstantialimpactsonwildlife.Educationcan beaneffectivemethodtoreducetheeffectsofhumanuse.Itwouldbeprudentto identifyareaswherecontrollinguse(peopleordogs)wouldhavethegreatestpositive effect,suchassiteswithhighbiologicaldiversity,uniquespecies,uniquehabitat conditions,orkeylocationsintheurbanizinglandscape. Plants

Despiteincreasingextentandintensitiesofsurroundingdevelopment, undevelopedforestremnantsretainedmanyimportantcharacteristicattributesthat providehabitatfordesiredanimalspecies(canopycover,largertreedensity,vegetation heightdiversity)andthatotherwiseoccurmuchlessfrequentlyoutsidetheTahoebasinin developedlandscapes.Maintainingundevelopedforestinurbanizingareascontributes ecologicallyuniqueandimportantforestconditionsthatwereshowntosupportmany plantandanimalspecies.

8 Foreststructureisvulnerabletoalternationthroughmanagementandiseasily measured.Keymeasuresofforeststructureincludetreedensitybysizeclass(i.e.,small, medium,andlargediametertrees),snagdensitybydiameteranddecayclass,logdensity bydiameterclassanddecayclass,andverticallayering.Snagsandlogsareimportant elementsofforeststructurethatplayavitalroleintheecosystembyprovidingfood substratesandhabitat,andcontributingtonutrientcycling.Currentmanagement practicesappeartobereducingsnagandlogdensitiesby5075%inmoredeveloped areas.Targetsnagandlogdensitiescouldbebasedonavarietyoffactors,suchas vegetationtypeandspecialmanagementobjectives.Educatingandencouragingprivate landownerstoretainmorenaturalforeststructureontheirpropertieswillalsocontribute tothemaintenanceofbiologicaldiversityinmoredevelopedareas. Exoticplantspeciescompositionandrichnessareimportantmeasuresofsite conditions,aswellassuccessinminimizingthespreadofexoticplants.Thecontroland eradicationofexoticspeciesinremnantforestswillbeimportantfortworeasons:1)it willreducethepotentialspreadofexoticplantspeciesintolessdevelopedareas;and2)it willimprovethequalityofhabitatfornativeplantandanimalspecieswithintheremnant forest. Birds Severalspeciesandspeciesgroupswerestronglyassociatedwithdevelopment andhumanactivity,andcouldpotentiallybeusedtodemonstratetheconditionof remnantforestsandlandscapes.Measuresthatincreasedinurbanareasincluded abundanceofBrewer’sBlackbird,BrownheadedCowbird,Steller’sJay,andground foragingomnivores.Measuresthatdecreasedinurbanareas,includedspeciesrichness andtheabundanceofDuskyFlycatcher,HermitThrush,PileatedWoodpecker,Western woodpewee,groundnesters,andcavitynesters.Surveysthatcharacterizetheentirebird communityarerecommendedforassessmentpurposes,ratherthantargetedsurveysfor particularspecies.Measuresofhabitatconditionmostrelevanttothebirdcommunity includethefollowing:theamountofdevelopment(includinggrounddisturbance)within 30m,snagvolume,treedensity,shrubandherbcover,andcanopycover(allatthesite scale);aswellastheamountofconifervegetation,theamountofaspenandriparian vegetation,anddevelopmentatthelandscapescale(>300m). Managementatthesitescalethatislikelytohavethegreatestpositiveeffecton birddiversityistheretentionofsnagsandlogs,andreductionsingrounddisturbance. Retainingsnags,particularlylargesnags,withinTahoe’surbanenvironmentsisvitalto maintainingpopulationsofmanybirdspeciesgroups.Controllinggrounddisturbances andimprovingtheretentionofunderstoryvegetation(saplings)botharelikelytoenhance theabilityofsitestosupportgroundandshrubcavitynestersthere.Theretentionand restorationofaspenandriparianvegetationinurbanforestparcelscouldalsohelp mitigatethepotentialimpactsofdevelopmentongroundnestingandshrubnestingbirds. BecausemanagementscenariosalteredbothdevelopmentandNDVI,the scenarioshadstrongeffectsonspeciesrichnessanddominance.Increasedintensityof developmentincreasedtheproportionofthelandscape,withlowrichnessanddecreased theproportionwithmoderateandhighrichness.Mapsofmodeloutputsshowdistinct

9 changesinbirdspeciesrichness:highrichnessareasinthevicinityofSouthLakeTahoe, Stateline,SpoonerLake,andRubiconBayreduceinsizeordisappearcompletelywith increasingdevelopment.Reductionsinsizeofhighrichnessareasareaccompaniedby increasesinsizeandextentoflowrichnessareasinmostcases.Distinctchangeswere alsoobservedforspeciesdominance,butnotasstronglyasspeciesrichness.Areasof highdominanceexpandedwithincreasingdevelopmentinSouthLakeTahoe,Round Hill/ZephyrCove,alongtheeastshorefromStatelinetoSpoonerLake,InclineVillage, andtheUpperTruckeewatershed.Changesinhighdominanceareaswereaccompanied mainlybyincreasesinmoderatedominanceareas.Thelocationandextentofurban developmentwillaffectbirddiversity;modelscanhelpinformplanningeffortsto achievemultipleobjectives. SmallMammals Oneoftheimportantlandscapefeaturespositivelyrelatedtosmallmammal speciesrichnessandrelativeabundancewasthepercentcoverofbaregroundatasite, mostlikelybecauseitislimitedinoccurrenceandextent.Dominantvegetation communitiesinfluencedbothspeciesrichnessandtotalrelativeabundance. Fuelsmanagementactivitiesarethemostextensiveactivitiesongoinginnative forestsinthebasin.Theremovalofsomeoverstoryvegetationislikelytobenefitmany smallmammalspecies,however,widespacingofoverstorytreescanimpacttheabilityof arborealspeciestomovethroughtheforest,potentiallyincreasingtheirriskofinjuryand predation.Also,postharvesttreatments,suchaschippingandmastication,havethe potentialtoreduceoreliminateherbaceousplantcoverandbaregroundacrosslarge areasoftheforestfloor,bothofwhichareimportantcontributorstosmallmammal richnessandabundance.Finally,reductionsincoarsewoodydebris(logs)commonly associatedwithfuelreductionislikelytonegativelyaffectsmallmammals,morenotably intermsoftheirprobabilityoflongtermpersistence. Ourresultsindicatethathabitatmanagementcanaccomplishmuchtosustainthe diversityofsmallmammalspopulations.Overallhabitatheterogeneityatthesiteand landscapescalesmayfacilitatethecoexistenceofagreaternumberofindividuals,aswell asindividualspecies.Therefore,managingforadiversityofvegetationtypes(including aspen,riparian,shrubs,diversityoftreespecies)atboththelocalandlandscapelevel wouldbeeffectiveatmaintainingsmallmammalspeciesdiversity.Maintainingnative forestvegetationwithintheurbanmatrixwilllikelybeimportantforfacilitatinggreater survivalrates,andsuccessfulsmallmammaldispersalandmovementamongforest habitatpatches,thussustainingpopulations.Maintainingorcreatingsomebaregroundin undevelopedforestlandswillpromotehigherspeciesrichnesswithoutappearingto degradehabitatforanysmallmammalspecies.Retainingcoarsewoodydebriswillalso helpretainthediversityandresilienceofthesmallmammalcommunity. Totalspeciesrichnessandtotalabundanceofsmallmammalswerenotstrong indicatorsoflanddevelopmentandhumanuse.Theoccurrenceandabundanceofa numberofindividualspecies,includinglongearedchipmunk,shadowchipmunk,and Californiagroundsquirrel,maybegoodcandidateindicatormeasures.Incontrast, speciesthatmaybesensitivetodevelopmentinoneormultipleways,butmaynotmake goodindicatorsincludethosethataresimplyvulnerabletohabitatalteration.These

10 speciesareimportanttoconsideras“finefilter”focalspecies,includingshrews,yellow pinechipmunks,andDouglassquirrels. LargeMammals Forthecarnivorecommunity,themostimportanthabitatcharacteristicsatthesite scaleincludedthevolumeofcoarsewoodydebris,theoccurrenceoflargeandsmall trees,humanactivity,anddevelopmentwithin50m.Atthelandscapescale,theextentof meadowandshrubcoverwasimportant.Volumeofcoarsewoodydebris,presenceof largetrees,andproportionofforestedareawithin300mwereallpositivelyassociated withcarnivorerichness,suggestingtheimportanceoflocalvegetationcharacteristicsfor maintainingcarnivoresindevelopinglandscapes. Disturbancefromhumanrelatedactivities,particularlyfromdogs,wasanegative affectorforsomespecies(e.g.,rabbits/hares,deer,andblackbears).Activitypatternsof nativecarnivoressuggestedashiftbynaturallyoccurringspeciestominimizeoverlap withperiodsofgreatestdogactivity(seeFig.5.6,5.7).Humanactivityandthehandling ofdomesticdogs,particularlyimplementationandenforcementofleashlaws,could reducepotentialimpactsonnativespecies. Coyotesandraccoonswerestronglyassociatedwithdevelopment,likely benefitingfromanthropogenicsubsidies.Coyotesandraccoonsmayreachhighdensities inurbanareasleadingtoconflictwithlocalresidentsandthepotentialfordisease transmissiontodomesticpetsandpeople.Reducingaccesstopetfood,garbage,and otherresources(e.g.denninglocations)couldhelpreducedensitiesandthepotentialfor wildlifehumaninteractions.Coyotepopulationsmaywarrantmonitoring,giventhat increasedabundanceofthisspeciescouldprecipitatesubstantialecologicalconsequences andelevatedconflictswithhumans. Blackbearpopulationsarechanginginresponsetochangesinhumanpopulation densitiesandbehaviors.Bearsareanimportantcomponentoftheecologicalandsocial systemsinthebasin.Theresponseofbeartodevelopmentwasnotstrong;however,itis likelythatdevelopmentandhumanuseisaffectingbearpopulations,butthatthe probabilityofoccupancyisaninsensitivemeasureofthesechanges.Abearmanagement planforthebasin,employingmonitoringthatusesappropriatepopulationparameters, wouldbeaprudentinvestmenttoensurethehealthandsafetyofbothbearandhuman populations. Weappliedtwoofthepredictivemodelstothelandscapetodeterminethe potentialeffectsofthemanagementscenarioswecreated.Theresultsoflandscape modelingformartendidnotindicatesignificantchangeintheprobabilityofmarten occurrenceunderanymanagementscenario.Thisreflectsthefactthatmostundeveloped parcelsexistinareaswithmoderatetohighdevelopment,whichmeanstheyhavealow probabilityofoccupancyeveninanundevelopedstate.Thus,themartenisanexample ofexpectedresponsesofspecieswithalowtolerancefordevelopmentatanyscale.The probabilityofcoyoteoccurrencegenerallyincreasedwithincreasingdevelopment, althoughchangeswereslight,thusmodelingindicatesthepotentialforincreasedconflicts betweenhumansandcoyoteswithincreaseddevelopment. Severalspeciesandspeciesgroupswerestronglyassociatedwithdevelopment andhumanactivitycouldpotentiallybeusedtoreflecttheconditionandcontributionof

11 nativeforestsindevelopingareas.Apotentialindicatorofmoredevelopedareaswould betheraccoonandcoyote.Potentialindicatorsofundevelopedconditionsincludethe occurrenceofmarten,spottedskunk,andbobcat,andtheirdailyactivitypatterns(both readyobtainedwithcameras).Communitylevelsurveysarerecommendedratherthan individualspeciessurveys.Surveydurationmayneedtobeextendedindevelopedareas toachievethesamesurveylevelprobabilityofdetectionasinlessdevelopedareas.

Ants Minimizingthenumberandextentofareaswheredevelopmentexceeds30% wouldgreatlyhelpretainnativeantpopulationsandcommunities.Antspeciesrichness washighestinforestsofmoderatelevelsofurbandevelopmentandlowdevelopment sitescontainedmanyuniquespecies.Thisindicatesthatrarespeciesarethefirsttobelost withprogressivedevelopment.Theretentionofundevelopedparcelsandintactforest structureandcompositionwithinthem,aswellastheretentionofnativevegetationand coarsewoodydebristotheextentpossibleindevelopedparcelswillcontribute significantlytoretainingnativeantbiodiversity. Afewstrongcandidateindicatorsofsiteconditionswereidentifiedinthecourse ofthisstudy.Communitydominanceisagoodmeasureofdevelopmentatthe neighborhoodscale(within300m).Antspeciesrichnessappearstobeagoodindicator ofsiteconditions,decliningassiteshaveincreasedareasofcompactedsurface. Formica cf. sibylla abundanceislikelytobeagoodindicatorofdevelopmentandassociated disturbance,givenitsconsistentnegativerelationshipwithdevelopment. Formica ravida abundanceislikelytobeagoodindicatorofdevelopmentandassociateddisturbance, givenitsconsistentpositiverelationshipwithdevelopment.Totalabundanceandlog nesterabundancebothdecreasedinrelationtodevelopment. Antspeciesofconcernwereidentifiedthatarestrongcandidatesformonitoring as“finefilter”elementsofnativeforestecosystems.Rarespeciesareatriskfrom development,andmonitoringofappropriateantcommunitymetricscouldprovide reasonableestimatesofthefateofrarespeciesasagroup.Exoticspecies,likerare species,wouldbeessentialmonitoringtargetsinthecourseofassessingconditionsin urbanizingareas.Speciesspecificsamplingmethodsforexoticandrarespeciescouldbe developedtomoregaugedirectlydistributionandabundancepatternsforfuture monitoringprograms.

Future Directions for Research Ourresultshavehighlightedadditionalresearchthatwouldbebeneficialinexpanding ourknowledgeofbiodiversityinthefaceofurbanizationinthebasin.Hereisabrief overviewoftheinformationneedsthathavebeenidentifiedinthisstudy: Plants Linkbetweenecosystemservicesandforeststructureandcomposition –Itwould beinformativetounderstandthelinkbetweenthechangesinforeststructureand compositionthattypicallyoccurasaresultofurbanlanddevelopmentandtheeffecton

12 ecosystemfunctionsandservices,suchaswaterretention,sedimentation,nutrient retention,carbonsequestration,andanddiseasecontrol.Additionalinformationon changesinplantspeciescompositionintheoveralllandscaperelativetodevelopment wouldprovideadditionalinsightsintotriggersforexoticplantspeciesestablishmentand cover,aswellastheavailabilityoffoodplantsforwildlife. Oldgrowthforestcharacteristics –Thereremainmanyquestionsaboutthetarget sitescaleconditionsassociatedwithundisturbedoldgrowthforests.Inthepursuitof restorationofoldforestconditionsinthebasin,additionalunderstandingastotheunique characteristicsmissinginolderforeststhathavebeenalteredbyhumanactivity, includingsitesinproximitytovariouslevelsofdevelopment,wouldprovidehelpful guidancetomanagement. Interactioneffectsofdevelopment,humanuse,andfuelsmanagement Manyof thesiteswesampledhadbeenmanagedatsomepointinthepast,asevidencedbythe presenceofstumps,andmanyreceivedfueltreatmentssoonafterwesampledthem.The effectsofforestmanagementareofgreatinteresttolandstewardsattemptingtomeet multipleobjectivesonpublicparcels.Wewereabletoidentifyelementsofforest structureandcompositionthatwereimportantdeterminantsofvariousbiodiversity metrics;howeverwedidnotdirectlyinvestigatethequestionofforestmanagement effectsthathavethepotentialtofunctionallyextendthedetrimentaleffectsof urbanizationintolessdevelopedareas. Birds Landscapeconfigurationsmostbeneficialtosupportingbirdbiodiversity –This projectcouldnotevaluatethetradeoffsassociatedwithdifferentlandscapeplanning scenariosinmaintainingdiversityofbirds.Thisprojecthasgenerateddatathatcouldbe readilyusedtoevaluateplanningandmanagementtradeoffsthroughoutthelower montanezone. Controllingfortheeffectsofhumandisturbance Theimportanceofhuman disturbanceinstructuringthelandbirdcommunityindicatesaneedforadeeper understandingofthemechanismsunderlyingitseffects,particularlyonspecieswith characteristicsthatmakethemmostvulnerable,suchasunderstoryspecialists.Research intothebehavioralresponsestodifferenttypesofactivities,theirduration,andtheir timing,wouldgreatlybenefitmanagerslookingtocontroleffectsofhumandisturbance onbirds. Conservationofspeciesvulnerabletourbanization–Severalspecieshavevery lowtolerancetourbandevelopmentand/orhumanuse,suchastheDuskyFlycatcher.A morespecificunderstandsoffactorslimitingthesepopulationswillhelpinformeffective managementtoconservethesespecies. Degreeofimpactofnestparasitism BrownheadedCowbirdsareprevalentin thebasin.WhetherurbanizationfacilitatesnestparasitismbyBrownheadedCowbirdsis animportantmanagementquestionbestaddressedbynestmonitoringofcowbird sensitivespecieslikevireosandwarblersalongtheurbangradient,whichwerenottarget speciesinthisstudy. Minimizingthepotentialforpropertydamagebybirds Useofhumanstructures fornestingbybirdsinurbanareasisaninterestingecologicalphenomenonand

13 managementconcernunderwhatconditionswillbirdsnestinhumanstructures?Does theirwillingnesstonestinhumanstructuresaffecttheirabilitytosurviveinurbanareas? Howdonestingecologyandreproductivesuccessdifferinnaturalversusartificialnest substrates?Canartificialneststructuresbeusedtoeffectivelyenhancehabitatconditions forbirdsinmoreurbanizedenvironments,andtherebyreducedamagetohuman structures? SmallMammals Landscapeconfigurationstoenhancesmallmammalbiodiversity Atthe landscapescalehabitatconnectivityaffectstheabilityofaspeciestorespondto environmentalchange.Thatconnectivityisreducedbyurbanization,butthedegreeto whichitisalteredcanbeminimizedbycontrollingtheplacementandcharacterofurban development.WhilemostforestassociatedspeciesintheLakeTahoebasindonot appeartohavereacheddistributionthresholdswithrespecttourbandevelopment, maintaininglandscapelinkagesmaybecrucialforpreventingthelossofspecies.The predictivemodelsdevelopedinthisstudycouldbeappliedtoevaluatethepotential impactsofvariousmanagementanddevelopmentscenarios. StatusandthresholdsforvulnerablespeciesWefoundcompellingevidencethat keypopulationprocessesofsurvivalandemigrationofsomespeciesarebeingnegatively affected.Itisnecessarytomonitorthesespopulationsoveralongerperiodoftimeto assessimplicationsforpopulationpersistenceandhowsitemanagementcanenhance conditionsforvulnerablespecies. Improvedunderstandingofurbanizationeffectsonspecializedspecies There weremanysmallmammalspeciesandspeciesgroupsthatwedidnotcaptureorsample thatarelikelytoberespondingtodevelopmentanddisturbance,andwhichplay importantrolesinforestecosystems.Batsareanecologicallyimportanttaxonomicgroup thatwedidnotsample.Smallbodiedweaselsandflyingsquirrelswerenotwellsampled byourtrappingschemebecauseoftheirspecialization,yettheyplayimportantrolesin forestecosystemsascarnivoresandfungispecialists,respectively. Geneticdiversityofsmallmammalpopulations Genetictechniquescouldbe usedtodetermineconnectivityandgeneticdistinctivenessamongsitesaroundthebasin. Combiningdemographicinformationfrommarkrecapturedatawithgeneticsurveydata wouldallowinferencesabouttheimpactofhumandevelopmentonconnectivityofTahoe basinspeciesatmultiplespatialandtemporalscales.Furthermore,additionalknowledge abouthabitatconnectivitycanalsoinfluencemanagementstrategies,becausepopulations thataresufficientlydifferentiatedmaybemanagedasdistinctunitsinordertosustain populations. LargeMammals Landscapeconfigurationsmostbeneficialtosupportinglargemammals –This projectwasnotabletofullyevaluatethetradeoffsassociatedwithdifferentlandscape planningscenariosandmaintainingthebiologicaldiversityofvarioustaxa,including largemammals.Thisprojecthasgenerateddatathatcouldbereadilyusedtoevaluate planningandmanagementtradeoffsthroughoutthelowermontanezone.Additional

14 analysesofthesedatathatwouldbeusefulforunderstandtherelationshipofcarnivores tonativeforestwithanurbanenvironmentwouldbeaspatialevaluationofthe importanceofareaandconfigurationtocarnivoreoccurrence. Demographicandbehavioralresearchonkeyspecies Furtheranalysisof carnivoreactivitypatternsrelativetohabitat,development,humanactivity,andthe occurrenceofotherspecies(e.g.,domesticdogs)wouldrevealaspectsofcarnivore behaviorthatwillinformhowmanagementcanachievemultipleobjectives(e.g.,forest resources,recreation,wildlife).Furtherresearchintobearpopulationdemographyand behaviorinbothwildlandandurbanenvironmentswillbeneededtoinformabear managementplan.Coyoteresponsestoincreasingurbanizationandhumanuseisalsoa concern,thuscoyoteshouldbeconsideredakeyspecies. Recreationaldevelopmenteffectsonkeyspecies Futurestudiesneedtoaddress theimpactsofothertypesofdevelopment(e.g.,recreationaldevelopment)onwildlife andwildlifehabitat.Recreationaldevelopmentmaybeofalowerintensitybutcan impactaslargeorlargerareasthanresidentialdevelopmentandoccursbothatlakelevel (e.g.,golfcourses)andathigherelevations(e.g.,skiareas)inthebasin. Ants Landscapeconfigurationsmostbeneficialtosupportingantbiodiversity –This projectwasnotabletoevaluatethetradeoffsassociatedwithdifferentlandscapeplanning scenariosandmaintainingthebiologicaldiversityofvariousanttaxa.Thisprojecthas generateddatathatcouldbereadilyusedtoevaluateplanningandmanagementtradeoffs throughoutthelowermontanezone. Habitatrestorationeffectiveness –Manyofthesitescalerestorationmeasures suggestedbyourresearchresultsareexpectedtodirectlybenefitants,suchasincreasing deadwoodavailabilityandreducinggrounddisturbances,particularlythoseassociated withhighsoilcompaction.Antresponsestotheserestorationeffortscouldinformtheir potentialtocontributetoenhancingecosystemfunctioninremnantforests. Interactioneffectsofdevelopment,humanuse,andfuelsmanagement The effectsofforestmanagementandurbanizationareintricatelylinkedforants,which respondedprimarilyatthesitescale.Therearepotentiallyinteractiveeffectsbetween urbanizationandforestmanagement(particularlyrelatedtofuelsmanagement)thatwill substantiallyaffectantsandtheecosystemservicestheyperform.Researchisstill neededtodeterminehowantdiversityisbeingaffectedbyspecificlandmanagement practices.

15 Chapter 1: Introduction

Background Thisstudywasinitiatedin2002toevaluatethecontributionofurbanforeststo supportingbiologicaldiversityintheLakeTahoebasin.Thestudywascollaboratively fundedbytheUSFSLakeTahoeBasinManagementUnit,UniversityofNevadaReno, TahoeRegionalPlanningAgency,USFSSierraNevadaResearchCenter,andNevada DivisionofStateLands.Thestudyinvestigatedtheeffectsofurbanizationandhuman disturbanceonlandbirds,smallmammals,largemammals,ants,andplants.Theproject wasinitiatedtodevelopinferencesaboutthecontributionthatparcelsofnativeforest (i.e.,undevelopedparcels)maketosupportingwildlifepopulationsandbiological diversityinthesemoreurbansettings.ParcelsofNationalForestSystemlandswereof particularinterest.Previousreportsandotherprojectassociatedproductscanbeobtained fromtheLakeTahoeBasinManagementUnitorfromtheauthorsofthisreport. ThescienceteamconsistedofForestServicescientistsandUniversityprofessors anddoctoralstudentsfromtheSierraNevadaResearchCenterofthePacificSouthwest ResearchStation,UniversityofNevadaatReno,andUniversityofCaliforniaatDavis (Table1.1).Thediversityofteammembersbringsagreatdepthandbreadthofexpertise tothestudy,includinginvaluableecologicalinsightsfromalonghistoryofworkingin theLakeTahoebasinandtheSierraNevada. Table1.1.ScienceteamfortheLakeTahoeUrbanBiodiversityproject. PSWSierraNevada UniversityofNevada, UniversityofCalifornia, ResearchCenter Reno Davis PatManley DennisMurphy MattSchlesinger –PI –PI –landbirds LoriCampbell SusanMerideth KirstenHeckmann –largemammals –smallmammals –plantspeciesandcommunities SeanParks MonteSanford MarcelHolyoak –GIS –ants –advisor PeterBrussard MichaelBarbour –advisor –advisor Scientific Foundation TheLakeTahoebasinisparticularlyvulnerabletothelossofbiologicaldiversity becauseofitsphysiognomyandgeographiclocation(Manleyetal.2000).LakeTahoeis locatedinasmallandtopographicallyisolatedmontanebasinwithasteepelevational gradientthatservestocreateahighlevelofnaturalhabitatfragmentation.Ecological assemblageswithinthebasinarealsonaturallyfragmented;thesteepelevationalgradient ofthebasin,combinedwithitslocationinatransitionareabetweentheGreatBasinand SierraNevadazoogeographicregions(Udvardy1969),resultinahighdiversityof

16 vegetationcommunitiesandassociatedplantandanimalspecies.TheLakeTahoebasin alsoprovidesanidealopportunitytofurtherourunderstandingoffragmentationand humandisturbanceeffectsonbiologicaldiversity. Multiplestateandfederalagenciesinthebasinhavelandacquisitionprograms thatpurchaseparcelsoflandthataresensitivetomanagementorserveimportant ecologicalservices,suchaswetlandareasinresidentialorcommercialzonesorflood plainareasinsensitivewatersheds.TheU.S.ForestServicemanagesthegreatestacreage ofurbanforestsofanyagencyinthebasin,5200ha(13,000ac)oflandin3500separate parcels,foranaverageparcelsizeof1.5ha(3.7ac).Incontrast,theCaliforniaTahoe Conservancymanages30%moreparcelsthantheU.S.ForestService,butalowertotal areaofland,2540ha(6350ac),forasmalleraverageparcelsizeof0.6ha(1.4ac). NevadaDivisionofStateLandsalsomanagesurbanforestparcelsinthebasin,butata smallscalecomparedtotheothertwoagencies,withonly500parcelsand100ha(250 ac)oflandarea.Theseparcelsaredistributedallaroundthebasin,butaremostprevalent inthesouthernportionofthebasinandatlowerelevations. In2001,CongressquestionedthebenefitsoftheU.S.ForestServicelands acquisitionthroughtheSantiniBurtonprogram,givenitshighcostandtheurbansetting ofmanyoftheparcels.ThelocationandsizeofparcelsacquiredthroughtheSantini Burtonprogramvarywidely,from0.2hatohundredsofhectares,withthemajorityof parcelsbeing1haorless.Congressrequestedanevaluationofthevalueofthese“urban lots”intheLakeTahoebasininmeetingagencyobjectives,suchaswaterquality, biologicaldiversity,andrecreation.ThefutureoftheForestService’slandacquisition programwillbeshapedinpartbytheoutcomeoftheevaluation.Astudyofthe landscapegeometry,andspecificallythecontributionofundevelopedparcelslocatedin themorehighlydevelopedlowerelevationareasinthebasin,wasneededtoprovidethe necessaryinformationtorespondtoCongressandtoinformlandacquisitionand managementprogramsinthebasin. Aprojecttoevaluatethecontributionofurbanforeststosupportingbiological diversityintheLakeTahoebasinwasinitiatedandcollaborativelyfundedin2002bythe USFSLakeTahoeBasinManagementUnit,UniversityofNevadaReno,USFSSierra NevadaResearchCenter,andTahoeRegionalPlanningAgency.Theresultsofthe projectwillbeusedtomakeinferencesaboutthecontributionthatparcelspurchased throughtheSantiniBurtonprojectcontributetosupportingbiologicaldiversityinthe basin,andthecontributionthatparcelsintheurbanforests(i.e.,undevelopedparcelsof anyaffiliation)maketosupportingwildlifepopulationsandbiologicaldiversityinthese moreurbansettings.The“LakeTahoeUrbanBiodiversity”projectcompleteditsfirst seasonoffielddatacollectionduringthespringandsummerof2003.Theactivities conductedandaccomplishmentsachievedtodatearedescribedinthisreport,aswellas plansforthe2004fieldseason.Moredetailedinformationonstudyobjectivesand methodscanbefoundinthefullstudyplanontheSierraNevadaResearchCenterweb site( www.fs.fed.us/psw/programs/research_emphasis_areas/ ecosystem.currentstudies/landscape_watershed/pattern_landscape_laketahoe/shtml ). Theeffectsoffragmentationanddisturbanceonpopulationandcommunity dynamicsintheLakeTahoebasinarenotwellknown.Speciesrestrictedtolower elevationsaremostvulnerablegiventhatdevelopment,andthereforedisturbanceand fragmentation,isgreatestatlowerelevations(e.g.,Manley2000,ManleyandSchlesinger

17 2001).Manydatagapsanduncertaintiesexist–theobjectivesofthisstudywereto describechangesinbiologicaldiversityinrelationtodevelopmentandassociatedhuman use,addresskeyhypothesesaboutcausallinkages,identifypotentialindicatorsof declinesofbiologicaldiversityinresponsetohumandevelopment,andidentifypotential thresholdsformaintainingbiologicaldiversityattheparcelandbasinscales.Species responduniquelytodevelopmentandassociateddisturbance,sowesampledawidearray oftaxa.Vulnerabilitiesandpredictedeffectsofdevelopmentanddisturbanceassociated witheachtaxonomicgroupstudiesareoutlinedbelow.

Objectives Thestudywasdesignedtoinformthreebasicmanagementactivitiesandneeds: development,assessment,andmanagement.Theprimaryobjectiveofthestudywasto evaluateeffectsoflossthroughdevelopment,howeverinthecourseofthisobjective, potentialindicatorsofbiologicalintegritywillemergethatcanbeusefulforassessment. Althoughthestudywasnotdesignedtodirectlyaddresstheeffectsofmanagement activities(e.g.,vegetationmanagement),siteconditionsthathavearelativelystrong effectonitscapacitytoachieveitsbiologicalpotentialcanbeinformmanagement.In theinitialprojectdescription,thesethreemanagementactivitieswererepresentedbyaset ofmanagementobjectivesandanassociatedsetofscientificobjectives,whichshapedthe designofthestudy(Table1.1).

Study Area and the Development Gradient ThestudyareaistheLakeTahoebasin,aphysicallyandbiologicallyunique featureinbetweentheflanksoftheSierraNevadarangeofCaliforniatothewestandthe CarsonRangeofNevadatotheeast(Fig.1.1).TheLakeTahoeBasinislocatedhighin thecentralSierraNevada(38.90°Nand120.00°)andspanstheborderbetween CaliforniaandNevada.FlankedbytheSierraNevadainthewestandCarsonRangein theeast,thebasinincludesbothLakeTahoe,havingasurfaceareaof49,000ha,andits surroundingwatershed,82,000ha(Barbouretal.2002).Elevationrangesfrom1,900m a.s.l.atlakelevelto3,050matthehighestpeak(ElliotFisketal.1996). Astrongprecipitationgradientexistsfromwesttoeast,suchthattheTahoeBasin encompassestwoverydifferentclimateregimes.Averageannualprecipitationinthe northeastshoreisabouthalfthatofthesouthwestshore(James1971).Twothirdsofthe annualprecipitationfallsfromDecembertoMarch,morethan80%ofwhichfallsas snow.Thewintermeandailyminimumtemperatureatlakeelevationisabout6°C, whilethesummermeandailytemperatureexceeds30°C(Manleyetal.2000).

18 Table1.1Managementandscientificobjectives. Managementobjectives Scientificobjectives Activity:Development Howdoesanthropogenic Dothresholdsinthepersistenceofindividual disturbancewithinandaround species,compositionofspeciesassemblages, urbanlotsaffecttheabilityof characterofspeciesinteractions,andspecies urbanlotstosupporttheirnative richnessexistattheforeststandscalealong diversityofspecies?What fragmentationanddisturbancegradients? managementoptionsexistfor Doesspeciescompositionacrossstandsexhibita reducingthenegativeeffectsof nestedstructure,suchthatlessspeciesrichstands disturbance? aregenerallyoccupiedbymorefrequently occurringspecies? Whatroledourbanlotsplayin Hasthebasinexceededafragmentationthreshold supportingbiologicalintegrityat suchthathabitatlossnowhasagreaterimpacton thelandscapescale?Howmight biologicaldiversitythanwouldbeexpectedbased thatroleshiftinlightofvarious onarealossesalone(i.e.,shiftedfromtherandom development(i.e.,buildout) samplemodeltoametapopulationmodel)? scenarioswithinthebasin? Whatarethepredictedeffectsof Doesanthropogenicdisturbance(historic,recent, variouspatchandlandscapescale chronic)interactwithfragmentationtoreduceor managementscenariosregarding otherwiseshiftthresholdsofintegrity/degradation urbanlotmanagement(i.e., atstandandlandscapescales?Atthepatchscale, development,acquisition, doesthisinteractionvaryinassociationwithother restoration)? environmentalfactorssuchasvegetationtype, elevation,orientation,orthetypeofanthropogenic disturbance? Activity:Assessment Whatarereliablecriteriafor Arespeciesorgroupsofspeciespredictedtobe identifyingpotentialindicator strongindicatorsofbiologicalintegritybasedon species? theoriesofcommunityecologysubstantiatedorare theyrefutablebasedonempiricaldata? Doparticularspecies,species Arethereparticularspeciesorspeciesgroupsthat groups,orenvironmental appeartobemoresensitivetofragmentationand/or parametersemergeasstrong disturbance(i.e.,shiftsinconditionobservedfor indicatorsofbiologicalintegrity somespeciesatlowerlevelsoffragmentationor atthepatchorlandscapescales? disturbancecomparedtoothers)? Activity:Management Whatmanagementoptionsexist Whatenvironmentalparametersbestpredict forimprovingthebiological patternsofstandscalespeciesoccupancyand integrityofexistingurbanlots? reproductivesuccess,compositionandrichness?

19 Figure1.1.Samplesitelocations(n≈100)aroundtheLakeTahoebasin. Thebasincontainsthreemainvegetationzones:lowermontane(lakelevelto 2,200ma.s.l.),uppermontane(2,200to2,600ma.s.l.),andsubalpine(>2,600ma.s.l.). Thisprojectwasrestrictedtoelevationsbetween1,920m(lakesurface)and2,134m, whichfallswithinthelowermontanezone,becauseitcontainsroughly95percentofthe urbanareainthebasin(TRPA2002).Themostcommonlowermontaneforesttypesare Jefferypine,mixedconifer,andwhitefir(Manleyetal.2000).Inaddition,lodgepole pine( Pinus contorta )dominatedforestisfoundinmoisthabitatsthroughoutthebasin andamixofalder( Alnus spp.),willow( Salix spp.),andaspen( Populus tremuloides )is commoninriparianareas. AverylimitedamountofvirginforestexistsintheTahoeBasintodaydueto intensiveloggingduringthenineteenthcentury.Remnantsoforiginalforestexist throughoutthebasin,primarilyathigherelevationsonthewestside(Bailey1974). Barbouretal.(2002)locatedanddescribed38remnantoldgrowthpatchesintheTahoe Basin.Coresamplesiteswereselectedusingadevelopmentindexasthesampling frame.Thedevelopmentindexwasdevelopedthroughanumberofsteps(seeParksetal. in review ).

20 First,wecreatedasingletransportationGISlayerforthebasinbycombining severaltransportationGISdatalayersprovidedbytheLTBMU,CaliforniaStateParks, andtheNevadaDivisionofStateParks.Togivethetransportationfeaturesarea,we bufferedeachtransportationfeaturebasedonthetypeoftransportationfeatureit happenedtobe.Highwayswerebuffered6.9m(foratotalwidthof13.8m),regular pavedsurfacestreetswerebuffered5.1m(10.2mwide),dirtroadswerebuffered3.3m (6.6mwide)andtrailswerebuffered0.5m(1mwide).Thebufferingdistancewas basedonthebasicwidthofatrafficlane,theaveragewidthoftheshoulder(bothofthese valuesfromtheCalTranshighwaydesignmanual)andtheaveragenumberoflanes.The bufferedtransportationfeatureswerethenconvertedtoagridwithapixelsizeof3by3 m. Second,alandusetypewasassignedtoeachparcelwithinthebasinusingaland useGISlayerobtainedfromtheTahoeRegionalPlanningAgency.Examplesoflanduse typesinclude:singlefamilydwelling,hotel/motel,servicestationandanimalhusbandry services.Therewereatotalof60,137parcelswithinthebasinrepresenting90different landusetypes,sothelanduseGISlayerwasextremelydetailed. Third,weestimatedtheproportionofdevelopedlandforeachlandusetypeby takingarandomselectionofparcelsfromeachlanduse,andthenestimatingthe proportionofdevelopedlandusingdigitalorthographicquadrangles.Forlandusetypes withmorethan200parcels,werandomlyselected30parcelsandestimatedthe proportionthatwasdevelopedineachparcel;forlandusetypeswith51to200parcels, werandomlyselected20parcels;forlandusetypeswith10to50parcels,werandomly selected10parcels;andforlandusetypeswithlessthan10parcels,weselectedall parcels.Foreachlandusetype,weaveragedtheestimatedpercentdevelopmentforall therandomlyselectedparcels.Forinstance,theaverageproportiondevelopedforsingle familydwellingwas51%. Fourth,weconvertedthelanduselayerintoagridwithapixelsizeof3by3m. Foreachlandusetype,aproportionofthecellswerereclassifiedintoadeveloped category.Forexample,inareaswheresinglefamilydwellingwasthelanduse,51%of the3m 2pixelsinthoseareaswereassignedavalueof1(developed=1,nondeveloped =0).Thiswasperformedoneachlandusetypeinthebasin. Fifth,thelanduseGISgridandthetransportationGISgrid,bothwithapixelsize of3by3m,werethenaddedtogethertogetadevelopmentsurface.Finally,wewanted tocharacterizeeach30by30mpixelinthebasinbytheproportionthatitwasdeveloped. Onehundred3by3mpixelsfitintoone30by30meterpixel.Weoverlaidagrid(with apixelsizeof30m)ontheentirebasin,andforeach30meterpixel,wecountedthe numberof3by3mpixelsthatweredeveloped.Valuesrangedfrom0to100.Avalue ofzeroimpliedthatthereisnodevelopmentwithinthepixel,andavalueof100implied thattheentirepixelwasdeveloped.Thisproductwasourfinalmodeleddevelopment. Oncethesamplingframewascompleted,werandomlyselectedsitesalongthe developmentgradient.Wecreated6developmentclasses:extremelylow=no developmentwithin500m,verylow=nodevelopmentwithin300m,low=<15% developedwithin300m,moderate=>15to30%developedwithin300m,high=>30 to45%developedwithin300m,veryhigh=>45to60%developedwithin300,and extremelyhigh=>60%.

21 Chapter 2: Birds IntrodIntroductionuction Birdshavelongbeenamodelsystemforstudyingfragmentation,inpartbecause ofconservationconcerns,publicinterest,andeaseofsurveying.Knowneffectsof fragmentationandurbanizationonbirdcommunitiesincludedeclinesinspeciesrichness (EstadesandTemple1999);nestedness,suchthatspeciespoorcommunitiesaresubsets ofthespeciesinspeciesrichcommunities(Bolgeretal.1991,Wrightetal.1998, FernándezJuricic2000a);lossofparticularspecies,suchashabitatspecialists,dietary specialists,largerbodiedspecies,andspeciesathightrophiclevels(Wiens1989,Newton 1998,Austenetal.2001);andincreasesingeneralistandexoticspecies(Austenetal. 2001).Lowernestingsuccessfrequentlyresultsfromhighernestpredation(Wilcove 1985,WilcoveandRobinson1990,Robinsonetal.1995,BurkeandNol2000),from increasedparasitismbybrownheadedcowbirds( Molothrus ater ;(WilcoveandRobinson 1990,Robinsonetal.1995),andpotentiallyfromresourcelimitation(Wilcoveand Robinson1990,Robinson1998).Althoughchangesatthepopulationlevelcanhelp explainpatternsatthecommunitylevel,fewstudiesofbirdshavesimultaneously addressedresponsesofbirdpopulationsandcommunitiestodevelopmentand disturbance(Marzluffetal.2001).

Methods Weusedfourtechniquestodeterminespeciescomposition,density,reproductive success,andbehavioralpatternsinpasserineandotherbirdsthatarereadilydetectedby sightandsound:pointcounts,nestmonitoring,behavioralobservations,andspot mapping.Pointcountsenabletheestimationofspeciesdensityandcommunity compositionofbirdsinproximitytocountstations,butdonotprovideinformationon territoriesorreproduction(Ralphetal.1993).Nestmonitoring(MartinandGeupel 1993)confirmsthebreedingstatusofspeciesandprovideestimatesofreproductive successandratesofnestpredationandparasitism.Observationsofforagingbehavior wereintendedtodeterminethelocationsandsubstratesofforagingattempts.Weceased spotmappingafterthe2003season,aswefeltoureffortwouldbebetterspentonother protocols;eliminatingspotmappingallowedustoachievemuchgreatersamplesizesfor pointcountsandnestmonitoring. PointCounts Weconductedpointcountstocharacterizethespeciescompositionofthesample unitanditslandscapecontext.Weestablishedfivepointcountstations;theyresidedat thecenterpointandatapproximately200mnorth,east,southandwestofthecenter point(the“satellite”pointcounts;actuallocationsdependedonaccess).Countswere10 minutesinduration,duringwhichwerecordedallbirdsseenorheard,notingthelocation inoneofsixdistancecategories(025m,2550m,5075m,75100m,>100m,and

22 flyovers).Weconductedcountsthreetimesinthebreedingseason(midMaytomid July),withvisitsseparatedbyatleastoneweek.Webegancountsatleast15minafter sunriseandcompletedthembefore9:30a.m. NestMonitoring Weselectedfocalspeciesthatweretheprimarytargetofnestsearchingand monitoring.Weintendedthefocalspeciesapproachtonestsearchingtoensureadequate samplesizestocalculatenestsuccessforatleastafewspecies.Patternsinfocalspecies cannotnecessarilybegeneralizedtoguildsortheentirebirdcommunity.Theselection offocalspecieswasguidedbythefollowingcriteria:they1)wereassociatedwithconifer forest;2)werecommonintheLakeTahoebasin;3)wereassociatedwiththeunderstory forbreedingorforaging;4)nestedlowenough(<40ftofftheground)thatnestswerea) likelytobeaffectedbyanthropogenicdisturbance,andb)feasiblymonitoredwithout climbingtrees;5)hadamoderateorbettereaseoftheirnestsbeinglocated;6)were potentiallyanindicatorofforestcondition,includingvulnerabilitytohumandisturbance andcowbirdparasitism;7)werepotentiallyanindicatorofotherspeciesorspecies groups;and8)werecomplementarywithotherfocalspeciessuchthatthesuiteoffocal speciesrepresentedadiversityoflifehistorycharacteristics(e.g.,nesttype,nestlocation, bodysize,diet).Wedeterminedtheabovecharacteristicsforeachspeciesknownto occurintheLakeTahoebasin(SchlesingerandRomsos2000)fromEhrlichetal.(1988), BaicichandHarrison(1997),USDA(2000),andpersonalknowledge.Inaddition,we selectedafewspeciestoexamineforchangesinnestsitecharacteristicsalongthe developmentgradient.Inall,weselected12focalspecies(Table2.1). Table2.1.Focalspeciesselectedformonitoringnestsuccessandassessingnestsiteselection alongagradientofurbanizationintheLakeTahoebasin,2003to2005. Commonname Scientificname Years Open nesters AmericanRobin Turdus migratorius 20032004 DarkeyedJunco Junco hyemalis 20032005 DuskyFlycatcher Empidonax oberholseri 20032005 Steller’sJay Cyanocitta stelleri 20032005 WesternWoodpewee Contopus sordidulus 20032005 Cavity nesters HairyWoodpecker Picoides villosus 20032005 MountainChickadee Poecile gambeli 20032004 NorthernFlicker Colaptes auratus 20032005 PygmyNuthatch Sitta pygmaea 20032005 RedbreastedNuthatch Sitta canadensis 20032005 WhitebreastedNuthatch Sitta carolinensis 20032005 WhiteheadedWoodpecker Picoides albolarvatus 20032005 Wesearchedforandmonitoredneststhroughouteachsampleunitupto200m awayfromthecenterpoint.Therewasnostricttimelimitontheamountofsearching allowedineachsampleunit(Friesenetal.1999,BurkeandNol2000);ourmain objectivewastofindandmonitorasmanynestsaspossible.Generally,welocatednests

23 byobservingthebehaviorandmovementsofindividualbirds.Werevisitednestsevery3 to4daystorecordbreedingphase(nestbuilding,egglaying,incubating,nestlings, fledged)andreproductiveeffort(numberofeggsandyoung).Weexaminednestsabove eyelevelandthoseincavitiesusingadentalmirror,asmallmirrorsecuredtoa5m telescopingpole,oravideocameramountedtoa15mtelescopingpole.Wemonitored activityofnestsintowhichwecouldnotseetodeterminebreedingphaseandeventual successorfailureonly.WefollowedguidelinesintheBBIRDprotocol(Martinetal. 1997)andMartinandGeupel(1993)forfindingandmonitoringnestsandavoiding disturbanceofnestingbirds. Weincludedinnestsurvivalanalysesonlyneststhatwereshowntobeactive, thusremovingfromfurtheranalysisallneststhatneverprogressedbeyondthe constructionphase.Wedeterminedactivitystatusofnestswhosecontentscouldnotbe viewedbyanalyzingthebehaviorofadults;forexample,ifabirdwassittingonthenest oroccupyinganestcavity,thenweassumedthategglaying,incubation,orbroodingwas occurring. In2005,wereappropriatedourefforttofocusnestmonitoringon1)speciesthat appearedtoshowadifferenceinnestsuccessacrossthedevelopmentgradient,and2) speciesforwhichweneededgreatersamplesizes.Weceasedmonitoringnestsofall threespeciesofnuthatchandtheNorthernFlicker;forthesespecieswesimplyconfirmed thatnestswereactiveandthencollectednestsiteselectiondatauponnests’completion. BehavioralObservations Weconductedbehavioralobservationsduringthecourseofsearchingfornestsin 2003and2004todeterminewhetherforagingsubstrateuseandforagingheightdiffered alongtheurbanizationgradient.Birdsencounteredwereobservedfor20seconds.For thefirst10secondsnodataweretaken,toallowtimeforthebirdtoreturntoitsactivity beforebeingencounteredbytheobserver.Duringtheremaining10secondperiod, observersnotedthefollowinginformation:species,time,perchsubstrate,height,distance frombole,andactivity,andifthebirdmadeaforagingattemptduringthattime,the foragingmaneuver,foragingsubstrate,species,decayordecadenceclass,height,and diameteratbreastheightwerealsorecorded.In2004,datacollectedconsistedofspecies, time,substrate,substratespecies,andheight.Observerswereallowedtocontinue observationsforfiveadditional10secondintervalstoincreasethechancesthata foragingattemptwouldbeobserved.Onlyone10secondintervalwasusedforany givenobservation.

ExplanatoryVariables Wetookbasicmeasurementsofvegetationstructureandhumandevelopmentat eachsatellitepointcountstationtocomplementdatafromthecenterpointgeneratedby theplantcommunitycomponentofthestudy.Wemeasuredtrees,snagsandlogsand countedpiecesoftrashwithin17.6m;measuredoveralltreeandshrubcanopycoverand theproportionofthatcoverthatindividualspeciescomprised;estimatedproportionofthe areawithin30mofthepointthatwasoccupiedbyvarioustypesofdevelopment;and estimatedthedistancetowater,riparianvegetation,anddevelopmentofvarioustypes

24 (Table2.2).WealsocalculatednumerousGISvariablessuchaselevation,percentslope, NormalizedVegetationDifferenceIndex(NDVI),distancetopermanentwater,percent developmentatmultiplespatialscales,andpercentofconiferforest,shrubs,and aspen/riparianatmultiplespatialscales(Table2.2).Wetransformedexplanatory variablesasnecessarytoreducetheinfluenceofoutliersandaccountfornonlinearitiesin relationshipswithdependentvariables;sometimesthisinvolvedaddingaquadraticterm. Westandardizedallvariablesbysubtractingthemeananddividingbythestandard deviation. Onceanesteitherfledgedorfailed,werecordedthefollowingcharacteristicsof eachnestwithconfirmedbreeding:nestheight;substratespecies,height,anddiameterat breastheight;nestorientation;distancefromandorientationtoroads,trails,and development;canopycoveratthenest;andpercentslope.Weestablishedan11.3m radiusvegetationplot(Martinetal.1997),inwhichwemeasuredalltreesandsnagsand recordedproportionsofdifferentcategoriesofgroundcover.Wealsocalculatedseveral GISvariablesasdescribedinTable2.2. DataAnalysis CommunityStructure Wesubsetthepointcountdataforanalysesofrichness,abundance,dominance, andspeciescomposition.Weuseddetectionsupto100monlyandexcludedwaterbirds andraptors,forwhompointcountsinforestsarenotreliabledetectionmethods,and nonnativespecies,resultingin67speciesbeingretained.Wewillrefertothissubset fromnowonas“landbirds.” Becauseofthepotentialforincreasednoiseinurbanareastoreducedetectability oflandbirds,andtheimportanceofaddressingdetectabilityinbiologicalsurveys (Bucklandetal.2001),weintendedtouseprogramDISTANCE(Thomasetal.2004)to adjustabundancevaluesfordetectability.However,ourdesireforsitespecificdensity estimateswasthwartedbyinsufficientsamplesizesonasitebysitebasis(theanalysis requires6080samplesforareasonabledetectionfunction,farbeyondthetypical abundanceofbirdsatagivensamplesite);further,usingdevelopmentorsomeother surrogatefornoiseasacovariateinmultiplecovariatedistancesampling(Bucklandetal. 2001)wouldhaveprecludedouruseofdevelopmentasapredictorinmodelselection. Ananalysisincludingallspeciesshowedadeclineindetectabilityinhigherdevelopment classes,butthisappearedtobedrivenbyahandfulofcommonspecies.Further,7of13 individualspeciesforwhichwecouldgenerateacceptabledetectionfunctionsshowedno differencesindetectabilitybydevelopmentclass;thus,adjustingabundancesofall speciesbasedontheglobalmodelwouldhavelikelyovercorrected,perhapsforoverhalf thespecies.Becauseoftheseresults,wedeterminedthatusingrawabundancevaluesin allanalyseswasmostdefensible.

25 Table2.2.ExplanatoryvariablesusedinanalysesoflandbirdcommunitystructureintheLake Tahoebasin,20032005. Variablecode Variable Source Transformations Development Dev30 Percentofareawithin30 Fieldestimate moccupiedby development Dev150,Dev150 2 Percentofareawithin GISdevelopment sq Dev300,Dev300 2 150,300,500,or1000m model Dev500,Dev500 2 occupiedby Dev1000,Dev1000 2 development Landscape-level vegetation Conif150,300,500,1000 Percentofareawithin Dobrowskietal. AsRi150,300,500,1000 150,300,500,or1000m (2005)vegetation Shrubs150,300,500,1000 occupiedbyconifer layerforthe forest,aspen basin, forest/riparian,orshrubs crosswalkedto CWHRtype Habdiv150,300,500,1000 Numberofhabitattypes Dobrowskietal. within150,300,500,or (2005)vegetation 1000m layerforthe basin, crosswalkedto CWHRtype Local vegetation structure NDVI,NDVIpos 2,NDVI 2 NormalizedDifference GISlayerderived Scaledtomakeall VegetationIndex from2001 valuespositive, (essentiallyameasureof LandsatTM thensq productivity)averaged image within100m Shrubs30,Shrb30Rt Percentcoverofshrubs Fieldestimate sqrt within30m CanCov,CanCov 2 Canopycover Averageof16 field measurements TreesRt Treedensity;numberof Field sqrt treeswithin17.6m measurement SngVolLg Snagvolume,basedon Field ln(x+1) DBHandheight; measurement cylindricalshape assumed CWD_log Coarsewoodydebris Field ln(x+1) measurement Herbs Percentcoverofherbs Field andgrasswithin30m measurement Abiotic factors Elev Elevation,averageover Digitalelevation areawithin~50m model

26 Variablecode Variable Source Transformations Slp100,Slp100 2 Percentslope,average Digitalelevation sq overareawithin100m model DistWtr,DistWtr 2 Distancetopermanent GIS sq water Human use People Numberofpeople Fieldsurveys encounteredperhour Dogs Numberofdogs Fieldsurveys encounteredperhour Vehic_lg Numberofvehicles Fieldsurveys ln(x+1) encounteredperhour Geographical location UTMN,UTMN 2 Northing GPS sq measurement UTME Easting GPS measurement Wecalculatedsummaryvariablesofthebirdcommunityusingtwosubsetsofthe datadependingontheexplanatoryvariablesofinterest.Foranalysesexaminingthe effectsofhumanuse,weusedonlypointcountresultsfromthecenterpoint(n=75),as thehumanusedatawerecollectedwithin100mofthecenter.Foranalysesoftotal speciesrichnessandabundance,wetreatedeachcountstation(n=375)asasample;we usedDurbinWatsonteststoensurethatstationswereindependent,andadditionally analyzedonlycenterpointcountdatatoexaminetheimportanceofhumanuse.We calculatedspeciesrichnessateachcountstationasthetotalnumberoflandbirdspecies detectedinthreevisits.Wecalculatedabundanceofallspecies,speciesgroups,and individualspeciesastheaveragenumberofindividualsdetectedinthreevisitstoeach countstation.(Atonesite[L14],datawereunavailableforasinglevisittooneofthe countstations;thus,forthatstation,wecalculatedtheaverageovertwovisits.)We calculateddominanceusingtheBergerParkerindex(Magurran1988),whichissimply theabundanceofthemostabundantspeciesdividedbythetotalabundance.We transformeddependentvariablesasnecessarytoachievenormality,usinglog,square,and squareroottransformations(SokalandRohlf1995).Normalitycouldnotbeachievedin allcases. Toexaminewhetherspeciescompositionvariedamongcategoriesof urbanization,weusedthemultiresponsepermutationprocedure(MRPP),whichisa nonparametricmethodthattestsfordifferencesamonggroupsusingsimilaritymetrics basedonpresenceabsencedata(McCuneandGrace2002).WeusedSørenson’s distanceasthesimilaritymeasureandrantheMRPPwithaseriesof1000permutations ofgroupassociations.Foreachgroup,weappliedanaturalweightingfactor( n/Σ[ n])to thesamples.Significancevalueswerebasedonpermutationdistributions(McCuneand Mefford1999).Presenceandabsencewerebasedontheentirefivestationarrayateach site.Wetestedfordifferencesincompositionamongthreecategoriesbasedon developmentlevelwithin300m:01%development(10sites),130%development(31

27 sites),and>30%development(34sites).Theteststatistic,T,isameasureofthe differenceincompositionamongsiteswith01%development,130%development,and >30%development.TheTvaluerepresentsthechangeinTwitheachspeciesremoved fromtheanalysis;specieswerereplacedinallotheranalyses.PositivevaluesofT representspecieswhosepresencemakesspeciescompositionmoredifferentamong developmentcategories,whilenegativevaluesrepresentspecieswhosepresencemakes speciescompositionmoresimilar.Ameasureofwithingroupsimilarity,A,isalso presented,withvaluesnearzerodemonstratingwithingroupheterogeneitysimilartothat expectedbychance.SubsequenttotheMRPP,weremovedonespeciesatatimewith replacementtodeterminewhichspeciesweredrivinganyobservedchangesin composition.Speciesthatcausedalargechangeintheteststatisticwereonesthathada largeinfluenceondifferencesincomposition. Weconstructedarankabundanceplottoexaminechangesintherelative importanceofspeciesincommunitystructureinthreelevelsofdevelopment.Weused all375countstationsindependentlyandusedthesamethreedevelopmentcategories:0 1%development(46countstations),130%development(156countstations),and>30% development(173countstations). Weusedmodelselectiontodetermineimportantcategoriesoffactorsaffecting variouslandbirdcommunitymetrics.WeusedasecondordervariationofAkaike’s InformationCriterion(AIC)thatadjustsforsmallsamplesizes(AIC c)tocompare candidatemodels.ModelselectionusingAICisaninformationtheoreticmethodthat allowscomparisonofmultiplecompetingmodelsthatrepresentscientifichypotheses.It involvesanexplicitrecognitionofmodelselectionuncertaintyanddoesnotrelyon statisticalsignificancetesting,whichcanbehighlyarbitrary(BurnhamandAnderson 2002).CandidatemodelsareenumeratedinadvanceandtheirAIC cvaluescompared. Akaikeweights,whichrepresentthestrengthofevidenceofsupportforeachmodeland totalto1forallmodels,arecalculated.Theimportanceofindividualvariables(or,inour case,factorgroups;below)isdeterminedbyaddingAkaikeweightsforallmodelsin whicheachvariable(orgroup)appears. Weconsideredcombinationsoffactorgroups(collectionsoflikevariables)in differentmodelsratherthanindividualvariables,becauseusingthenumberofpotentially importantindividualvariableswouldhavefarexceededtherecommendednumberof modelsforoursamplesizes(Andersonetal.2001).AsimilarapproachwasusedbyVan Buskirk(2005).Thefactorgroupsweincludedwereonesshowntoaffectlandbirdsin otherstudies:geographicallocation,abioticfactors,landscapelevelvegetation,local vegetationstructure,development,andhumanuse(Table2.2).Wedeterminedthebest modelintwosteps.First,toavoidoverfittingmodels,wedeterminedthebestsubmodel foreachfactorgroupbyfittingaglobalsubmodel(e.g.,alllocalvegetationstructure variables),andthenremovingvariablesonebyonewithreplacementandretaininginthe finalsubmodelonlythosevariableswhoseinclusionimproved(lowered)theAIC cfor thatsubmodel.Thus,asubsetofthevariablesineachfactorgroupwaspromotedfor considerationinoverallmodels.Wedidnotdothisforgeographiclocation(UTMs); rather,wealwaysincludedbothnorthingandeastingcoordinatesinmodelswiththe geographyfactorgroup.Inthecaseofdevelopmentandlandscapelevelvegetation,for whichmultiplespatialscalescouldbesuitable,weusedmodelselectiontodetermine whichoffourorfivepossiblespatialscaleswasmostexplanatory:30m(notavailable

28 whenonlythecenterpointcountwasconsidered,asthosepointswereselectedtobein forestandnearlyallvalueswerezero),150m,300m,500m,and1000m.For vegetationscales,wefirstdeterminedthemostappropriatescale(s),andsubsequently determinedthebestsubmodel. Weconsideredallcombinationsoffive(whenhumanusewasexcludedand375 countstationswereincluded)orsix(whenhumanusewasincludedandonlythe75 centercountstationswereincluded)categoriesofvariablesinouroverallmodels(Table 2.2),yielding31or63candidatemodelstobecomparedagainstoneanother.Forthe AIC cbestoverallmodel,wedeterminedwhichindividualvariablesweremostimportant byexaminingthechangeinAIC cwheneachvariablewasremoved.ThechangeinAICc withavariable’sremovalsuggestedthedegreetowhichthevariableimprovedthe overallmodelormadeitworse. Inthisreport,weexaminedimportantfactorsaffectingrichnessofallspeciesand abundanceofallspecies,groundnesters,cavitynesters,groundforagingomnivores,and invertivores.Wechosethesefunctionalgroupstoreflectavarietyofecological characteristicsthatmightpredisposespeciestobesensitivetohumanuseandchangesin habitatbroughtaboutbyurbanization.Someofthesegroups,likegroundnesters,we expectedtodecreasewithurbanization.Cavitynesters,too,mightdecreasewitha decreaseintheamountofsnagsresultingfromdevelopmentorhumanactivities.Many groundforagersshouldlikewisebesensitivetohumandisturbanceandgroundlevel habitatchanges,butthosethatareomnivorousshouldthrive,astheylikelybenefitfroma widevarietyofhumanprovidedfoodoftenlocatedontheground.Invertivorescould decreaseiftheirpreybaseisrenderedlessabundantbychangesinvegetationinurban areas. Productivity Weusedthelogisticexposuremethodtocalculatenestsuccess(Shaffer2004).In thismethod,ratherthanthesuccessorfailureofindividualnestsbeingofinterest, intervalsofobservationaresamples,withthedependentvariableintheanalysisbeing survivalorfailureofthenestduringtheobservationinterval.Themethodisessentiallya hybridofMayfieldstyle(1975;Johnson1979)exposuremethods,whichrecognizethat nestsfoundatlaterstagesaremorelikelytobesuccessfulthanthosefoundatearlier stages,andlogisticregressionmethods,whichallowmodelingofcovariatesthoughtto affectnestsurvival.Survivalorfailureismodeledasafunctionofthelengthofthe observationinterval,knownasthe“exposure,”andanycovariatestheinvestigatordeems potentiallyimportanttonestsuccess.Amodelselectionapproachisemployed,with candidatemodelscomparedagainstoneanotherusingAIC c.Modelaveragedparameters (BurnhamandAnderson2002)areusedtogenerateadailysurvivalrate(DSR),which canberaisedtothepowerofthelengthofthenestingperiodtoarriveataprobabilityof nestsuccess.Thus,nestsuccessinthismethodisnottheproportionofnestssuccessful inthesample,butistheprobabilitythatanindividualnestinthepopulationwillsucceed. Foreachspeciesorspeciesgroupofinterest,wefirstmodeledtheeffectsofdate (numberofdayssinceMay15)andyearasacategoricalpredictortoexaminetime specificnestsuccess(Grantetal.2005;Purcell2006).Wealsomodeledsurvivalasa quadraticfunctionofdate,toallowforthepossibilityofincreasedsurvivalmidseason.

29 Thebesttimespecificmodelwasusedasthestartingmodelinallfutureanalyses,rather thanthe“constantsurvival”modelthatisotherwiseusedasanullmodel.Thisapproach allowedustoaccountforanypotentialbiasinlocatingwithdifferingfrequenciesnests withvaryingprobabilitiesofsuccessindifferentyearsortimesoftheseason. WemodeledDSRofallopennestersversusallcavitynesters,guildsofopenand cavitynesters,andallindividualspeciesforwhichwehadareasonablenumberofnests (Table2.1).Weuseddevelopmentatvariousscales,nestsubstrate,andnestheight(in additiontoanytimespecificcovariatesretainedfromthetimespecificmodels)as covariates,dependingonthespeciesorspeciesgroup.Weusedoneofthree developmentscalesineachmodel:50m,100m,and300m,torepresentlocaland neighborhoodscalesofdevelopment.Onlyonedevelopmentscalewaspresentineach model.Weexaminednestsubstrateifthespeciesorspeciesgroupusedtwoormore substrateswithsufficientfrequency.Weexaminednestheightifthespeciesorspecies groupusedavarietyofnestheights.Weconstructedcandidatemodelsconsistingofall possiblecombinationsofcategoricalmaineffectsandcovariates. HabitatUse:NestsiteSelection Weinvestigatedwhetherbirdsmightselectnestsitehabitatcharacteristics differentlyaccordingtodevelopmentandhumanuseforspeciesgroupsandindividual species.Weusedamodelselectionapproachsimilartothatusedforrichnessand abundance(above),comparingmodelsbyAIC c.Weexaminedallpossiblecombinations of50mdevelopment,100mdevelopment,300mdevelopment,andnumberofpeople detectedperhour(logtransformed).Weincludedonlynestswithin150mofthecenter point,areasonableapproximationoftheareawithinwhichthehumanusedata,collected atthecenter,couldbeexpectedtoapply.Wealsoexaminednestsubstrateintwo categoriesofdevelopment(≤30%and>30%)usingchisquaretestsforgoodnessoffit. Analysesofusevs.availabilityandcomparisonswithsurroundingvegetationare ongoing. Wealsoinvestigatedwhetherspeciesandspeciesgroupsuseddifferentsubstrate typesindifferentcategoriesofdevelopment.Weexaminedonlyspeciesandspecies groupsthatshowedsomevariationinuseofgeneralsubstratetypes,whichlimitedour analysistocavitynestersandtheSteller’sJay.Webuiltcategoriesofdevelopmentbased onpercentdevelopmentwithin100mofeachnest;a100mradiusdefinedanareaover whichbirdsmightsearchfornestsitesafterestablishingaterritory.Boundariesof developmentcategoriesdifferedaccordingtothedistributionofnestsalongthe developmentgradient(MountainChickadee,WhitebreastedNuthatch:10%cutoff; primarycavityexcavators,weakcavityexcavatorsandsecondarycavitynesters,Pygmy Nuthatch,WhiteheadedWoodpecker:15%cutoff;NorthernFlicker:20%cutoff; Steller’sJay:30%cutoff).Weusedgeneralsubstratetypessuchas“live”(trees,shrubs) and“dead”(snags,logs,stumps)becauseoftheneedforlargersamplesizesineachcell ofcontingencytables;weomittedsubstratesusedinfrequently,suchashumanstructures, fromanalysiswhennecessaryandsimplyreportednumbersofnestswiththose substrates.WeusedaGtestofindependencetotestforstatisticallysignificant differencesinsubstrateusebydevelopmentcategory,asneitherfactorwasfixedbythe investigators(SokalandRohlf1995).

30 HabitatUse:Foraging Foranalysisofforagingheights,weusedonlythefirstobservationperiodin whichthebirdwasforaging,asrepeatedobservationsonsinglebirdsarenotnecessarily independent(Raphael1990).Wecalculatedtheproportionofobservationsofforaging birdsindifferentheightclassesandsubstratetypesandexaminedtheseinrelationto categoriesofdevelopment.Percentdevelopmentwasbasedonthecenterpoint,notthe locationofthebird,whichwedidnotrecord.Weexaminedforagingheights(intwo categories,03mand>3m)intwocategoriesofdevelopment(≤30%and>30%)using chisquaretestsforgoodnessoffit.

ResultResultssss SamplingCompleted FromMayJulyof2003and2004,wesurveyedthepointcountarrayat75sample sitesthatspannedthedevelopmentgradientandwerebalancedbybasinorientation. FromMayAugustof2003,2004,and2005,welocatedandmonitorednestsinthose sitesandanadditional22sites,foratotalof97sites.Wetookhabitatmeasurementsin JulySeptemberof2003,2004,and2005at570nestsitesand300satellitepointcount stations. CommunityStructure Wedetected21,726individualbirdsof67nativelandbirdspeciesintotal, excludingwaterbirdsandraptors.Speciesrichnessrangedfrom5to28atthe375count stations( x =16.0,s.e.=0.20).Abundancerangedfrom5.3to59.0( x =19.3,s.e.= 0.29). MRPPanalysisshowedsignificantdifferencesinspeciescompositionamong low,moderate,andhighdevelopmentsites(T=13.593, P<0.0001).Low developmentsitesweresignificantlydifferentfrommoderatedevelopmentsites(T= 3.635, P=0.0038)andhighdevelopmentsites(T=14.261, P<0.0001);moderate developmentsitesweresignificantlydifferentfromhighdevelopmentsites(T=10.972, P<0.0001).Speciesmakingthelargestcontributiontothedifferencesincomposition amongdevelopmentcategories(T>0)wereBrewer’sBlackbird,DuskyFlycatcher, WhitebreastedNuthatch,HermitThrush,andCassin’sVireo(Table2.3),whichwere specieswhosefrequencyofoccurrencevariedgreatlyamongdevelopmentcategories. Speciesthatwereeitherpresentnearlyatallsites(e.g.,MountainChickadee,Steller’s Jay)orthatwerepresentatveryfewsites(e.g.,RufousHummingbird,LesserGoldfinch) hadnoinfluenceonthecompositionaldifferenceamongdevelopmentcategories(T≈ 0)(Table2.3).Specieswithasimilarfrequencyofoccurrenceinthethreedevelopment categories,butwithloweroverallfrequencyofoccurrence(e.g.,MacGillivray’sWarbler, GoldencrownedKinglet)tendedtomakethedevelopmentcategoriesmoresimilarin composition(T<0)(Table2.3).

31 Table2.3.ResultsofMultiResponsePermutationProceduresanalysisoncompositionof67 landbirdspeciesat75sitesintheLakeTahoebasin,20032004. Speciesremovedfromanalysis T T A All67speciesincluded 13.594 0.0737 Brewer’sBlackbird 11.930 1.664 0.0624 DuskyFlycatcher 12.205 1.389 0.0645 WhitebreastedNuthatch 13.033 0.561 0.0714 HermitThrush 13.113 0.481 0.0703 Cassin’sVireo 13.151 0.442 0.0711 PileatedWoodpecker 13.218 0.375 0.0720 GreentailedTowhee 13.220 0.373 0.0722 BandtailedPigeon 13.268 0.326 0.0729 HairyWoodpecker 13.312 0.282 0.0733 BarnSwallow 13.364 0.229 0.0731 TreeSwallow 13.435 0.159 0.0736 ChippingSparrow 13.445 0.149 0.0739 HermitWarbler 13.477 0.117 0.0729 Townsend’sSolitaire 13.483 0.110 0.0725 OlivesidedFlycatcher 13.512 0.081 0.0729 Wilson’sWarbler 13.525 0.069 0.0734 Williamson’sSapsucker 13.527 0.066 0.0738 Clark’sNutcracker 13.544 0.050 0.0749 BrownCreeper 13.547 0.046 0.0740 Cassin’sHummingbird 13.572 0.022 0.0738 BlackbilledMagpie 13.579 0.014 0.0738 SavannahSparrow 13.579 0.014 0.0738 CommonNighthawk 13.580 0.013 0.0740 MountainQuail 13.581 0.013 0.0741 AmericanRobin 13.581 0.013 0.0736 BrownheadedCowbird 13.586 0.007 0.0736 PurpleFinch 13.590 0.003 0.0740 Lincoln’sSparrow 13.592 0.002 0.0738 MourningDove 13.592 0.002 0.0741 MountainChickadee 13.593 0.000 0.0736 Steller’sJay 13.593 0.000 0.0736 RufousHummingbird 13.595 0.001 0.0738 LesserGoldfinch 13.595 0.002 0.0741 BlueGrouse 13.598 0.004 0.0738 Bushtit 13.600 0.006 0.0739 HouseFinch 13.601 0.007 0.0739 YellowrumpedWarbler 13.601 0.008 0.0740 AmericanCrow 13.603 0.010 0.0739 BlackbackedWoodpecker 13.604 0.010 0.0740 YellowheadedBlackbird 13.604 0.011 0.0740 CliffSwallow 13.604 0.011 0.0739 YellowWarbler 13.612 0.019 0.0740 CommonRaven 13.613 0.019 0.0751 DarkeyedJunco 13.613 0.019 0.0739 RedwingedBlackbird 13.615 0.022 0.0741 NorthernFlicker 13.616 0.022 0.0742

32 Speciesremovedfromanalysis T T A PygmyNuthatch 13.636 0.042 0.0738 PineGrosbeak 13.636 0.043 0.0743 WesternTanager 13.639 0.046 0.0745 BlackheadedGrosbeak 13.646 0.053 0.0746 HouseWren 13.649 0.055 0.0747 WhiteheadedWoodpecker 13.661 0.067 0.0750 RedCrossbill 13.670 0.076 0.0756 EveningGrosbeak 13.682 0.089 0.0754 DownyWoodpecker 13.697 0.103 0.0754 WarblingVireo 13.717 0.123 0.0742 NashvilleWarbler 13.737 0.143 0.0734 RedbreastedNuthatch 13.738 0.145 0.0757 RedbreastedSapsucker 13.738 0.145 0.0757 FoxSparrow 13.742 0.149 0.0750 WesternWoodpewee 13.745 0.152 0.0756 SongSparrow 13.762 0.168 0.0752 PineSiskin 13.824 0.230 0.0759 Cassin’sFinch 13.830 0.237 0.0766 SpottedTowhee 13.860 0.266 0.0759 GoldencrownedKinglet 13.914 0.320 0.0756 MacGillivray’sWarbler 13.924 0.331 0.0760 Modelselectionhighlightedimportantdevelopment,landscapelevelvegetation, localhabitat,abiotic,geographic,andhumanusefactorsaffectingbirdspeciesgroups. Landbirdspeciesrichnesswasmostinfluencedbyacombinationofdevelopment,local habitat,abiotic,andgeographicfactors,withnorthing(AIC c=15.20),slope(AIC c= 12.79),1000mdevelopment(AIC c=9.13),anddistancetowater(AIC c=9.00)being mostimportant(Table2.4,Fig.2.2).Asubsequentanalysisonthe75centerpointcounts onlyshowedspeciesrichnesstobemostinfluencedbyhumanactivity(Fig.2.2b). Abundanceofallbirdswasmostinfluencedbylandscapelevelvegetation,abiotic,and geographicfactors,withelevation(AIC c=18.61)and1000mshrubs(AIC c=12.32) beingmostimportant(Table2.5,Fig.2.3).Asubsequentanalysisonthe75pointcounts onlyshowedabundancetobemostinfluencedbysimilarfactors(Fig.2.2b).Dominance wasinfluencedmostbydevelopmentandlandscapelevelvegetation(Fig.2.2b). Abundanceofbirdspeciesguildswerevariouslyassociatedwithdevelopment (Appendix2.1),aswerebirdfamilies(Appendix2.2).Factorsinfluencingabundanceof speciesgroupsvariedwidely.Abundanceofgroundnesterswasinfluencedmostby landscape,abiotic,andgeographicfactors(Table2.6,Fig.2.3).Themostimportant variablesinthebestmodel,althoughconsiderablemodelselectionuncertaintyexisted, were300mconifer(AIC c=4.39)andeasting(AIC c=2.10).Abundanceofcavity nesterswasinfluencedmostbyhumanuse,localhabitat,abioticfactors,landscape factors,andgeography,withconsiderablemodelselectionuncertainty(Table2.7,Fig. 2.4).Themostimportantvariablesinthebestmodelweresnagvolume(AIC c=7.92) anddogs(AIC c=6.84).Therelationshipbetweencavitynestersandsnagvolume suggestthatsnagvolumesof>10m3/hawererequiredtosupportthefullpotentialof cavitynesterabundance(Fig2.5).

33 Abundanceofgroundforagingomnivoreswasmostinfluencedbyhumanuse, landscapelevelvegetation,andlocalhabitat(Table2.8,Fig.2.6).Themostimportant variablesinthebestmodelweredogs(AIC c=21.20)and1000mconifer(AIC c= 10.92).Abundanceofinvertivoreswasmostinfluencedbyabioticfactorsandlocal habitat,withpercentslope(AIC c=4.76),treedensity(AIC c=4.61),andcanopy cover(AIC c=3.78)beingthemostimportantvariablesinthebestmodel(Table2.9, Fig.2.7).Therelationshipbetweeninvertivoreabundanceandtreedensityshoweda steadydeclineinthemaximumabundanceastreedensityincreased(Fig.2.8).Tree diametertypicallydeclinesastreedensityincreases,thusthissuggeststhatinvertivore abundancealsowithdeclineswithtreediameter. Modelselectionforlandbirdsatpointcountstationsalongadevelopmentgradient arepresentedinTables2.4to2.9(variabledefinitionsareinTable2.2).Comparisonof submodelsofdevelopment,localhabitat,landscapelevelvegetation,abioticfactors,and geographyvariablesinfullandreducedformarepresented.Thedirectionoftheeffectof eachvariableinthebestsubmodelisgiveninparentheses.Inaddition,thebestoverall models,generatedfromallpossiblecombinationsofreducedsubmodels,withthe additionofthefullgeographysubmodel.ModelswithAIC cweightsof0.05orgreater arereported.TheimportanceofeachfactorgroupisevaluatedasdeterminedbyAkaike weightssummedacrossallmodelscontainingthatgroup. Table2.4.Landbirdspeciesrichness(n=375countstations);a)submodelcomparison,b)best overallmodels,c)importanceoffactorgroups. a) Model Variables AIC c Weight Full submodels of factor groups Development Dev30,150,300,500,1000 1978.04 1.000 Landscape AsRi150,300,500,1000,Conif150,300,500,1000 Shrub150,300,500,1000,Habs150,300,500,1000 2033.24 0.000 Local NDVIpos 2,Shrb30Rt,CanCov,TreesRt,SngVolLg,Herbs 2004.50 0.000 Abiotic Elev,Slp100,Slp100 2,DistWtr 2056.04 0.000 Geography UTMN,UTMN 2,UTME 2060.24 0.000 Reduced submodels Development Dev30(),Dev150(),Dev1000() 1975.19 Landscape AsRi300(+),Conif300(+),Shrub300() 2018.03 Local NDVIpos 2(+),Shrb30Rt(+),CanCov(),TreesRt(+), SngVolLg(+),Herbs(+) 2004.50 Abiotic Slp100(),Slp100 2(+),DistWtr() 2054.10 b) 2 Factorgroupsincludedinbestmodels AIC c Weight Adj.R Development,local,abiotic,geography 1933.55 0.697 0.366 Development,local,landscape,abiotic,geography 1935.48 0.266 0.368 c) Factorgroup Sumofmodelweights Development 1.000 Landscape 0.296 Local 0.965 Abiotic 1.000 Geography 0.998

34 Table2.5.Landbirdabundance(n=375countstations);a)submodelcomparison,b)bestoverall models,c)importanceoffactorgroups. a) Model Variables AIC c Weight Full submodels of factor groups Development Dev30,150,300,500,500 2,1000,1000 2 718.32 0.000 Landscape AsRi150,300,500,1000,Conif150,300,500,1000 Shrub150,300,500,1000,Habs150,300,500,1000 718.33 0.000 Local NDVIpos 2,Shrub30,CanCov,TreesRt,SngVolLg,Herbs 720.91 0.000 Abiotic Elev,Slp100,DistWtr 684.76 1.000 Geography UTMN,UTME 704.85 0.000 Reduced submodels Development Dev300(+),Dev1000(+),Dev1000 2() 710.06 Landscape Conif1000(),Shrb1000(),Habs1000() 697.05 Local NDVIpos 2(),Shrub30(),CanCov(),TreesRt(),Herbs (+) 718.83 Abiotic Elev(),DistWtr(+) 683.13 b) 2 Factorgroupsincludedinbestmodels AIC c Weight Adj.R Landscape,abiotic,geography 656.45 0.782 0.178 Landscape,local,abiotic,geography 659.82 0.145 0.193 c) Factorgroup Sumofmodelweights Development 0.06 Landscape 1.00 Local 0.16 Abiotic 1.00 Geography 0.99

35 Table2.6.Groundnesterabundance(n=75countstations);a)submodelcomparison,b)best overallmodels,c)importanceoffactorgroups. a) Model Variables AIC c Weight Full submodels of factor groups Development Dev150,300,500,1000 98.04 0.007 Landscape AsRi150,300,500,1000,Conif150,300,500,1000 Shrub150,300,500,1000,Habs150,300,500,1000 107.81 0.000 Local NDVI 2,Shrubs30,CanCov,TreesRt,SngVolLg, CWD_log,Herbs 99.07 0.004 Abiotic Elev,Slp100,DistWtr,DistWtr 2 88.50 0.857 Geography UTMN,UTME 110.95 0.000 Humanuse People,Dogs,Vehic_lg 92.26 0.131 Reduced submodels Development Dev150(),Dev1000() 93.56 Landscape AsRi300(+),Conif300(+) 84.88 Local NDVI 2(+),TreesRt() 93.61 Abiotic Elev(+),Slp100(+),DistWtr(+),DistWtr 2() 88.50 Humanuse People(),Dogs(+),Vehic_lg() 92.26 b) 2 Factorgroupsincludedinbestmodels AIC c Weight Adj.R Landscape,abiotic,geography 78.42 0.196 0.462 Landscape,local,abiotic,geography 79.25 0.129 0.480 Landscape,abiotic 79.70 0.103 0.431 c) Factorgroup Sumofmodelweights Development 0.28 Landscape 0.75 Local 0.33 Abiotic 0.85 Geography 0.57 Humanuse 0.34

36 Table2.7.Cavitynesterabundance(n=75countstations);a)submodelcomparison,b)best overallmodels,c)importanceoffactorgroups. a) Model Variables AIC c Weight Full submodels of factor groups Development Dev150,300,500,1000 355.54 0.007 Landscape AsRi150,300,500,1000,Conif150,300,500,1000 Shrub150,300,500,1000,Habs150,300,500,1000 368.48 0.000 Local NDVI 2,Shrubs30,CanCov,TreesRt,SngVolLg, CWD_log 355.52 0.007 Abiotic Elev,Slp100,DistWtr 353.40 0.020 Geography UTMN,UTME 345.97 0.822 Humanuse People,Dogs,Vehic_lg 349.45 0.144 Reduced submodels Development Dev150() 350.00 Landscape Conif150(+),Shrub150(+) 346.02 Local SngVolLg(+),CWD_log() 348.73 Abiotic DistWtr(+) 350.21 Humanuse Dogs(+) 348.54 b) 2 Factorgroupsincludedinbestmodels AIC c Weight Adj.R Local,abiotic,use 341.92 0.080 0.071 Landscape,local,geography,use 342.34 0.065 0.173 Landscape,geography 342.55 0.058 0.153 c) Factorgroup Sumofmodelweights Development 0.294 Landscape 0.553 Local 0.647 Abiotic 0.447 Geography 0.748 Humanuse 0.586

37 Table2.8.Groundforagingomnivoreabundance(n=75countstations);a)submodel comparison,b)bestoverallmodels,c)importanceoffactorgroups. a) Model Variables AIC c Weight Full submodels of factor groups Development Dev150,150 2,300,300 2,500,500 2,1000,1000 2 115.93 0.622 Landscape AsRi150,300,500,1000,Conif150,300,500,1000 Shrub150,300,300 2,500,1000, Habs150,300,500,1000 153.09 0.000 Local NDVI 2,Shrubs30,CanCov,TreesRt,Herbs 129.35 0.001 Abiotic Elev,Slp100,Slp100 2,DistWtr 119.52 0.103 Geography UTMN,UTME 156.31 0.000 Humanuse People,Dogs,Vehic_lg 117.57 0.274 Reduced submodels Development Dev150(+),Dev150 2(),Dev1000(+),Dev1000 2( ) 109.63 Landscape Con1000() 125.82 Local NDVI 2(),Herbs(+) 122.83 Abiotic Elev(),Slp100(),Slp100 2(+) 117.16 Humanuse Dogs(+),Vehic_lg(+) 116.40 b) 2 Factorgroupsincludedinbestmodels AIC c Weight Adj.R Landscape,local,use 95.05 0.306 0.504 Landscape,local,geography,use 96.02 0.188 0.498 Development,landscape,local,use 96.68 0.135 0.575 Development,landscape,use 97.51 0.089 0.574 Landscape,use 97.70 0.081 0.489 c) Factorgroup Sumofmodelweights Development 0.285 Landscape 0.994 Local 0.710 Abiotic 0.143 Geography 0.280 Humanuse 1.000

38 Table2.9.Invertivoreabundance(n=75countstations);a)submodelcomparison,b)best overallmodels,c)importanceoffactorgroups. a) Model Variables AIC c Weight Full submodels of factor groups Development Dev150,300,500,1000 398.83 0.067 Landscape AsRi150,300,500,1000,Conif150,300,500,1000 Shrub150,300,500,1000,Habs150,300,500,1000 422.02 0.000 Local NDVI 2,Shrubs30,CanCov,CanCov 2,TreesRt, SngVolLg,Herbs,CWD_log 400.96 0.006 Abiotic Elev,Slp100,Slp100 2,DistWtr 393.71 0.865 Geography UTMN,UTME 400.08 0.036 Humanuse People,Dogs,Vehic_lg 400.75 0.026 Reduced submodels Development Dev150() 393.92 Landscape Conif500(+),AsRi500(+) 394.09 Local CanCov(+),CanCov 2(),SngVolLg(+),TreesRt () 394.46 Abiotic DistWtr(+),Slp100(+),Slp100 2() 391.42 Humanuse Vehic_lg() 398.65 b) 2 Factorgroupsincludedinbestmodels AIC c Weight Adj.R Local,abiotic,geography 382.46 0.196 0.359 Local,abiotic 382.80 0.165 0.328 Local,abiotic,use 383.54 0.114 0.335 Development,local,abiotic 384.19 0.082 0.329 Local,abiotic,geography,use 384.77 0.062 0.353 Development,local,abiotic,geography 384.93 0.057 0.352 c) Factorgroup Sumofmodelweights Development 0.293 Landscape 0.201 Local 0.886 Abiotic 0.982 Geography 0.444 Humanuse 0.311

39 1.0

0.8

0.6

0.4

0.2 SumofmodelAkaikeweights

0.0 Development Landscape Local Abiotic Geography Figure2.1.Associationoffivefactorgroupswithlandbirdspeciesrichnessfrom375count stationsintheLakeTahoebasin,20032004.Importanceofeachfactorgroupismeasuredby summingtheAkaikeweightsofmodelscontainingthatfactorgroup.SeeTable2.2forspecific variablescomprisingeachfactorgroup.

40 a)

1.0

0.8

0.6

0.4

SumofmodelAkaikeweights 0.2

0.0 Development Landscape Local Abiotic Geography b)

1.0 +

0.8

0.6

+ 0.4

0.2

Relativeimportance(sumofAkaikeweights) +

0.0 Totalspeciesrichness Totalabundance Dominance Topography Topography Topography Development Development Development Geog.location Geog.location Geog.location Landscapeveg. Human activity Human Landscapeveg. Landscapeveg. Human Human activity Human Human activity Localvegetation Localvegetation Localvegetation Speciesrichness Abundance Dominance Figure2.2.Associationoffivefactorgroupswithlandbirdrichness,abundance,anddominance. a)Abundancefrom375countstationsintheLakeTahoebasin,20032004,andb)comparisonof speciesrichness,abundanceanddominancefromthecenterpointcountstation.Importanceof eachfactorgroupismeasuredbysummingtheAkaikeweightsofmodelscontainingthatfactor group.SeeTable2.2forspecificvariablescomprisingeachfactorgroup.

41

1.0

0.8

0.6

0.4

SumofmodelAkaikeweights 0.2

0.0 Development Landscape Local Abiotic Geography Human disturbance Figure2.3.Associationofsixfactorgroupswithabundanceofgroundnestinglandbirdsfrom75 countstationsintheLakeTahoebasin,20032004.Importanceofeachfactorgroupismeasured bysummingtheAkaikeweightsofmodelscontainingthatfactorgroup.SeeTable2.2for specificvariablescomprisingeachfactorgroup.

0.8

0.6

0.4

0.2 SumofmodelAkaikeweights

0.0 Development Landscape Local Abiotic Geography Human disturbance Figure2.4.Associationofsixfactorgroupswithabundanceofcavitynestinglandbirdsfrom75 countstationsintheLakeTahoebasin,20032004.Importanceofeachfactorgroupismeasured bysummingtheAkaikeweightsofmodelscontainingthatfactorgroup.SeeTable2.2for specificvariablescomprisingeachfactorgroup.

42

40

35

30

25

20

15

Cavitynesterabundance 10

5

0 0.1 1 10 100 1000

Snagvolume(m 3/ha) Figure2.5.Abundanceofcavitynestingbirdsasafunctionofsnagvolume(plottedonalog scale)at75sitesalongagradientofurbandevelopmentintheLakeTahoebasin,20032004.

1.0

0.8

0.6

0.4

SumofmodelAkaikeweights 0.2

0.0 Development Landscape Local Abiotic Geography Human disturbance Figure2.6.Associationofsixfactorgroupswithabundanceofgroundforagingomnivorous landbirdsfrom75countstationsintheLakeTahoebasin,20032004.Importanceofeachfactor groupismeasuredbysummingtheAkaikeweightsofmodelscontainingthatfactorgroup.See Table2.2forspecificvariablescomprisingeachfactorgroup.

43 1.0

0.8

0.6

0.4

SumofmodelAkaikeweights 0.2

0.0 Development Landscape Local Abiotic Geography Human disturbance Figure2.7.Associationofsixfactorgroupswithabundanceofinvertivorouslandbirdsfrom75 countstationsintheLakeTahoebasin,20032004.Importanceofeachfactorgroupismeasured bysummingtheAkaikeweightsofmodelscontainingthatfactorgroup.SeeTable2.2for specificvariablescomprisingeachfactorgroup.

60

50

40

30

20 Invertivoreabundance

10

0 0 200 400 600 800 1000 1200 Treedensity(trees/ha) Figure2.8.Abundanceofinvertivorousbirdsasafunctionoftreedensityat75sitesalonga gradientofurbandevelopmentintheLakeTahoebasin,20032004.

44 Productivity Welocated671activenestsof29species(Table2.10).Ofthese,weobservedat leastoneintervalfor566nestsof28species,and10specieshadsufficientnumbersof observationintervalsfornestsurvivalanalysis.However,nestsurvivalanalyseswere notpossibleforNorthernFlickerandRedbreastedNuthatch,whichexperiencedoneand zerofailures,respectively. Table2.10.Numbersofactivenestslocated,numberwithatleastoneobservationinterval, numberofobservationintervalsavailable,predictorvariablesusedinnestsurvivalanalyses,and numberofcandidatemodelsfor10speciesoflandbirdstargetedfornestmonitoringalonga developmentgradientintheLakeTahoebasin,20032005.Yearanddatewerealsoincluded amongcandidatepredictorswhenpreliminaryanalysisshoweditwaswarranted.Nestsurvival analysiscouldnotbeperformedforNorthernFlickerandRedbreastedNuthatchbecauseof minisculetononexistentfailurerates,butweincludedthespeciesinanalysesofallcavitynesters andallspecies. #nests # #obs. Predictorsinnest #cand. Targetspecies with nests ints. survivalanalyses models obs.int. Open nesters DuskyFlycatcher 20 19 78 Dev50,100,300 4 88 86 419 Substrate, 16 Steller'sJay dev50,100,300 65 63 262 Nestht, 8 AmericanRobin dev50,100,300 DarkeyedJunco 51 47 126 Dev50,100,300 12 80 76 410 Nestht, 8 WesternWoodpewee dev50,100,300 Allopennesters(16spp.) 330 310 1,346 Guild,dev50,100,300 16 Cavity nesters 75 72 274 Substr.,nestht, 16 MountainChickadee dev50,100,300 NorthernFlicker 45 24 139 N/A N/A 58 50 239 Nestht, 16 PygmyNuthatch dev50,100,300 RedbreastedNuthatch 58 26 96 N/A N/A 31 31 187 Substr.,nestht, 32 WhiteheadedWoodpecker dev50,100,300 341 256 1,077 Substrate,guild, 20 Allcavitynesters(11spp.) dev50,100,300 TOTAL 671 566 2,423 Dev50,100,300 20 Analysesofnestdailysurvivalrate(DSR)usingthelogisticexposuremethod showedavarietyofpatternsofnestsuccessinrelationtoexplanatoryvariablessuchas developmentandsubstratetype(Appendix2.3and2.4).Forallspeciescombined,the

45 besttimespecificmodelincludedyear,with55%oftheweightofevidence,withyear anddatecarrying22%oftheweightofevidence(Table2.11a).DSRwaslowerin2005 thanin2003and2004(Fig.2.9a).Yearwasincludedinfurthermodelinginvolvingall species.Thebestmodelgeneratedinexaminingeffectsofnestingstrategy(cavityor open),development,andyearwasamodelwithneststrategyand300mdevelopment (Table2.11b),whichshowedhigheroverallsuccessforcavitynesters,anoverallincrease inDSRwith300mdevelopment,andaslightlygreaterincreaseforopennestersthanfor cavitynesters(Fig.2.9a).Nestingstrategywaspresentinallmodelswithanyweight, showingitsoverridingimportanceindeterminingDSRacrossspecies.Basedona40 daynestingperiod(aboutaverageforthespeciesinourstudy),cavitynesternestsuccess rangedfrom74%at0%developmentto82%at90%development,whereasopennester nestsuccessrangedfrom40%successat0%developmentto55%at90%development. Table2.11.Predictorsofdailysurvivalratesofnestsofcavitynestersalongadevelopment gradientintheLakeTahoebasin,20032005. a)Timespecificmodelsfordailysurvivalrate;theeffectivesamplesizewas9000.19,basedon 2423observationintervalsfor566nests. Model K AIC c AIC c Weight Year 3 986.82 0.00 0.547 Year,date 4 988.66 1.84 0.218 Year,date,date 2 5 989.64 2.81 0.134 Constantsurvival 1 991.42 4.60 0.055 Date,date 2 3 993.15 6.33 0.023 Date 2 993.21 6.39 0.022 b)Modelstotaling80%oftheweightofevidencefordailysurvivalrate;theeffectivesample sizewas9000.19,basedon2423observationintervalsfor566nests. Model K AIC c AIC c Weight Strategy,dev300 3 954.51 0.00 0.362 Strategy 2 956.19 1.68 0.156 Strategy,dev50 3 956.29 1.78 0.148 Strategy,year,strategy*year,dev300 7 957.82 3.31 0.069 Strategy,year,dev300 5 957.86 3.36 0.068

46 1.00

0.99

0.98 Dailysurvivalrate

0.97

0.96 2003 2004 2005 a)DailysurvivalratefornestsofallspeciesalongadevelopmentgradientintheLakeTahoe basin,20032005(basedon2,423observationintervalsfor566nests).Barsrepresentstandard errors.

1

0.99

0.98

Cavitynesters Opennesters 0.97 Dailysurvivalrate

0.96

0.95 0 20 40 60 80 100 Development(%) b)Cavitynestingandopennestingspecies(basedon1,346observationintervalsfor310open nestsand1077observationintervalsfor256cavitynests) Figure2.9.Dailysurvivalratesforlandbirdsalongadevelopmentgradient(percentdeveloped within300m)intheLakeTahoebasin,20032005.. Forcavitynesters,thebesttimespecificmodelwastheconstantsurvivalmodel, withtheyearmodelnextbest(Table2.12a).Wedidnotincludeyearasapotential predictorinfurthermodelingbecausewewereinterestedinmodelingeffectsoftwo

47 categoricalpredictors—guildandsubstrate.Thebestoverallmodelwastheconstant survivalmodel,suggestingthatdevelopment,guild(primarycavityexcavator,weak cavityexcavator,andsecondarycavitynester),andsubstratewereweakinfluenceson DSR.However,theconstantsurvivalmodelcarriedonly26%oftheweight,with developmentmodelsnext(Table2.12b),soweplottedtheslightdeclineinDSRwith increasing50mdevelopment(Fig.2.10).Nestsuccess,basedonanaverage40day nestingperiod,rangedfrom73%to78%alongthisgradient. Table2.12.Predictorsofdailysurvivalratesofnestsofcavitynestersalongadevelopment gradientintheLakeTahoebasin,20032005. a)Timespecificmodelsfordailysurvivalrates;theeffectivesamplesizewas4,167.14,basedon 1,077observationintervalsfor256nests. Model K AIC c AIC c Weight constantsurvival 1 243.65 0.00 0.426 Year 3 244.98 1.34 0.218 Date 2 245.57 1.92 0.163 year,date 4 246.93 3.28 0.083 date,date 2 3 247.17 3.52 0.073 year,date,date 2 5 248.52 4.87 0.037 b)Modelstotaling80%oftheweightofevidencefordailysurvivalrate;theeffectivesample sizewas4,167.14,basedon1,077observationintervalsfor256nests. Model K AIC c AIC c Weight constantsurvival 1 243.65 0.00 0.262 dev50 2 244.17 0.52 0.202 dev300 2 244.78 1.13 0.149 dev100 2 245.54 1.89 0.102 substrate 3 246.74 3.09 0.056 substrate,dev300 4 247.30 3.65 0.042

48 1 Dailysurvivalrate

0.99 0 20 40 60 80 100 Development(%) Figure2.10.Dailysurvivalratefornestsofcavitynestinglandbirdsalongadevelopment gradient(percentdevelopedwithin50m)intheLakeTahoebasin,20032005.Basedon1,077 observationintervalsfor256nests. Foropennesters,sevenobservationintervalsforthreenestswereomittedfrom analysesbecausetheyweretheonlyonesassociatedwithspeciesnestingintheoverstory. Thebesttimespecificmodelwastheconstantsurvivalmodel,carrying43%ofthe weightofevidence,withthedatemodelcarrying26%(Table2.13a).Themodelwith datewasconsideredinallfuturemodeling.Overallmodelsunderconsiderationincluded guild(ground,tree,orshrubnesters)anddevelopmentlevels.Considerablemodel selectionuncertainlyexisted,withthebestoverallmodelincludingguildand50m development,with25%oftheweight(Table2.13b).DSRdeclinedwith50m developmentforallthreenestingguilds,butwashighestforunderstorytreenesters(Fig. 2.11).Basedonanaverage40daynestingperiod,nestsuccessrangedfrom12%in shrubsin90%developmentto47%intreesin0%development. Table2.13.Predictorsofdailysurvivalratesofnestsofopennestersalongadevelopment gradientintheLakeTahoebasin,20032005. a)Timespecificmodelsfordailysurvivalrate;theeffectivesamplesizewas4,800.09,basedon 1,339observationintervalsfor307nests. Model K AIC c AIC c Weight constantsurvival 1 703.00 0.00 0.434 Date 2 704.06 1.06 0.255 Year 3 705.79 2.79 0.107 Date,date 2 3 705.87 2.87 0.103 Year,date 4 706.63 3.63 0.071

49 Year,date,date 2 5 708.32 5.33 0.030 b)Modelstotaling80%oftheweightofevidencefordailysurvivalrate;theeffectivesamplesize was4,800.09,basedon1,339observationintervalsfor307nests. Model K AIC c AIC c Weight guild,dev50 4 697.39 0.00 0.255 guild,date,dev50 5 698.50 1.11 0.146 guild,date 4 698.75 1.36 0.129 guild 3 698.91 1.52 0.119 guild,dev100 4 699.44 2.04 0.092 guild,date,dev100 5 700.06 2.67 0.067

0.985

0.98

0.975

0.97 Ground 0.965 Shrub Understory 0.96 Dailysurvivalrate 0.955

0.95

0.945 0 20 40 60 80 Development(%) Figure2.11.Dailysurvivalratefornestsofopennestinglandbirdsalongadevelopmentgradient (percentdevelopedwithin50m)intheLakeTahoebasin,20032005.Basedon1,339 observationintervalsfor307nests. ForSteller’sJay,thebesttimespecificmodelwastheconstantsurvivalmodel, whichcarried51%oftheweightofevidence(Table2.11).Themodelwithdatecarried 25%oftheevidence;thus,datewasincludedasapotentialpredictorinsubsequent modeling.Thebestoverallmodelwasalineareffectof50mdevelopmentanda categoricaleffectofnestsubstrate(eitherbuildingsorlivetrees;twonestsinshrubswere omitted)(Table2.12).Dailynestsurvivaldecreasedwithincreasingdevelopment,and didsomorefornestsintreesthannestsinbuildings(Fig.2.12).Nestsuccessofjays, basedonanaverage36daynestingperiod(Greeneetal.1998),rangedfrom23%at90% developmentto65%at0%developmentintreesandfrom43%at90%developmentto

50 72%at20%development(approximatelythelowestdevelopmentlevelatwhichjays nestedinbuildings)inbuildings. Table2.11.TimespecificmodelsfordailysurvivalrateofSteller’sJaynestsalonga developmentgradientintheLakeTahoebasin,20032005.Theeffectivesamplesizewas 1717.47,basedon419observationintervalsfor86nests. Model K AIC c AIC c Weight constantsurvival 1 247.56 0.00 0.515 Date 2 248.96 1.39 0.257 date,date 2 3 250.70 3.13 0.107 Year 3 251.53 3.97 0.071 year,date 4 252.92 5.36 0.035 year,date,date 2 5 254.67 7.10 0.015 Table2.12.Modelstotaling80%oftheweightofevidencefordailysurvivalrateofSteller’sJay nestsalongadevelopmentgradientintheLakeTahoebasin,20032005.Theeffectivesample sizewas1688.23,basedon413observationintervalsfor84nests. Model K AIC c AIC c Weight substrate,dev50 3 234.92 0.00 0.206 substrate,dev50,dev50 2 4 235.90 0.99 0.126 substrate,dev100 3 236.21 1.30 0.108 substrate,dev50,date 4 236.87 1.96 0.078 dev50 2 237.25 2.33 0.064 substrate,dev100,dev100 2 4 237.31 2.39 0.063 dev100,dev100 2 3 237.74 2.82 0.050 substrate,dev5,dev50 2,date 5 237.84 2.92 0.048 substrate,dev100,date 4 238.01 3.09 0.044 dev100 2 238.81 3.89 0.030

51 1 Buildings Trees 0.99

0.98

0.97 Dailysurvivalrate

0.96

0.95 0 20 40 60 80 Development(%) Figure2.12.DailysurvivalrateforSteller’sJaynestsinbuildingsandintreesalonga developmentgradient(percentdevelopedwithin50m)intheLakeTahoebasin,20032005. Onlytherangeofdevelopmentvaluesoverwhichjayswerefoundnestingineachsubstratetype isdepicted.Basedon209observationintervalsfor37nestsinbuildings,and204observation intervalsfor47nestsintrees. ForMountainChickadees,thebesttimespecificmodelwasagaintheconstant survivalmodel,carrying46%oftheweightofevidence(Table2.13).Boththeyear modelandthedatemodelhad17%oftheweight,butneitherexplainedmuchofthe variationinDSR,thustheywerenotcarriedforward.Thebestoverallmodel,butweakly so,wastheconstantsurvivalmodel,with27%oftheweight(Table2.14).Themodel containingonly300mdevelopmentcarried17%oftheweight,buttherewasessentially norelationshipbetweendevelopmentandDSR(Fig.2.13).MountainChickadeeshad relativelyhighnestsuccessbasedonanaverage43.5daynestingperiod(McCallumet al.1999),rangingfrom59%to70%. Table2.13.TimespecificmodelsfordailysurvivalrateofMountainChickadeenestsalonga developmentgradientintheLakeTahoebasin,20032004.Theeffectivesamplesizewas 965.45,basedon274observationintervalsfor72nests. Model K AIC c AIC c Weight constantsurvival 1 93.63 0.00 0.457 Year 2 95.62 1.99 0.169 Date 2 95.63 2.00 0.168 Date,date 2 3 96.60 2.97 0.104 Year,date 3 97.59 3.96 0.063 Year,date,date 2 4 98.58 4.95 0.039

52 Table2.14.Modelstotalingover80%oftheweightofevidencefordailysurvivalrateof MountainChickadeenestsalongadevelopmentgradientintheLakeTahoebasin,20032004. Theeffectivesamplesizewas965.45,basedon274observationintervalsfor72nests. Model K AIC c AIC c Weight constantsurvival 1 93.63 0.00 0.267 Dev300 2 94.57 0.94 0.167 Nest_ht 2 94.96 1.33 0.137 Dev100 2 95.49 1.86 0.105 Dev50 2 95.64 2.01 0.098 Nest_ht,dev300 3 95.80 2.17 0.090

1

0.99

0.98

0.97 Dailysurvivalrate

0.96

0.95 0 20 40 60 80 Development(%) Figure2.13.DailysurvivalrateforMountainChickadeenestsalongadevelopmentgradient (percentdevelopedwithin300m)intheLakeTahoebasin,20032004.Onlytherangeof developmentvaluesinwhichchickadeeswerefoundnestingisdepicted.Nestheightwasheld constant.Basedon274observationintervalsfor72nests. ForDarkeyedJuncos,thebesttimespecificmodelincludedyearonly,carrying 47%oftheweightofevidence(Table2.15).Themodelwithyearanddate,carrying 21%oftheweightofevidence,wasalsocarriedforwardforconsiderationinfurther modeling.Thebestoverallmodelincludedyearand50mdevelopment(Table2.16). DSRdecreasedwithincreasingdevelopmentandwassubstantiallylowerin2004thanin otheryears(Fig.2.14).Nestsuccessofjuncosbasedonanaverage26.5daynesting period(NolanJr.etal.2002)rangedfrom79%in0%developmentin2005toonly1%in 90%developmentin2004.

53 Table2.15.TimespecificmodelsfordailysurvivalrateofDarkeyedJunconestsalonga developmentgradientintheLakeTahoebasin,20032005.Theeffectivesamplesizewas 386.73,basedon126observationintervalsfor47nests. Model K AIC c AIC c Weight Year 3 83.98 0.00 0.473 Year,date 4 85.64 1.67 0.205 constantsurvival 1 86.16 2.19 0.158 year,date,date 2 5 87.51 3.53 0.081 Date 2 88.08 4.10 0.061 date,date 2 3 90.08 6.10 0.022 Table2.16.Modelstotalingover80%oftheweightofevidencefordailysurvivalrateofDark eyedJunconestsalongadevelopmentgradientintheLakeTahoebasin,20032005.The effectivesamplesizewas386.73,basedon126observationintervalsfor47nests. Model K AIC c AIC c Weight year,dev50 4 82.59 0.00 0.293 Year 3 83.98 1.39 0.146 year,date,dev50 5 84.19 1.60 0.132 year,dev300 4 84.58 1.99 0.108 year,dev100 4 85.53 2.94 0.067 year,date 4 85.64 3.06 0.064

1

0.98

0.96

0.94 2003 0.92 2004 2005 0.9 Dailysurvivalrate 0.88

0.86

0.84 0 20 40 60 80 Development(%) Figure2.14.DailysurvivalrateforDarkeyedJunconestsineachofthreeyearsalonga developmentgradient(%developedwithin50m)intheLakeTahoebasin.Basedon38 observationintervalsfor12nestsin2003,28intervalsfor12nestsin2004,and60intervalsfor 23nestsin2005. ForDuskyFlycatchers,thebesttimespecificmodelwastheconstantsurvival model,carrying51%oftheweightofevidence(Table2.17).Themodelwithdate carried21%oftheweightofevidenceandwasconsideredinfuturemodeling.Thebest

54 overallmodel,althoughtherewassubstantialmodelselectionuncertainty,includedonly 100mdevelopment(Table2.18),whichhadapositiverelationshipwithDSR(Fig.2.15). DuskyFlycatchernestswerefoundonlyat100mdevelopmentvaluesof5.62andlower. Theirnestsuccesswaslowoverall;basedonanaverage36.5daynestingperiod (Sedgwick1993)rangedfrom18%at0%developmentto53%at6%development. Table2.17.TimespecificmodelsfordailysurvivalrateofDuskyFlycatchernestsalonga developmentgradientintheLakeTahoebasin,20032005.Theeffectivesamplesizewas 254.71,basedon78observationintervalsfor19nests. Model K AIC c AIC c Weight constantsurvival 1 57.75 0.00 0.507 Date 2 59.56 1.80 0.206 Year 3 60.69 2.94 0.117 Date,date 2 3 61.14 3.38 0.093 Year,date 4 62.39 4.63 0.050 Year,date,date 2 5 63.64 5.89 0.027 Table2.18.ModelsfordailysurvivalrateofDuskyFlycatchernestsalongadevelopment gradientintheLakeTahoebasin,20032005.Theeffectivesamplesizewas254.71,basedon78 observationintervalsfor19nests. Model K AIC c AIC c Weight dev100 2 56.93 0.00 0.427 constantsurvival 1 57.75 0.82 0.283 dev50 2 58.93 2.00 0.157 dev300 2 59.27 2.34 0.132

1

0.99

0.98

0.97 Dailysurvivalrate 0.96

0.95 0 1 2 3 4 5 6 Development(%) Figure2.15.DailysurvivalrateforDuskyFlycatchernestsalongadevelopmentgradient (percentdevelopedwithin100m)intheLakeTahoebasin,20032005.Onlytherangeof developmentvaluesinwhichflycatcherswerefoundnestingisdepicted.Basedon78 observationintervalsfor19nests.

55 ForPygmyNuthatches,thebesttimespecificmodelwastheconstantsurvival model,with35%oftheweight,followedbytheyearmodel,with30%oftheweight (Table2.19).Asaresult,yearwasincludedasacandidatepredictorinfurthermodeling. Welocatedinsufficientnumbersofnestsinalternativesubstrates(i.e.,otherthansnags; buildingsandotherstructures,n=3,livetrees,n=4)tomodeleffectsofsubstrate.The bestoverallmodelincludedyear,50mdevelopment,andnestheight(Table2.20).DSR droppedprecipitouslywithdevelopmentin2003butwasconstantwithdevelopmentin 2004(Fig.2.16).Nestsuccessbasedonanaverage40daynestingperiod(Kingeryand Ghalambor2001)rangedfrom100%in0%developmentin2004to<1%in80% developmentin2003. Table2.19.TimespecificmodelsfordailysurvivalrateofPygmyNuthatchnestsalonga developmentgradientintheLakeTahoebasin,20032004.Theeffectivesamplesizewas 914.55,basedon239observationintervalsfor50nests. Model K AIC c AIC c Weight constantsurvival 1 41.07 0.00 0.350 year 2 41.36 0.30 0.302 date 2 42.94 1.87 0.137 year,date 3 43.30 2.23 0.115 date,date 2 3 44.87 3.80 0.052 year,date,date 2 4 45.27 4.20 0.043 Table2.20.Modelsaccountingfor80%oftheweightofevidencefordailysurvivalrateof PygmyNuthatchnestsalongadevelopmentgradientintheLakeTahoebasin,20032004.The effectivesamplesizewas914.55,basedon239observationintervalsfor50nests. Model K AIC c AIC c Weight year,dev50,nest_ht 4 30.56 0.00 0.497 yearanddev50 3 31.22 0.67 0.356

56

1.00

0.80

2003 0.60 2004

0.40 Dailysurvivalrate

0.20

0.00 0 20 40 60 80 Development(%) Figure2.16.DailysurvivalrateforPygmyNuthatchnestsalongadevelopmentgradient(percent developedwithin50m)intheLakeTahoebasin,20032004.Onlytherangeofdevelopment valuesinwhichnuthatcheswerefoundnestingisdepicted.Nestheightwasheldconstantforthis depiction.Basedon239observationintervalsfor50nests. ForAmericanRobin,thebesttimespecificmodelwastheconstantsurvival model,carrying39%oftheweightofevidence(Table2.21).Theyearmodelanddate modeleachcarriedsomeweightbuteffectsofdateandyearwereweakandwereomitted fromconsiderationinfurthermodeling.Thebestoverallmodelwastheconstantsurvival model,carrying28%oftheweightofevidence(Table2.22).Therewasnoobvious relationshipbetweenDSRanddevelopmentornestheight. Table2.21.TimespecificmodelsfordailysurvivalrateofAmericanRobinnestsalonga developmentgradientintheLakeTahoebasin,20032004.Theeffectivesamplesizewas 890.32,basedon262observationintervalsfor63nests. Model K AIC c AIC c Weight constantsurvival 1 107.97 0.00 0.388 Year 2 109.35 1.39 0.194 Date 2 109.49 1.52 0.181 Year,date 3 110.28 2.31 0.122 Date,date 2 3 111.43 3.46 0.069 Year,date,date 2 4 112.24 4.27 0.046

57 Table2.22.Modelsaccountingfor80%oftheweightofevidencefordailysurvivalrateof AmericanRobinnestsalongadevelopmentgradientintheLakeTahoebasin,20032004.The effectivesamplesizewas890.32,basedon262observationintervalsfor63nests. Model K AIC c AIC c Weight constantsurvival 1 107.97 0.00 0.275 Nest_ht 2 109.30 1.33 0.142 Dev300 2 109.39 1.43 0.135 Dev100 2 109.42 1.46 0.133 Dev50 2 109.80 1.84 0.110 Nest_ht,dev100 3 110.53 2.57 0.076 ForWhiteheadedWoodpecker,thebesttimespecificmodelsweretheyear modelandtheconstantsurvivalmodel,bothwith28%oftheweightofevidence(Table 2.23);eachwasretainedforconsiderationinfurthermodeling.Twonestsinhuman structures,accountingforsixobservationintervals,wereomitted.Theinteraction betweenyearandsubstrate(livetreesvs.snagsandlogs)couldnotbeexamined,asno livetreeswereusedin2003.Considerablemodelselectionuncertaintyexistedinfinding anoverallbestmodel.Themodelwithyearand300mdevelopmentwasthebestmodel, butcarriedonly10%oftheweightofevidence(Table2.24).DSRincreasedwith300m developmentbutthisrelationshipvariedbyyear(Fig.2.17).Successwashighoverall; therewerenonestfailuresin2003andonlyonein2004.Successratesbasedonan average44.5daynestingperiod(Garrettetal.1996)rangedfrom50%in0% developmentin2005to100%inalllevelsofdevelopmentin2003. Table2.23.TimespecificmodelsfordailysurvivalrateofWhiteheadedWoodpeckernests alongadevelopmentgradientintheLakeTahoebasin,20032005.Theeffectivesamplesize was658.71,basedon187observationintervalsfor31nests. Model K AIC c AIC c Weight year 3 54.62 0.00 0.283 constantsurvival 1 54.68 0.06 0.275 date 2 56.34 1.71 0.120 year,date,date 2 5 56.37 1.75 0.118 year,date 4 56.43 1.81 0.115 date,date 2 3 56.95 2.33 0.088

58 Table2.24.Modelsaccountingfor80%oftheweightofevidencefordailysurvivalrateof WhiteheadedWoodpeckernestsalongadevelopmentgradientintheLakeTahoebasin,2003 2005.Theeffectivesamplesizewas658.71,basedon181observationintervalsfor29nests. Model K AIC c AIC c Weight year,dev300 4 53.36 0.00 0.103 year 3 53.93 0.57 0.077 nest_ht 2 54.02 0.66 0.074 constantsurvival 1 54.14 0.78 0.069 year,nest_ht 4 54.85 1.49 0.049 year,dev300,nest_ht 5 54.88 1.53 0.048 substrate,year,dev300 5 55.17 1.81 0.042 year,dev100 4 55.34 1.98 0.038 dev300 2 55.46 2.10 0.036 nest_ht,dev300 3 55.54 2.18 0.034 year,dev50 4 55.68 2.32 0.032 substrate 2 55.72 2.36 0.032 substrate,nest_ht 3 55.74 2.39 0.031 substrate,year 4 55.96 2.60 0.028 nest_ht,dev50 3 56.00 2.64 0.027 nest_ht,dev100 3 56.02 2.66 0.027 dev100 2 56.11 2.76 0.026 dev50 2 56.15 2.79 0.025

1

0.995

2003 0.99 2004 2005 Dailysurvivalrate 0.985

0.98 0 20 40 60 80 Development(%) Figure2.17.DailysurvivalrateforWhiteheadedWoodpeckernestsalongadevelopment gradient(percentdevelopedwithin100m)intheLakeTahoebasin,20032005.Basedon181 observationintervalsfor29nests.

59 ForWesternWoodpewees,thebesttimespecificmodelwastheconstant survivalmodel,withover40%oftheweight(Table2.25).Modelswithdateandyear werenotconsideredinfurthermodeling.Thebestoverallmodel,althoughconsiderable modelselectionuncertaintyexisted,wasnestheight,with26%oftheweightofevidence. DSRincreasedwithincreasingnestheight(Fig.2.18).Nestsuccessbasedonanaverage 34daynestingperiod(BemisandRising1999)rangedfrom49%at2mto79%at18m. Table2.25.TimespecificmodelsfordailysurvivalrateofWesternWoodpeweenestsalonga developmentgradientintheLakeTahoebasin,20032005.Theeffectivesamplesizewas 1,374.21,basedon410observationintervalsfor76nests. Model K AIC c AIC c Weight constantsurvival 1 164.36 0.00 0.405 date 2 165.99 1.62 0.180 year 3 166.06 1.69 0.174 date,date 2 3 167.10 2.74 0.103 year,date 4 167.52 3.16 0.083 year,date,date 2 5 168.36 3.99 0.055 Table2.26.Modelsaccountingfor80%oftheweightofevidencefordailysurvivalrateof WesternWoodpeweenestsalongadevelopmentgradientintheLakeTahoebasin,20032005. Theeffectivesamplesizewas1,374.21,basedon410observationintervalsfor76nests. Model K AIC c AIC c Weight nest_ht 2 163.38 0.00 0.259 constantsurvival 1 164.00 0.63 0.189 nest_ht,dev100 3 165.00 1.63 0.115 nest_ht,dev50 3 165.12 1.74 0.108 nest_ht,dev300 3 165.37 1.99 0.096 dev100 2 165.70 2.32 0.081

60 1

0.99

0.98

0.97 Dailysurvivalrate

0.96

0.95 0 5 10 15 20 Nestheight(m) Figure2.18.DailysurvivalrateforWesternWoodpeweenestsalongadevelopmentgradientin theLakeTahoebasininrelationtonestheight,20032005.Onlytherangeofnestheightsusedis depicted.Basedon410observationintervalsfor76nests. Abundance Individualspeciesvariedwidelyintheirresponsestourbanization.Overonehalf ofthe67nativespeciesinthesampleshowedasignificant( P<0.05)associationwith 300mdevelopment:14species(21%)increasedsignificantlyinabundanceand25 species(37%)decreased(Table2.27).Twentyeightspeciesshowednosignificant relationshiptodevelopment,includingthecommonMountainChickadee,Northern Flicker,PineSiskin,andCassin’sFinch.

61 Table2.27.Frequencyofoccurrence(proportionofsiteswithpresence)of67nativelandbirdspeciesandPearson’scorrelationwithpercent developmentwithin300mof375pointcountstationsintheLakeTahoebasin,20032004.Thosespecieslistedasdecreasingorincreasinghave significantcorrelationswithdevelopment( P<0.05). Species Freq. r Species Freq. r Species Freq. r Decreasing with development Neutral Increasing with development DuskyFlycatcher 0.25 0.521 CommonNighthawk 0.01 0.093 AmericanCrow 0.01 0.111 RedbreastedNuthatch 0.61 0.463 CalliopeHummingbird 0.01 0.084 LesserGoldfinch 0.01 0.120 WesternTanager 0.68 0.429 EveningGrosbeak 0.57 0.082 TreeSwallow 0.03 0.136 YellowrumpedWarbler 0.72 0.387 SpottedTowhee 0.15 0.080 BlackheadedGrosbeak 0.15 0.166 BrownCreeper 0.55 0.375 MountainChickadee 0.99 0.076 CommonRaven 0.13 0.177 NashvilleWarbler 0.21 0.368 PurpleFinch 0.02 0.075 BarnSwallow 0.05 0.195 Townsend’sSolitaire 0.17 0.357 PineGrosbeak 0.02 0.071 CliffSwallow 0.19 0.196 HairyWoodpecker 0.38 0.352 Lincoln’sSparrow 0.00 0.065 BandtailedPigeon 0.27 0.199 HermitThrush 0.11 0.346 BlackbilledMagpie 0.00 0.065 MourningDove 0.51 0.237 FoxSparrow 0.54 0.328 SavannahSparrow 0.00 0.065 PygmyNuthatch 0.67 0.312 Cassin’sVireo 0.13 0.294 RufousHummingbird 0.00 0.053 BrownheadedCowbird 0.84 0.334 OlivesidedFlycatcher 0.22 0.276 GreentailedTowhee 0.03 0.041 AmericanRobin 0.84 0.388 GoldencrownedKinglet 0.16 0.274 Cassin’sFinch 0.19 0.038 Brewer’sBlackbird 0.41 0.411 WhitebreastedNuthatch 0.36 0.272 Clark’sNutcracker 0.19 0.025 Steller’sJay 0.99 0.593 DarkeyedJunco 0.83 0.264 YellowWarbler 0.01 0.008 WarblingVireo 0.18 0.236 PineSiskin 0.31 0.005 WesternWoodpewee 0.47 0.221 BlueGrouse 0.00 0.003 MountainQuail 0.06 0.219 SongSparrow 0.07 0.008 HermitWarbler 0.04 0.209 HouseWren 0.04 0.019 Wilson’sWarbler 0.07 0.180 RedwingedBlackbird 0.06 0.022 PileatedWoodpecker 0.03 0.164 HouseFinch 0.00 0.029 ChippingSparrow 0.06 0.154 RedbreastedSapsucker 0.08 0.030 Williamson’sSapsucker 0.04 0.152 NorthernFlicker 0.55 0.030 MacGillivray’sWarbler 0.15 0.133 DownyWoodpecker 0.07 0.037 BlackbackedWoodpecker 0.01 0.107 Bushtit 0.00 0.038 RedCrossbill 0.06 0.041 YellowheadedBlackbird 0.01 0.042 WhiteheadedWoodpecker 0.40 0.065 Associatedpositivelywithdevelopmentwerepreviouslyidentifiedsynanthropicspecies likeSteller’sJays,AmericanRobins,andBrownheadedCowbirds,aswellasCliffSwallows andBrewer’sBlackbirds.(Althoughexoticspecieswerenotafocusofthisanalysis,therewere fourinthedataset:EuropeanStarling,HouseSparrow,RockPigeon,andCaliforniaQuail.Each wasmoreabundantwithincreasingdevelopment.)Acloserlookrevealedseveralofthese positiverelationshipstobeunimodal(see2004report),withlowabundanceattheextremesof thegradientandthehighestabundanceatthemiddleorinhighbutnotthehighestdevelopment. Twentyfivespeciesdeclinedwithurbanization,includingspeciesexpectedtobelessabundant inurbanizedareas,suchastheoldgrowthdependentPileatedWoodpecker,andspeciesnot previouslyexpectedtoshowsuchapattern,suchastheDuskyFlycatcherandBrownCreeper. Futureanalyseswillfocusonwhethersuchdeclinesaretheresultofmissinghabitatelements, humanuse,orforsomespecies,nestsuccess. HabitatUse:NestsiteSelection Nestheight Thebestmodelsusingnumberofpeopleencounteredperhourasameasureofhuman useanddevelopmentatthreescalesvariedbyspeciesandspeciesgroup(Table2.28).Wewere abletogeneratereasonablemodelstoexplainnestheightforallprimarycavitynesters, AmericanRobin,NorthernFlicker,RedbreastedNuthatch,WhitebreastedNuthatch,and WesternWoodpewee.Nestheightsfortheremainderofspeciesgroupsandindividualspecies showedveryweak,ifany,associationswithdevelopmentandhumanuse.Asoneexample,nest heightsofallprimarycavitynestersdecreasedwithincreasing100mdevelopment(Fig.2.20). Table2.28.Modelstotaling80%oftheweightofevidenceinexplainingnestheightwithdevelopment andhumanuseforthreespeciesgroupsandnineindividualspecies.DatawerecollectedintheLake Tahoebasin,20032005. 2 Variablesinmodel AIC c AIC c Weight Adj.R All primary cavity nesters (n = 67 nests) Dev100 146.72 0.00 0.229 0.050 Dev50 147.19 0.47 0.181 0.043 Dev100,300 148.51 1.80 0.093 0.042 Dev50,100 148.94 2.22 0.075 0.036 People,Dev100 148.99 2.27 0.074 0.035 People,Dev50 149.25 2.53 0.065 0.031 Dev50,300 149.43 2.72 0.059 0.028 Dev300 149.81 3.10 0.049 0.004 All weak cavity excavators and secondary cavity nesters (n = 156 nests) Dev50 377.27 0.00 0.156 0.004 Dev300 377.36 0.09 0.149 0.005 Dev100 377.40 0.14 0.146 0.005 People 377.45 0.18 0.142 0.005 Dev50,100 379.32 2.06 0.056 0.010 Dev50,300 379.35 2.08 0.055 0.011 People,Dev50 379.35 2.09 0.055 0.011 Dev100,300 379.46 2.19 0.052 0.011

63 2 Variablesinmodel AIC c AIC c Weight Adj.R All understory tree nesters (n = 158 nests) People,Dev300 258.22 0.00 0.271 0.027 People,Dev50,300 260.18 1.96 0.102 0.022 People,Dev100,300 260.25 2.03 0.098 0.021 People,Dev50,100,300 260.35 2.13 0.093 0.028 Dev300 260.52 2.30 0.086 0.006 Dev50 261.65 3.43 0.049 0.001 Dev50,100,300 261.97 3.75 0.042 0.010 Dev100,300 262.01 3.79 0.041 0.003 People 262.01 3.79 0.041 0.004 American Robin (n = 49 nests) People,Dev300 91.29 0.00 0.138 0.069 People,Dev50,300 91.63 0.34 0.116 0.089 People,Dev100,300 91.64 0.35 0.116 0.089 Dev100,300 91.88 0.59 0.103 0.057 Dev50,300 92.01 0.72 0.096 0.055 People 92.14 0.85 0.090 0.026 Dev50 92.33 1.04 0.082 0.023 Dev100 93.25 1.96 0.052 0.004 People,Dev50 94.04 2.75 0.035 0.015 Mountain Chickadee (n = 45 nests) Dev100 95.54 0.00 0.185 0.026 People 96.04 0.50 0.144 0.015 Dev300 96.08 0.53 0.141 0.015 Dev50 96.50 0.95 0.115 0.005 Dev50,100 97.27 1.72 0.078 0.018 People,Dev100 97.79 2.25 0.060 0.007 Dev100,300 97.96 2.41 0.055 0.003 People,Dev50 98.26 2.71 0.048 0.004 Northern Flicker (n = 28 nests) People 42.50 0.00 0.187 0.102 Dev100 43.01 0.51 0.145 0.085 Dev50 43.71 1.21 0.102 0.062 Dev100,300 43.72 1.22 0.102 0.115 People,Dev300 44.15 1.66 0.082 0.101 People,Dev100,300 44.41 1.91 0.072 0.151 People,Dev50 44.63 2.14 0.064 0.086 People,Dev100 44.67 2.18 0.063 0.084 Pygmy Nuthatch (n = 50 nests) People 106.53 0.00 0.216 0.014 Dev100 107.41 0.88 0.139 0.003 Dev300 107.71 1.19 0.119 0.010 Dev50 107.72 1.20 0.119 0.010 People,Dev100 108.83 2.30 0.068 0.006

64 2 Variablesinmodel AIC c AIC c Weight Adj.R People,Dev50 108.86 2.33 0.067 0.006 People,Dev300 108.89 2.36 0.066 0.007 Dev50,100 109.74 3.21 0.043 0.024 Red-breasted Nuthatch (n = 40 nests) Dev50 60.37 0.00 0.238 0.117 Dev100 61.50 1.13 0.135 0.091 Dev50,300 61.90 1.53 0.111 0.114 Dev100,300 61.97 1.60 0.107 0.112 People,Dev50 62.27 1.90 0.092 0.106 Dev50,100 62.83 2.45 0.070 0.093 People,Dev100 62.89 2.52 0.067 0.092 Steller’s Jay (n = 61 nests) People 95.03 0.00 0.179 0.024 People,Dev300 95.20 0.17 0.164 0.041 People,Dev100 95.21 0.17 0.164 0.041 People,Dev50 96.58 1.54 0.083 0.019 People,Dev50,100 97.11 2.08 0.063 0.031 People,Dev100,300 97.14 2.11 0.062 0.031 People,Dev50,300 97.43 2.40 0.054 0.026 Dev300 97.48 2.45 0.052 0.016 White-breasted Nuthatch (n = 18 nests) People,Dev50,300 15.82 0.00 0.654 0.636 Dev50,300 18.68 2.86 0.156 0.504 Western Wood-pewee (n = 44 nests) People,Dev50,100,300 40.60 0.00 0.357 0.193 Dev50,100,300 43.08 2.48 0.103 0.113 People 43.12 2.53 0.101 0.051 People,Dev300 43.73 3.14 0.074 0.068 Dev50,100 43.93 3.33 0.068 0.063 People,Dev100,300 44.14 3.55 0.061 0.091 People,Dev50,100 44.72 4.12 0.046 0.078 White-headed Woodpecker (n = 18 nests) Dev50 22.39 0.00 0.210 0.009 People 22.77 0.38 0.174 0.030 Dev100 22.99 0.61 0.155 0.044 Dev300 23.27 0.88 0.135 0.060 People,Dev50 24.92 2.54 0.059 0.028 Dev50,100 24.98 2.59 0.058 0.031 Dev50,300 25.25 2.86 0.050 0.047

65 40

30

20 Nestheight(m)

10

0 0 10 20 30 40 50 60 70 Development(%) Figure2.20.Nestheightsofprimarycavitynestersinrelationtopercentdevelopmentwithin100mof67 nestsintheLakeTahoebasin,20032005. Nestsubstrate Primarycavityexcavatorsuseddeadsubstrateswithnearlyequalfrequenciesinlow (75%of44nests)andhigh(74%of43nests)development,asopposedtolivesubstrates(χ2= 0.004, P=0.950).However,sixnestsofprimarycavityexcavatorsinhumanstructures,which wereexcludedfromtheanalysis,wereallinhighdevelopment.Weakcavityexcavatorsand secondarycavitynestersusedhumanstructuresmorefrequentlyinhigh(20%of104nests)than inlow(2%of130nests)developmentandtendedtousedeadsubstratesmoreofteninlow development(85%ofnests)thaninhighdevelopment(68%ofnests)buttheproportionofnests inlivesubstratesremainedessentiallythesameinthetwodevelopmentcategories(χ2=25.129, P<0.001).MountainChickadeesappearedtousemoredeadsubstratesinhighdevelopment (90%of42nests)thaninlowdevelopment(75%of24nests),asopposedtolivesubstrates,but thedifferencewasonlymarginallysignificant(χ2=2.734, P=0.098).Inaddition,nine chickadeenestsinhumanstructureswereexcludedfromtheanalysis:oneinlowdevelopment andeightinhighdevelopment.NorthernFlickersuseddeadsubstrateswithroughlyequal frequenciesinlow(84%of25nests)andhigh(75%of16nests)development,asopposedtolive substrates(χ2=2.734, P=0.098).Fourflickernestsinhumanstructures,allinhigh development,wereexcludedfromanalysis.PygmyNuthatchesuseddeadsubstrateswith roughlyequalfrequenciesinlow(93%of29nests)andhigh(88%of33nests)development,as opposedtolivesubstrates(χ2=0.493, P=0.483).SevenPygmyNuthatchnestsinhuman structures,allinhighdevelopment,wereexcludedfromanalysis.Steller’sJaysusedhuman

66 structuresmoreofteninhigh(56%of55nests)thaninlow(19%of31nests)development,as opposedtolivetreesandshrubs(χ2=11.726, P=0.001).WhitebreastedNuthatchesuseddead substrateswithroughlyequalfrequenciesinlow(62%of13nests)andhigh(50%of8nests) development,asopposedtolivesubstrates(χ2=0.269, P=0.604).SevenWhitebreasted Nuthatchnestsinhumanstructures—sixinhighdevelopmentandoneinlowdevelopment— wereexcludedfromanalysis.WhiteheadedWoodpeckeruseddeadsubstrateswithroughly equalfrequenciesinlow(81%of16nests)andhigh(69%of13nests)development,asopposed tolivesubstrates(χ2=0.564, P=0.453).Twowoodpeckernestsinhumanstructuresinhigh developmentwereexcludedfromanalysis. HabitatUse:Foraging In2003and2004weconducted793behavioralobservations.Weobservedforagingin 663oftheseobservations,involving19species.Allanalyseswereconductedonthissubsetof 663foragingobservations.ThespecieswiththemostobservationswereSteller’sJay(n=177), MountainChickadee(n=152),AmericanRobin(n=60),DarkeyedJunco(n=53),Pygmy Nuthatch(n=43),WhiteheadedWoodpecker(n=39),HairyWoodpecker(n=30),andRed breastedNuthatch(n=25). Acrossallspecies,birdsforagedlowertothegroundinhighdevelopment(χ 2=10.39, P =0.0013);however,foragingheightswereconflatedwithspeciesobserved,asgroundforagers (AmericanRobins,Steller’sJays)weremorecommonindevelopedsites.Weobservedfew speciesspecificdifferencesinforagingheightindevelopedandundevelopedsites.American Robinsforagedhigherthan3minonlytwoof60observations.Onlyfourof43Pygmy Nuthatchobservationswereofbirdsbelow3m.MountainChickadeeforagingheightsdidnot differinlowdevelopmentandhighdevelopment(χ 2=0.13, P=0.7198);neitherdidthoseof Steller’sJays(χ 2=2.71, P=0.0997),DarkeyedJuncos(χ 2=0.06, P=0.8028),orWhite headedWoodpeckers(χ 2=0.05, P=0.8194).Steller’sJaystendedtoforagelowertotheground inhighdevelopment. Discussion CommunityStructure Thecompositionoflandbirdcommunitiesinourstudychangedsubstantiallyalongthe developmentgradient.Speciescompositioninlow,moderate,andhighdevelopmentsites differedsignificantly,drivenbyspeciesthatwereconsistentlypresentinlowdevelopment(e.g., DuskyFlycatcher)orhighdevelopment(e.g.,Brewer’sBlackbird)butabsentorextremelyrare attheotherendofthegradient.RemovingsinglespeciesfromtheMRPPanalysisdidnot substantiallyaffectthesignificanceofthedifferenceincompositionamongdevelopment categories,suggestingthatmultiplespeciesweredrivingtheoverallpattern.Ourchieffinding fromthisanalysiswastheexistenceofmajorshiftsincompositionalongtheurbanization gradientcausedbymultiplespeciesbeingaddedtoorremovedfromthecommunity. Compositionalshiftsofthisnatureinlandbirdcommunitieshavebeendocumentedelsewhere. Inourstudy,landbirdcommunitiesexperiencedasteadydeclineinrichnessfrom undevelopedforesttothemosturbansites.Theprevailingpatternseemedtobeoneoflossof nativespeciesasurbanizationincreased,ratherthantheadditionofanyspeciesatmidpoints

67 alongthegradient.Speciesrichnessofalllandbirdswasassociatedmoststronglywithallfactor groupswiththeexceptionoflandscapelevelvegetation.It’snotsurprisingthatspeciesrichness hadavarietyofprimaryinfluences;asthedifferencesinspeciescompositionalongthegradient madeclear,thelandbirdcommunityinTahoewasnotuniforminitsassociationswith development,suggestingthatmultipleabioticandlocalhabitatfeaturesinteractwith developmenttoaffectlandbirds.Thestandalonedevelopmentmodelwasfarsuperiortothe otherfactorgroups’models,withdevelopmentbeingstronglynegativelyrelatedtospecies richness.Anotherresultofthediversityofresponsesisthatthebestmodelonlyexplainedabout 37%ofthevariationinspeciesrichness. Importantly,whenonlythepointswithhumanusedatawereincludedintheanalysis, humanusewasthemostimportantfactorinexplainingspeciesrichness.Thisstudyisthefirstto demonstratethatdisturbancefromhumanusecanbethepredominantfactorstructuringlandbird communities.Humanusehasbeenshownpreviouslytoalterbirdcommunities(Fernández Juricic2000)butnoresearchtoourknowledgehasteasedapartdevelopmentandhumanusein anurbanizationcontext,wherehumanuseisatitshighest.Ourresultssuggestthaturbanization studiesthatignorehumanusemayreachmisleadingconclusionsbecausepopulationand communityleveleffectsofhumanuseoftenmirrorthoseofdevelopment(BoyleandSamson 1985;Riffelletal.1996;FernándezJuricic2000).AsMilleretal.(2003)noted,suchstrong effectsofhumanusehaveprofoundimplicationsforhabitatrestorationeffortsthatrecreate suitablevegetationconditionsbutfailtoacknowledgethatrecreationorotherhumanactivities preventtargetspeciesandguildsfromusingrestoredhabitats. Wedidnotfindthepeakinrichnessinmoderatedevelopmentthatothers(Blair1996, 2004,Hansenetal.2005)havefound,despitesamplingnearlytheentirepossiblerangeof developmentvalues—from0%to90%development.Inotherstudies,researchershavefound thatsuburbanhabitatscontainadiversemixofspeciesbecausetheyattractbothspeciesthatuse nativehabitatsandspeciesthatusehumandominatedhabitats.Thegeneralityofthepeakin richnessandabundanceatintermediatelevelsofurbanizationisatopicingreatneedofreview ormetaanalysis. Developmentwasnotamajorfactorinoverallabundance,butlandscapelevel vegetation,abioticfactors,andgeographywereallimportant.Theabioticmodelalonewasfar superiortoanyotherfactorgroup’smodel;abundanceincreasedwithincreasingdistanceto wateranddecreasingelevation.Theincreaseinabundancewithincreasingdistancetowaterand decreasingelevationissomewhatsurprising,becausethosetwofactorsaresomewhatrelatedin thebasin,andbirdsoftencongregatenearwater.Relativeabundancesofindividualspeciesdid occasionallypeakinmoderatedevelopment,butwholesaleadditionsofspecieswere nonexistent. Dominanceincreasedsharplywithdevelopment,andwasmostcloselyrelatedto developmentandlandscapelevelvegetation.Examiningdominanceinconjunctionwithspecies richnessandabundancewasenlighteningbecauseitdemonstratedthatthespecieslostwith increasingdevelopmentwerecompensatedfor(intermsofabundance)byincreasesincommon species,leadingtogreaterdominance.Thus,theurbanbirdcommunityintheLakeTahoebasin isacompromisedandsimplifiedone,consistingprimarilyofcommon,generalistspeciesthatare abundantenoughtoreplacethespecialistslostfromtheundevelopedareas. Moredefinitiverelationshipswereobservedwithindividualfunctionalgroups. Surprisingly,groundnesterswereassociatedprimarilywithlandscapeandabioticfactors, althoughallfactorgroupsweresomewhatimportant.Weexpectedlocalhabitatfeatures,

68 development,andhumanusetobemoreimportantforthisspeciesgroup,whichweexpectedto beparticularlysensitivetogrounddisturbanceofanykind.Thepositiveassociationwithconifer forestandshrubswithin300mdidshowthattheyweresensitivetolossofnaturalhabitats, however.Thespeciescomprisingthisgroup—CommonNighthawk,DarkeyedJunco,Fox Sparrow,HermitThrush,MountainQuail,NashvilleWarbler,SavannahSparrow,SongSparrow, SpottedTowhee,Townsend’sSolitaire,andWilson’sWarbler—alleitherdecreasedin abundancewithincreasingdevelopmentorhadnorelationshiptodevelopment.Retentionof nativevegetationinsurroundingneighborhoodscouldbevitaltomaintaininggroundnestersin urbanforestparcels. Cavitynesterswereassociatedsomewhatwithallfactorgroups,withgeographyand localhabitatfeatureshavingthestrongestinfluence.Cavitynesterswerelessabundantonthe eastsideofthebasininthedrier,moreopenforestsoftheCarsonRange.Theimportanceof snagsforcavitynestershaslongbeenunderstood(RaphaelandWhite1984),andthisstudy’s replicationofthatfindingisnotsurprising.Thedeclineofsnagswithdevelopmentandtheir nearabsencefromurbanforests,documentedinthevegetationstructurecomponentofthisstudy, pointstoahighlylikelyimpactoncavitynestersinurbanareasinthebasin.Althoughseveral cavitynestersmaintainnativeforestlikeabundancelevelsinurbanareas,theymayaccomplish thisbynestinginbuildings,oftenachievingthestatusofhumanconflictspecies( sensu Manley etal.2000).Ifadditionalsnagswereretainedinurbanareas,perhapsfewerbuildingswould havecavitiesexcavatedinthemandcavitynesterswouldcontinuetothriveinthebasin’surban areas.Thedeclineinproductivityofcavitynesterswithdevelopmentsuggeststhattheyare selectinglowerqualitynestsubstratesinurbanareas,makingthemmorevulnerabletonest failure. Omnivoreshavebeenshownpreviouslytoincreasewithurbanizationandthepositive associationweobservedofgroundforagingomnivoreswithsomefactorsofurbanization— namely,humandisturbanceandforestclearing—isnotsurprising.Mostofthespecies comprisingthisgroup—thecorvidsandblackbirdsespecially—areknownsyanthropes(Johnston 2001)thathavebeenshowntobenefitfromhumanprovidedfood,thuspotentiallyexplaining theincreasewithhumanuse.Theavailabilityofhumanprovidedfoodtypicallyincreaseswith landclearingfordevelopment.Developmentitself,whilebeingthestrongestindividualfactor groupmodelbyaconsiderablemargin,wasnotarecurringfactorinmorecomplexmodels— landscapelevelvegetationturnedouttobemoreimportant—againhighlightingtheimportance ofconsideringallfactorgroupstogether.Thisgroupincludedsomespeciesthatareomnivores onlyinthesensethattheytypicallyeatseedsbutfeedtheiryoung;werethesespecies omittedwesuspectthestrongrelationshipstofacetsofurbanizationwefoundwouldhavebeen evenstronger. Finally,invertivorousbirdsweremostassociatedwithabioticandlocalhabitatfactors, althoughtheyweresomewhatassociatedwithallfactorgroups.Specifically,areaswith moderateslopes,largedistancestowater,moderatecanopycover,highsnagvolume,andlower treedensityyieldedgreaterabundancesofinvertivores.Canopycoverandamountsoftreesand snagsarehabitatfeaturespotentiallyundermanagementcontrol,andkeepingmoderatedensities oftreesandhighvolumesofsnagswillgoalongwaytomaximizinginvertivoreabundance. Insummary,landbirdcommunitystructureisaffectedbyavarietyoffactors,including butnotlimitedtourbanizationfactors.Thecleardeclineinrichnesswithdevelopmentsuggests thaturbanforestsinurbanizingareasmayserveanimportantroleinsupportingnativelandbirds. Birdspeciesrichnessandabundancecommonlyrespondtovegetationcompositionandstructure.

69 Withinurbanforests,wefoundonlyminorchangesinvegetationcompositionandstructurein relationtothesurroundinglevelofdevelopment,withtheexceptionoflossofsnagsandlogs. However,inneighborhoods,manymoreaspectsoflocalvegetationarecompromised.Urban foreststhusrepresentrelativelyintactforests,withtheexceptionoflowdensitiesofsnagsand logs.Thisillustratesthatthemanagementofforestparcelstoretaintheirnativecompositionand naturalstructuralcharacteristicsmakesastrongcontributiontothemaintenanceofnative landbirdspeciescompositioninurbanizingenvironments.Increasingtheretentionofsnagsand logsinurbanforestsislikelytoimprovetheirabilitytosupportnativelandbirds. AbundanceandProductivity Thestronganddiverseresponsesofindividuallandbirdspeciestodevelopmentinthis studyservetohighlightthethreatofurbanizationtolandbirdpopulationsintheLakeTahoe basin.Overonethirdoflandbirdsweresignificantlylessabundantinurbanareas,withmany speciesdisappearingentirelyfromthehighestendofthedevelopmentgradient.Severalofthese specieswereconsideredcommoninthebasinthatwedidnotpredicttodecline.Evensome speciesgenerallyconsideredsynanthropic—thatis,commonlycohabitingwithhumans (Johnston2001)—suchastheAmericanRobin,Steller’sJay,andBrownheadedCowbird tendedtodeclineafterthelandscapewasapproximately50%developed. Highabundanceisnotnecessarilyevidenceofahealthypopulation(VanHorne1983), andstudieshaveshownadisconnectionbetweenabundanceandreproductivesuccessin disturbedareas(BockandJones2004).Preferencebyanimalsforunsuitablehabitatsisa phenomenonknownasan"ecologicaltrap"(KokkoandSutherland2001,Battin2004).That somedevelopedareashavebeenshowntobeecologicaltrapshighlightstheimportanceofdata onreproduction. Nestsurvivalanalysisonallspeciesshowedthatnestsuccesswasmostdifferentbetween thetwoneststrategiesweanalyzed—cavityandopen—withopennestershavinglowersuccess thancavitynesters.Cavitynestersuccessdidnotappeartodeclinewithdevelopment,butopen cupnestersuccessdiddecline.Greatersuccessofcavitynestershasbeenshowninother urbanizationstudiesandprobablyresultsfromlowersusceptibilitytopredation,thecauseof mostnestfailuresinourstudy(unpubl.data).Withinthecavitynesters,therewasnoeffectof guild—thatis,primarycavityexcavatorswerenomoresuccessfulthanweakcavityexcavators orsecondarycavitynesters.Withinopennesters,groundandshrubnestersfaredconsiderably worsethanunderstorytreenesters,apatternmimickedintheabundancedata.Thus,opencup nestersassociatedwithsubstratesatorclosetothegroundweremostimpactedasdevelopment increased,followedbyopencupnestersselectinghighersubstrates.Althoughnestsuccessof themostvulnerablespeciesgroupappearstobeinconsequentiallyloweronly2%lowerthan opencupnestersassociatedwithhighersubstrates,and4%lowerthancavitynestersthese differencescaneasilyrepresentthedifferencebetweenasustainableandunsustainable population. Ecologicaltrapsarisewhenthecuesbirdsusetoselecthabitatforbreedingare misleading(KokkoandSutherland2001,Battin2004),resultinginbirdsselectinghabitatthatis unsuitableandresultsinnestfailures.Onewaytolookforevidenceofecologicaltrapsisby placingbirdsintooneofninecategoriesbasedoncomparisonofabundancedevelopment relationshipswithnestsuccessdevelopmentrelationships(Table2.29).Twospecieshad increasingabundancewithdevelopmentbutdecreasingnestsuccess:Steller’sJayandPygmy

70 Nuthatch.Forthesetwospecies,nestinginurbanforestshasthepotentialtoservetoimpactthe abilityofthespeciestosustainpopulationsintheareathatis,individualsthatnestedinurban forestswouldhavenestedinelsewherewithgreatersuccess.Ultimately,todeterminewhether urbanareasareecologicaltrapsforthesespecies,wewouldneedtoknowmoreaboutpopulation growthratesalongthedevelopmentgradient(Battin2004). Table2.29.Comparisonofabundancedevelopmentrelationshipandnestsuccessdevelopment relationshipfor10nativelandbirdsintheLakeTahoebasin,20032004.Developmentwasmeasured within300mforabundancerelationshipsandeither50,100,or300mfornestsuccessrelationships. Nestsuccessdevelopmentrelationship Increasing Neutral Decreasing Steller’sJay Increasing AmericanRobin PygmyNuthatch* Abundance Whiteheaded MountainChickadee development Neutral Woodpecker NorthernFlicker relationship WesternWoodpewee Decreasing DuskyFlycatcher DarkeyedJunco RedbreastedNuthatch *PygmyNuthatchnestsuccessdeclinedwithdevelopmentin2003,butnotin2004. Steller’sJaysappearedtopartiallymitigatethenegativeeffectsoflivingindeveloped areasbyincreasinglynestinginbuildings,wheretheyweremoresuccessful.Buildingslikely provideshelterfromtheelementsandprotectionfrompredationbeyondthatprovidedbytrees, jays’primarynestsubstrateinundevelopedareas.However,afurthercomplicationforjaysis thatratesofdestructionorremovalofnestsintheconstructionphaseappearmuchhigherin buildings(andtherefore,indevelopedareas)thanintrees(personalobservation),indicatingthat thetotaleffortapairofjaysputsintoanestmaybefargreaterindevelopedareas.Vigallonand Marzluff(2005)similarlyhypothesizedthatdevelopedareas(aroundtheSeattlemetropolitan area)mightbepoorqualityhabitatforSteller’sJaysdespitejays’higherabundancethere.This speciesappearstobedrawntourbanareas,perhapsbyhumanprovidedfood—forexample,they areacommonfeederbirdinTahoe—butincreasedpredationandinterferencebypeoplekeeps themfrombeinghighlysuccessful.However,Steller’sJaysareknownnestpredators,and whethertheyarereproductivelysuccessfulornot,increasedpopulationsofjaysinurbanareas mightaccountforsomeofthereducedpopulationsandlownestsuccessofotherspecies. PygmyNuthatchesincreasedinabundancewithdevelopment,perhapsbecauseoftheir abilitytonestinmultiplesubstratetypes,includingbuildings.Theirnestsuccessdeclinedto nearzerointhemostdevelopedareasin2003,whileholdingconstantat100%in2004, suggestingthatfoodresources,whicharemorelikelytovaryyeartoyearthanotherfactors, mighthaveplayedaroleinlowerednestsuccess. Thecontrastamongthebasin’sthreenuthatchspeciesisespeciallyintriguing.White breastedNuthatcheshadasimilarplasticityofnestsiteselectiontothatofPygmyNuthatches, butdecreasedinabundancewithincreasingdevelopment.NestsuccessdataonWhitebreasted Nuthatcheswereinsufficientforustoperformnestsurvivalanalysis.RedbreastedNuthatch abundancedecreasedsubstantiallywithincreasingdevelopment.Thespecieswasuniformly successfulinbothdevelopedandundevelopedareas,althoughmostnestswerelocatedatthelow endofthedevelopmentgradient.Theynestedexclusivelyinsnags,whichtheforeststructure componentofthestudydemonstratedarelackinginthebasin’surbanforests.Inaddition,Red breastedNuthatchesdidnotvisitbirdfeedersestablishedinanothercomponentofthisstudy

71 (unpubl.data),whiletheothertwospeciesdid,suggestingthatRedbreastedNuthatchesmight haveafearofnoveltythatpreventsthemfromnestinginorforagingonhumanstructures.Other speciessuchaschickadees,robins,andjays,seemtolacktheneophobictendencytoavoidnovel nestsitesandareabletosuccessfullyreproduceinurbanareasmorereadily.Inthecaseofjays, wehaveshownanincreaseinnestsuccesswhennestsareinbuildings.Theabilityofcertain species,andcertainindividualswithinspecies,tosucceedinnovelenvironmentsisarecent focusinanimalbehavior(Greenberg1989,Lefebvreetal.2001,Dingemanseetal.2002,2004 Soletal.2002)thatholdspromiseforaddressingecologicalandconservationquestions. BehavioralresearchonTahoe’sbirdscouldyieldsubstantialinsightsintothepatternspresented here. DarkeyedJuncosheldthedistinctionofbeingtheonlyspeciesinourstudytodecrease inbothabundanceandnestsuccesswithincreasingdevelopment.Thisresultwasnot particularlysurprising,aswepredictedthatbirdsthatnestonthegroundandbirdsthatforageon thegroundcouldbehighlysusceptibletoimpactsfromdevelopment,andjuncosdoboth. Althoughtheyareoneofthemostabundantbirdsinthebasin(Rothetal.2004)theyseem highlyaffectedbyTahoe’surbandevelopment.Further,forjuncos,someyearsappearedtobe worsethanothers;in2004nestsuccesswasnearzeroinhighdevelopment.Whetherurban populationscanbereplenishedafterpoorbreedingyearsisatopicforfurtherstudy.Further workisalsoneededtodeterminewhetherreducedabundanceandnestsuccessarearesultof habitatfeatures,humanuse,orsimplylossofhabitat. DuskyFlycatchersareanotherinterestingcase.Theirdecreaseinabundancewith increasingdevelopmentwasthestrongestwefound,andtheywerenotfoundnestinginsites with>6%development.Nonetheless,theirnestsuccessincreasedwithslightincreases development.Giventheirabsenceathigherlevelsofdisturbance,theyareclearlyvulnerableto variousfactorsassociatedwithdevelopmentthataremostlikelyassociatedwithdisturbanceas opposedtochangesinvegetation,whichwereminimalacrossourstudysites. Habitatuse Weexpectedthatbirdswouldnestandforagehigheroffthegroundinareasofhigh developmentandhighhumanuse.Nestheightsofmostspeciesandspeciesgroupsdidnot changeinthefaceofgreaterdevelopmentorhumanuse,withexceptionofprimarycavity excavators.Thelowernestingofprimarycavityexcavatorswithincreasingdevelopmentcould beafunctionofdecreasingsubstrateheights. Wealsoexpectedthatcavitynesterswouldusesubstratesinproportiontotheir occurrence,meaningthattheywouldnestinliveoralternativesubstratesmoreoftenthansnags inmoredevelopedsites,wheredeadsubstrates(snagsandlogs)arelesscommon.Wedidnot seestrongpatternsacrossallcavitynesters.However,MountainChickadees,aswellastheguild towhichtheybelong,weakcavityexcavatorsandsecondarycavitynesters,tendedtousemore livesubstratesinhighdevelopment.Fromthisresultwecantentativelyconcludethatlive substratesaresuboptimalforthesespeciesandthattheyselectthemfornestsonlywhenfewer deadsubstratesareavailable,asisthecaseinmoredevelopedareas.Thus,theretentionofsnags inurbanforestwouldmakeacontributiontosupportingcavitynesters,evensnagsthatarelower heights. WesternWoodpeweenestsuccessdeclinedwithdecreasingnestheights,whichwere lowerinlowerdevelopment,suggestingthatpeweeswereforcedtonestlowertothegroundin

72 developedareasthanwouldbeoptimal.Therewasnodirectrelationshipbetweennestsuccess anddevelopment,however.Thus,theretentionofnativeunderstoryvegetationatlevelstypical ofnativeforestswouldhelpavoidthisimpact.

73 Chapter 3: Small Mammals Introduction Squirrelsandchipmunksplayanimportantroleinforestecosystemdynamics. Chipmunksandsquirrelsserveastheprimarypreybaseforforestcarnivores,includingweasels (Mustela spp. ),marten( Martes americana ),coyote( Canis latrans ),andbobcat( Felis rufus ) (BartelsandThompson1993,Steele1999).Raptors,suchasowlsandAccipiters,arealso knowntopreyuponSciurids(Gordon1943,Carey1995).Inturn,squirrelspreyuponthenests offorestdwellingbirds(Adams1939,Warren1942,Tevis1953),inadditiontochipmunks (Tamias sp.)(Cameron1967)andlizards(Tevis1953). Sciuridsalsoactasimportantdispersalagentsfortreeandshrubspeciesandthereby affectforestregenerationandstandstructure.Forexample,Douglassquirrels( Tamiasciurus douglasii )havebeenshowntohaveatightassociationwithbothconecropabundanceand particularspeciesofconebearingconifers,suchasfir( Pseudotsuga , Abies ),spruce( Picea ),and hemlock( Tsuga )(Steele1999). Inadditiontopredationandfoodavailability,habitatsuitabilitymaybeanimportant factorindeterminingthedistributionandabundanceofparticularSciuridspecies.Habitat featuressuchasfallenlogs,stumps,snags,rocks,andlittermayprovidenecessarycoverfor manyofthechipmunkandsquirrelspecies(SumnerandDixon1953,Clawsonetal.1984, BartelsandThompson1993).Somespecies,suchaslongearedchipmunk( Tamias quadrimaculatus )andshadowchipmunk( Tamias senex),cantoleratedenserforestconditions (Stephens1906,Sharples1983),whileotherspecies,suchasyellowpinechipmunk( Tamias amoenus ),lodgepolechipmunk( Tamias speciosus ),andgoldenmantledgroundsquirrel (Spermophilus lateralis ),requiremoreopenconditionsaslongassuitablecoverisavailable (Sutton1992,BartelsandThompson1993).Understoryandtreedensityarelikelytobe impactedbythehistoryoflanduseinanintensivelymodifiedlandscapesuchastheLakeTahoe basin.Competitionamongsympatricchipmunksandsquirrelsmayalsoaffectabundance patternsofthesespecies(Carey1995).

Methods ShermanLiveTrapping From20032005,71differentsitesweresampled,and26ofthesesites,representingthe rangeofdevelopmentconditionsonthenorthandsouthshoresofthelake,weresampledinall years.Smallmammalpopulationsweresampledusinglivetraps.Trappinggridsof64traps(8x 8)wereestablishedateachsite,with15mspacingbetweenstations.Eachgridcovered~1.1ha andincludedacombinationof43extralong(3x3.75x12”)and21large(4x4.5x15”) Shermanlivetraps(Fig.3.1).Trapswererunforfourconsecutivedays(=8sampling occasions).Trapsweresetandopenedbeforenoononthefirstday,thencheckedtwiceaday (morningbefore10amandlateafternoonbefore8pm)throughthemorningonthelastday,after whichtheywereremoved.Eachtrapstationwasuniquelynumberedwithafluorescentorange

74 clothespinplacedinavisiblelocationnearthetraptoaidinrelocation.Trapswerebaitedwitha mixtureofrolledoats,milletandsunflowerseedsandcoveredwithsufficientplantmatter(pine needles,bark,sticks)toprovideinsulationandprotectcapturedanimalsfromtheelements. Polystyrenebattingwasplacedineverytraptoprovidewarmthwhenovernighttemperatures werebelow40 OF.

Figure3.1.Schematicofthetrappinggridconfiguration.BlacksquaresrepresentextralargeSherman traps,andbluesquaresrepresentlargeShermantraps. Capturedindividualswereprocessedandreleased,andfreshbaitwasaddedtotrapsas needed.Allindividualscapturedwereidentifiedtospeciesanddataonsex,age(juvenileor adult),weight,reproductivestatus(males:testesenlarged;females:vaginaperforate,nipples swollen,enlarged,reddened,lactating,pregnant)andcapturestatus(newcaptureorrecapture) wererecorded.Standardmorphologicalmeasurementsweretakenfromindividualswith questionablespeciesidentity.Inaddition,theclosestnotablelandscapefeature(i.e.tree,log, shrub,rock,bareground)wasnotedforeachcaptureevent.Disturbed,closedornonfunctional trapswerealsorecordedateachsitevisit. DataAnalysis CommunityStructure Theeffectofavarietyofexplanatoryfactors(Table3.1)onspeciesrichness,total relativeabundance,andtherelativeabundanceoffourfunctionalgroups(Table3.2)were exploredwithmultipleregressionanalyses.Relativeabundancemeasureswerecomputedfrom initialcapturesandscaledforsamplingeffort.Functionalgroupswereselectedbasedon commonhabitatanddietaryrequirements,sinceanimalsinthesegroupsmayrespondsimilarly asagrouptourbanizationdependingonthedirectandindirectimpactsofdevelopmentand humandisturbance.Functionalgroupsincludearborealsquirrels,terrestrialgranivores,terrestrial herbivores,andinsectivores.Deermice( Peromyscus maniculatus )werenotincludedinthe relativeabundanceestimates,becausetheywerenothandledinallsamplingyears.However, presenceofdeermicewerenotedatallsitesinallyears;therefore,theywereincludedin estimatesofspeciesrichness. First,amultipleregressionmodelwasgeneratedforeachsmallmammalresponse variablewithexplanatoryvariablesgroupedbyhabitat(abiotic,groundvegetation,canopy

75 vegetation,CWHRhabitatsandhabitattypes),development,disturbanceandpredatorfactor groups(Table3.1).Eachexplanatoryfactorgroupmodelthenrepresenteddifferenthypotheses regardingwhatisdrivingtheresponsevariables(i.e.,habitatvs.abioticfactorsvs.development vs.disturbancevs.predators).Covariatesofyear,samplingdate,andspatiallocationwerealso includedinthemodels.Dataforeachexplanatoryfactorwasstandardizedforanalysissothatthe relativevalueofthemodelparameterestimatescouldbecomparableintermsofrelative parameterinfluence.Wecheckedthedataforoutliersandnonlinearrelationshipbyvisually examiningthescatterplotsofeachresponsevariableagainsteachexplanatoryfactor.Fortwoof thefunctionalgroups,terrestrialgranivoresandherbivores,therelationshipbetweenpercent developedarewithin300mandrelativeabundanceappearedtohaveaunimodaldistribution. Therefore,thepotentialofaquadraticrelationshipbetweenthesevariableswasexploredby usingthequadraticformofdevelopmentat300masanexplanatoryfactorinthemodelsforthe totalabundanceofthesefunctionalgroups.Inthecaseofhabitattypes,broaderhabitat classifications(i.e.,coniferousforest,shrubland)wereincludedinmodelsofspeciesrichnessand totalrelativeabundancemodels,sincespecieswithinthesegroupingsareexpectedtohave differentspecifichabitatrequirements.Ontheotherhand,modelsoffunctionalgroupsincluded morespecifichabitattypesbasedonCaliforniaWildlifeHabitatRelationship(CWHR)habitats, becausespecieswithinthesegroupsaremorelikelytosharespecifichabitatrequirements.Inall cases,overallhabitatheterogeneity,thatisnumberofdifferenthabitattypes,wasalsousedasa factorinthehabitattypesexplanatorygroupmodels. CompetinghypotheseswerecomparedusingAkaike’sInformationCriterion(AIC C) modelselectionproceduretodeterminethebestexplanatorymodelsforeachresponsevariable (BurnhamandAnderson2002).First,fullfactorgroupmodelswerecomparedtodeterminethe bestglobalmodelforeachresponsevariable.Thefullmodelforeachexplanatoryfactorgroup wasthenreducedtoamodelthatincludedonlythosefactorsthatresultedinthebestfitmodel foreachresponsevariablebasedonAIC Cmodelselection.Foreachfactorgroup,eachvariable wasremovedonebyonewithreplacement;thosevariablesthat,intheirabsence,resultedina higherAIC c,wereincludedinthebestfitmodel.Thereducedmodelsforeachexplanatory factorgroupwerethencomparedtooneanotherwithAIC Cmodelselectiontodeterminethe factorgroupsthathadthegreatestinfluenceoneachsmallmammalresponsevariable. Finally,singlebestfitmodelwasgeneratedforeachsmallmammalresponsevariable. Eachbestfitmodelincludedacombinationoffactorsfromthereducedexplanatorygroup models.Forexplanatorygroupsthatwerecomparedatmultiplespatialscales(i.e.,habitattypeat 100m,300m,and500m;developmentat100m,300m,and1000m),onlyfactorsfromthescale withthehighestmodelrankinthereducedmodelcomparisonwasusedinthesubsetmodelsdue toahighdegreeofcorrelationamongthesefactorsatthedifferentscales.Bestfitmodelswere determinedbyfittingafullfactorgroupmodelandremovingeachvariablewithreplacement untilonlythosefactorsthatloweredAIC Cmodelremained.Thehighestrankedmodelsforeach responsevariablearesummarized. Theeffectofdevelopmentonspeciescompositionwasexaminedusingmultiresponse permutationprocedure(MRRP).Allsiteswerecategorizedbydevelopmentvalues(no=01%, low=130%,andhigh>30%developedwithin300mofthesitecenterpoint),andpresence absencedataforallsiteswasusedtotestfordifferencesamongthegroupsusingsimilaritybased onSørenson’sdistancevalues(McCuneandGrace2002).Anaturalweightingfactor( n/Σ[ n]) wasappliedtothesamples,andsignificancewasbasedonthedistributionof1000permutations ofgroupassociations(McCuneandMefford1999).Inordertoassesstherelativeimpactofeach

76 speciesonspeciescomposition,eachspecieswasremovedindividuallywithreplacement.The greaterthechangeintheteststatistic,thegreaterthecontributionofaspeciestoobserved differencesinoverallspeciescomposition. Table3.1.Explanatoryfactorsandcovariatesusedinmultiplelinearregressionanalysesevaluatingthe relativeimpactofhabitat,development,disturbanceandpredatorsonspeciesrichnessandabundance. ExplanatoryVariables Factors Covariates • Year • Juliandateofsampling • Spatiallocation(UTMcoordinateXmultipliedbycoordinateY) Habitat Abiotic • Elevation • Slope • Precipitation Groundvegetation • %coverof:shrubs,herbs,grasses,bareground,litter,rock • Coarsewoodydebris(CWD),totalestimatedvolume Canopyvegetation • %coveroftrees • Totalnumberoftrees,3sizeclasses:1227mm,2860mm,>60mm • Snags,totalestimatedvolume CWHRhabitat*(usedinfunctionalgroupabundancemodels) • %coverofeachhabitattype,3scales:100m,300m,500m • Habitatheterogeneity(totalnumberofdifferenthabitattypes),3scales: 100m,300m,500m • CWHRhabitattypesfoundintheLakeTahoebasininclude:ASP,BAR, JPN,LAC,LPN,MCP,MRI,PGS,RFR,SCN,SGB,SMC,URB, WFR,WTM Habitattypes(usedinspeciesrichnessandtotalabundancemodels) • BasedongroupingsfromCWHRhabitattypes:Coniferousforest, Shrubland,Grasses,Aspen,MeadowRiparian,Bareground • %coverofeachhabitattype,3scales:100m,300m,500m • Habitatheterogeneity(totalnumberofdifferentCWHRhabitattypes),3 scales:100m,300m,500m Development • %developmentfromsitecenterat3scales:100m,300m,1000mradius Disturbance • Peopleperhour • Dogsperhour Predators • Domesticdogs • Domesticcats • Nativespeciesrichness

77 Table3.2.Summaryofresponsevariablesusedinthemultipleregressionanalyses. ResponseVariables Description SpeciesRichness • Totalnumberofsmallmammalspeciescapturedat eachsite TotalRelativeAbundance • Abundanceofallsmallmammalsbasedoninitial capturesandscaledforsamplingeffort FunctionalGroupRelative Arborealsquirrels Abundance • Douglassquirrels,northernflyingsquirrels,gray squirrels Terrestrialgranivores • Chipmunks,groundsquirrels Terrestrialherbivores • Voles,westernjumpingmice Terrestrialinsectivores • Shrews PopulationDynamics Thethreeconsecutiveyearsofmarkrecapturedatafrom26sitesonthenorthandsouth shoreoftheLakeTahoebasinwasusedtotestasetofspecificapriorihypothesesregardingthe influenceofage,sex,time,urbandevelopmentandhumanassociateddisturbanceonchipmunk, groundsquirrelandDouglassquirrelpopulations.Thissamplingdesignfitsthecriteriafora robustdesign(Pollock1982),wheretrappingepisodesaredistinguishedbybothprimaryand secondarysamplingintervals.Primarysamplingoccurredeachyear(2003,2004and2005), representingintervalsoverwhichpopulationgainsorlossesareexpected.Secondarysampling periodsconsistedofthefourconsecutivedays(8trapoccasions)thattrapswereoperatingat eachsite.Duringthisintervalthepopulationisassumedtobeclosedtogainsandlosses(Kendall etal1997).Therobustdesigncanaccountfortemporaryemigrationfromstudysitesand improvesestimatesofpopulationsizebyrelaxingtheassumptionofaclosedpopulationbetween primarysamplingperiods.Thedatageneratedbytherobustdesigncanthenbeanalyzedwith appropriatepopulationmodelsthatprovideestimatesofdemographicparameters(Seber1982, Pollock1982,Kendalletal.1995),includingsurvival,emigrationrateandabundance(Kendall etal.1997). ProgramMARK(WhiteandBurnham1999)wasusedtogeneratemodelstoestimate survival,emigration,captureprobabilityandabundanceineachspeciesundervarious parameterizationstructures.Datafortheprimaryperiodswereanalyzedusingopenpopulation models,whilethesecondarysampleswereanalyzedusingclosedpopulationmodelsthatallow forunequalcaptureprobability(Otisetal.1978,Whiteetal.1982).Aninformationtheoretic approachtomodelselectionwasusedtoassessmultiplehypothesesusingAICc(Akaike’s informationcriterionadjustedforsmallsamplebias;BurnhamandAnderson1998)valuesand relativemodelweightstoselectthehypothesesthatbestfitthedataforeachspecies(Burnham andAnderson1998,Andersonetal.2000).Wefirsttestedhypothesesconcerningtheeffectof group(assignedbyage{adultvs.juvenile}andsex{malevs.female})andtime(yearorcapture occasion)onsurvival,emigration,captureprobabilityandabundance.Oncethissetofmodels wasgenerated,thehighestrankingmodelbasedonAICcweightwasusedtotestfortheeffectof covariatesrelatedtourbandevelopmentanddisturbanceonsurvivalandemigration.These covariatesincludedpercentofdevelopedlandareaatmultiplespatialscales(100m,300m,500m,

78 and1000m),frequencyofhumanuseatthesite,andfrequencyofdoguseatthesite.Model selectionwasagainperformedinasequentialmanneruntilasetofmodelsthatbestfitthedata weregenerated. Fromthehighestrankedmodels,weexploredthefunctionalrelationshipbetween developmentordisturbanceandsurvivaloremigration,byproducingparametervaluesat specifiedlevelsofthecovariate.Theresultingparametervalueswerethenplottedagainstthe covariatetoillustratetherelationshipbetweenthetwo. Inordertogenerateparameterestimatesasafunctionofaparticularcovariate,thebeta valuesfromamodelwerebacktransformed.Sincethelogitlinkfunctionwasusedtotransform thedatainthemodels,thebacktransformationformulausedwas: logit( φ)= e ( β0+ β1*X1+ β2*X2) 1+ e ( β0+ β1*X1+ β2*X2) Whereφistheparameterofinterest(i.e.survival), β0isthebetaestimatefortheintercept, β1is thebetaestimateforaparticularparameter(i.e.adultmalesortime),and β2isthebetaestimate forthecovariate.TheXvaluescorrespondtotherespectivestandardizedvaluesofaparameter, generatedbysubtractingthemeananddividingbythestandarddeviation: X( n)=m n–M SD M Wherem n=particularvalueofaparameter,M=meanvalueofparameter,andSD M=standard deviationofparameter.Soatthemeanvalueofaparameter,X( n)=0,andatonestandard deviationfromthemeanX( n)=1or1.

Results CommunityStructure From20032005,over31,000trapnightsresultedinthecaptureof6,400individualsand 19species(Table3.2).Totalspeciesrichnessaveraged5.3speciespersite(range=2to9),and speciesrichnessforsquirrelsandchipmunkswas4speciespersiteonaverage.Theaverage numberofsmallmammalscapturedper100trapnightspersite,excludingdeermouse,ranged from3.2to54.9individuals(mean=19.7,s.d.=10.98).Onaverageofover95%ofthese individualsweresquirrelsandchipmunks(mean=19.1individualspersite,s.d.=11.12). Figures3.2and3.3showsmallmammalspeciesrichnessandtotalrelativeabundancealongthe 300mdevelopmentgradient.

79 Table3.2.Smallmammalspeciescapturedfrom2003to2005. Scientificname Commonname Code Rodentia Sciuridae Glaucomys sabrinus Northernflyingsquirrel GLSA Sciurus griseus Westerngraysquirrel SCGR Spermophilus beecheyi Californiagroundsquirrel SCGR Spermophilus lateralis Goldenmantledgroundsquirrel SPLA Tamias amoenus Yellowpinechipmunk TAAM Tamias quadrimaculatus Longearedchipmunk TAQU Tamias senex Shadowchipmunk TASE Tamias speciosus Lodgepolechipmunk TASP Tamiasciurus douglasii Douglassquirrel TADO Muridae Microtus longicaudus Longtailedvole MILO Microtus montanus Montanevole MIMO Neotoma cinerea Bushytailedwoodrat NECI Peromyscus maniculatus Deermouse PEMA Peromyscus truei Pinonmouse PETR Zapodidae Zapus princeps Westernjumpingmouse ZAPR Insectivora Soricidae Sorex trowbridgii Trowbridge’sshrew SOTR Sorex vagrans Vagrantshrew SOVA Lagomorpha Leporidae Lepus americanus Snowshoehare LEAM Sylvilagus nutallii Mountaincottontail SYNU

80 12

10 2003 2004 8 2005

6

4

SmallMammalSpeciesRichness. 2

0 0.0 20.0 40.0 60.0 80.0 %DevelopedWithin300m Figure3.2.Smallmammalspeciesrichnessasafunctionofpercentdevelopedareawithin300m ofeachsamplinglocation.

1.2

1 2003 2004 0.8 2005

0.6

0.4

0.2 SmallMammalRelativeAbundance..

0 0 20 40 60 80 %DevelopedWithin300m Figure3.3.Smallmammalrelativeabundanceasafunctionofpercentdevelopedareawithin300mof eachsamplinglocation.

81 Communitycompositionwassignificantlyinfluencedbydevelopmentasassessedbythe MRPPanalysis(T=4.409,p<0.001;Table3.3).Siteswithnodevelopment(01%)didnot differsignificantlyfromloworhighdevelopmentsites(T=1.233,p=0.114andT=1.366,p =0.097,respectively),therewasasignificantdifferenceinspeciescompositionbetweenlowand highdevelopmentsites(T=5.586,p<0.001).Theseresultsindicatethatthegreatest differencecontributingtotheoveralldifferenceincompositionamongdevelopmentclassesis attributabletothecomparisonoflowandhighdevelopmentgroups.MRPPresultsindicatethat noonespecieswasresponsibleforthedifferencesweobservedamongdevelopmentgroups, indicatedbythefactthatdevelopmentgroupswerestillsignificantregardlessofwhichspecies wasremoved(Table3.3).Rather,thatitwasacombinationofresponsesindividualspeciesthat createddifferencesincompositionamongdevelopmentlevels. Table3.3.ResultsoftheMultiResponsePermutationProcedure(MRPP)analysisonsmallmammal speciescompositionat72sitesgroupedbydevelopmentclass:01%,130%,or>30%developed. Tisa teststatisticthatmeasuresthedegreeofdifferenceinspeciescompositionamongthese3development categories.Thechangein T( T )indicatestherelativeinfluencetheremovalofasinglespecieshason theobserveddifferenceinspeciescomposition.Positivevaluesareassociatedwithspeciesthatdecrease theoveralldifferenceinspeciescomposition,andnegativevaluesareassociatedwithspeciesthat decreaseoverallsimilarity. Speciesremoved T T P None(allspeciespresent) 4.409 <0.001 Contribute to diversity: Voles 2.602 1.807 0.015 Goldenmantledgroundsquirrel 3.114 1.295 0.028 Deermouse 3.263 1.146 0.004 Longearedchipmunk 4.289 0.120 0.039 Lodgepolechipmunk 4.361 0.048 <0.001 Contribute to homogeneity: Shrews 4.448 0.039 <0.001 Northernflyingsquirrel 4.494 0.085 <0.001 Westerngraysquirrel 4.561 0.152 0.042 Douglassquirrel 4.716 0.307 <0.001 Shadowchipmunk 4.771 0.362 0.043 Californiagroundsquirrel 4.955 0.546 0.046 Yellowpinechipmunk 5.011 0.602 <0.001 Multipleregressionanalysisandthemodelselectionprocedureidentifiedimportant factorsthatinfluencesmallmammalspeciesrichnessandrelativeabundanceintheLakeTahoe basin.Whiledevelopmentatallspatialscales(100m,300m,and1000m)anddisturbanceatthe sitewereimportantpredictorsofsmallmammalspeciesrichnessinthefullregressionmodels (Appendix3.1),explanatoryfactorsincludingpercentcoverofbareground,samplingyear, habitatheterogeneityatthe300mscale,Juliansamplingdatewereidentifiedasthemost influentialfactorsinthereducedmodels(Appendix3.2).Modelsincludingthesefactors accountedforover75%ofthemodelweights.Thesefactors,withtheexceptionofJulian

82 samplingdate,werealsointhebestfitmodel,whichisasubsetoffactorsyieldingthelowest AIC Cscorerelativetoothercombinationssubsetmodels(Table3.4). Percentcoverofparticularunderstoryfeatures,includingherbs,rocks,litterandCWD,as wellastheamountofanysinglehabitattype(coniferousforest,shrubland,grasslandoraspen forest)werenegativelyassociatedwithspeciesrichness.Habitatheterogeneityatthesiteandin theareaimmediatelysurroundingasitepositivelyaffectedsmallmammalspeciesrichness.That is,thenumberofdifferentCWHRhabitattypeswithin300mofasitepositivelyaffectedthe numberofspeciesobserved.Inaddition,thepercentcoverofbaregroundalsopositively affectedsmallmammalspeciesrichness.Otherpotentiallyimportantassociationswithspecies richnessidentifiedbyreducedmodelswithweightsgreaterthan5%werepositiverelationships withpercentdevelopedareaatthe1000mscale,frequencyofhumanuseperhour,habitat heterogeneityatthe100mscale,andthepresenceofdomesticdogs(Appendix3.2).Sampling yearwasalsoanimportantdeterminantofoverallspeciesrichness,withmorespeciesbeing detectedpersitein2004thanin2003orin2005. Welookedattherelationshipbetweenbaregroundandspeciesrichnessinmoredetail (Fig.3.4a)andnotsurprisinglywefoundasignificantunivariaterelationship(R 2=0.16,AdjR2 =0.15,p=0.0006).Moreimportantly,wefoundthatasbaregroundrangedfrom0to25%,the minimumnumberofspeciesdetectedincreasedfrom2to5species,indicatingthatthepresence ofbaregroundwasalimitingfactorforafewspecies.Thisrelationshipbreaksdownwhen yellowpinechipmunkandgoldenmantledgroundsquirrelsareremoved(R 2=0.05,AdjR2= 0.04, P=0.0596).Therefore,itislikelytheaffinityofthesetwospeciesforbaregroundthatis drivingtherelationshipbetweensmallmammalspeciesrichnessandbareground.Further,only onesiteexceeded25%bareground,sothestrongassociationsbetweenrichnessandbareground thatweobservedreflectconditionswherebaregroundisnotfrequentlyoccurringorabundant whereitoccurs.Theamountofbaregroundwasnotreflecthumancausedgrounddisturbance (R2=0.02,AdjR2=0.01, P=0.188;Fig.3.4b),asonemightsuspect,butratherafunctionof naturalfactors(e.g.,slope,vegetationdensity,sitemoisture).Therelationshipbetweenbare groundandlitterismuchstronger(R 2=0.30,AdjR2=0.29,p<0.001)thanwithhuman disturbance.

83 a)speciesrichnessrelativetobareground

9 8 7 6 5 4 3 2 1 Small Mammal Species Richness 0 0 10 20 30 40 50 % Cover of Bare Ground b)baregroundrelativetolocalizeddevelopment

45 40 35 30 25 20 15 10

% % Cover of Bare Ground 5 0 0 10 20 30 40 50 60 70 % Developed Area Within 100m Figure3.4.Therelationshipbetween(a)smallmammalspeciesrichnessandpercentbareground,and(b) baregroundandpercentdevelopmentwithin100mat71sitessampledintheLakeTahoebasinin2003 2005. Thetotalrelativeabundanceofsmallmammalswasbestexplainedbygroundvegetation featuresinboththefullandreducedmodels(Appendix3.3and3.4).Characteristicsofthe groundvegetationwereidentifiedasthemostimportantfactorsaffectingrelativeabundance, withamodelweightof99%forthisexplanatoryfactorgroup.Specifically,thepercentcoverof baregroundwaspositivelyassociatedwithabundance,asitwasforrichness,whilethepercent coverofherbs,rock,litter,andtotalvolumeofcoarsewoodydebrishadnegativeassociations withabundance(Appendix3.3and3.4).However,whenthebestfactorsfromthereduced modelswereruntogether,onlythepercentcoverofherbsandbaregroundremainedinthebest

84 fitmodeltotalabundance(Table3.4).Inaddition,thebestfitmodelestimatednegative relationshipsbetweentotalrelativeabundanceandfrequencyofhumanuseatthesite,aswellas theamountofconiferousforest,shrubland,grassland,andaspenhabitatatthe500mscale.In contrast,percentdevelopedareaatthe300mscalewaspositivelyassociatedwithabundance (Table3.4). Theunivariaterelationshipbetweentotalabundanceandbaregroundwasremarkably strongandconsistent(R 2=0.42,AdjR2=0.41,P<0.001);maximumandminimumabundance increasedwiththecoverofbareground(Fig.3.5).Again,thisrelationshipbreaksdownwhen yellowpinechipmunkandgoldenmantledgroundsquirrelabundanceareremoved(R 2=0.006, AdjR2=0.009,p=0.538).Therefore,itislikelytheaffinityofthesetwospeciesforbare groundthatisdrivingtherelationshipbetweensmallmammalrelativeabundanceandbare ground.

0.6

0.5

0.4

0.3

0.2

0.1

Small Mammal Relative Abundance 0 0 10 20 30 40 50 % Cover of Bare Ground Figure3.5.Therelativeabundanceofsmallmammalspeciesasafunctionofthepercentcoverofbare ground. Wealsolookedatpatternsoffrequencyofoccurrenceanddominanceinamongspecies alongthedevelopmentgradient(Fig.3.6and3.7,respectively).Threespecieswereconsistently morefrequentlyoccurringatsiteswithhighersurroundingdevelopment:Douglassquirrel, yellowpinechipmunk,andvoles.Longearedchipmunk,shadowchipmunk,northernflying squirrel,anddeermousewereconsistentlylessfrequentlyoccurringwithhighersurrounding development.Sevenspecieswerenumericallydominantatoneormoresites(Fig.3.7).Yellow pinechipmunkwasfrequentlythedominantspecies,anditwasmorefrequentlydominantat higherdevelopment.Longearedchipmunkwasthesecondmostfrequentlydominantspecies, butitwasdominantlessoftenathigherdevelopmentsites,suggestingthatdevelopmentshifts thecompetitiveadvantagefromlongearedtoyellowpinechipmunks.Shadowchipmunkalso losesdominanceathigherdevelopmentlevels.AlthoughCaliforniagroundsquirrelwasnot oftennumericallydominant,itappearedtoincreaseinabundanceandfrequencyofdominanceat higherdevelopment.

85

1.00 0.90 0.80 0.70 0.60 none 0.50 low 0.40 high 0.30 0.20

Proportion of sites 0.10 0.00

A E M QU B A Osp. MIsp. SPLA PE T TASP S GLSA SCGR TADO TASE SP TAAM Small mammal species Figure3.6.Proportionofsitesoccupiedbyeachsmallmammalspeciesobservedbydevelopmentwithin 300m(none=0%developed,low=030%developed,high>30%developed).

0.7

0.6

0.5 N 0.4 L 0.3 M H 0.2 Proportion of Sites 0.1

0 MIsp. SPBE SPLA TAAM TAQU TASE TADO Figure3.7.Proportionofsitesineachoffourdevelopmentclassesatwhicheachindividualsmall mammalspecieswerenumericallydominant.Development(within300m)classes:N=0%;0%<L< 15%;15%<M<30%;H>30%.Samplessizesfordevelopmentclasseswere6,24,16,and25sites, respectively.

86 FunctionalGroups Smallmammalfunctionalgroupsdisplayeduniqueresponsestothevarious environmentalfactorsthatweexplored.Forarborealsquirrels(agroupdominatedbyDouglas squirrels),developmentatthe1000mscalewasthebestfullmodelofabundance(Appendix3.5), buthabitatheterogeneityatthesitescale(100m)andthepresenceofdomesticdogswere includedinthebestreducedmodelsofabundance(Appendix3.6).Thesefactorswereboth positivelyassociatedwithtreesquirrelabundance.Theothertwomodelswithweightsgreater than5%showedsquirrelabundancetohaveapositiverelationshipwithpercentdevelopedarea atthe1000mscaleandanegativerelationshipwiththepercentcoverofrockatthesite (Appendix3.6).Theassociationwithhabitatheterogeneityandthepercentcoverofrockatthe siteweretheonlyfactorsthatremainedinthebestfitmodelofarborealsquirrelabundance (Table3.4). Forterrestrialgranivores(groundsquirrelsandchipmunks),groundvegetation characteristicswerethemostinfluentialfactorsaffectingrelativeabundanceinthebestfull, reduced,andbestfitmodels(Appendix3.7,3.8,andTable3.4).Thereducedandcombined modelsrevealedthatthefactorspercentcoverofherbsandbaregroundareparticularly influentialonrelativeabundance(Appendix3.7,3.8).Whilepercentcoverofherbswas negativelyassociatedwithabundance,therewasapositiveassociationwiththepercentcoverof bareground.Inthebestfitmodels,apositiverelationshipbetweenterrestrialgranivore abundanceandpercentdevelopedareaatthe300mscalewasrevealed,inadditiontoanegative relationshipwithnativepredatorspeciesrichness(Table3.4). Forterrestrialherbivores(agroupcomposedprimarilyoflongtailedvoleswithsome observationofjumpingmice),therewasconcordanceamongthesinglebestfull,reducedand combinedfactormodelthatthequadraticeffectofdevelopmentatthe300mscalewasthesingle mostimportantfactorpositivelyaffectingrelativeabundance(Appendix3.10,3.11andTable 3.4). Finally,thebestfullexplanatoryfactorsgroupmodelsforinsectivore(shrew)relative abundanceweremodelsofpredatorpresenceanddisturbanceatthesite(Appendix3.11). However,thebestreducedmodelsshowedthatcombinationofthepercentcoverofSierran mixedconiferandwhitefirhabitattypeatallthreespatialscales(100m,300mand500m)was animportantfactorpositivelyinfluencinginsectivorerelativeabundance(Appendix3.12).In addition,thepercentcoverofmontaneriparianhabitatandthecombinationofredfirand subalpineconiferhabitatatthe100mscalewerealsoimportantpositivefactorsinthehighest rankedmodel(Appendix3.12).Inthebestfitmodel,theamountofmontaneriparianandSierran mixedconiferwhitefirhabitatatthe100mscalearethemostimportantfactorspositively relatedtoinsectivoreabundance(Table3.4).

87 Table3.4.Bestfitmodelsforeachsmallmammalresponsevariable.Modelsthatincludedasubsetof factorsfromthetoprankedreducedmodelforeachexplanatoryfactorgroupwerecomparedbasedon AIC Cscoresandmodelweightstoidentifythecombinationofexplanatoryfactorsthatbestfiteach responsevariable.Presentedherearetheequationsforthebestfitmodels,aswellasR 2,adjustedR 2 (AdjR2),andthemodelpvalue. Adj Response R2 R2 p Variable Bestfitmodelequation (%) (%) value Species 4.85+0.763_ Year03-04 +0.349_ Habitat heterogeneity richness 300m +0.469_ % Bare ground 23.76 20.35 0.0004 Relative 0.179–0.19_ Aspen 500m –0.067_ Coniferous forest abundance 500m –0.025_ Grassland 500m –0.030_ Shrubland 68.81 64.78 <0.000 500m –0.033_ % Herbs +0.058_% Bare ground 1 +0.023_ Development 300m –0.017_ People/hr Arboreal 0.013+0.006_ Habitat heterogeneity 100m –0.004_ % squirrel Rock 19.23 16.85 0.0007 abundance Terrestrial 0.156+0.031_ Development 300m –0.037_ % Herbs granivore +0.057_ % Bare ground –0.014_ Native predator 59.62 57.17 <0.000 abundance species richness 1 Terrestrial 0.008+0.006_ Development 300m + herbivore 0.007_( Development 300m 2) 39.71 37.93 <0.000 abundance 1 Insectivore 0.0009+0.0006_ Montane riparian 100m + abundance 0.0007_ Sierran mixed conifer/White fir 100m 18.60 16.21 0.0009 PopulationDynamics Theresponseofindividualspeciestoenvironmentalfactorsisthekeytounderstanding whatshapessmallmammalcommunitiesinthebasin,andpopulationresponsesarecriticalto identifyingtolerancesandthresholdsofindividualspeciesthataremostsensitiveandmaybeat risk. Duetothesmallsamplesizerelativetothenumberofpopulationparametersofinterest, wefirstreducedoverallmodelcomplexityinordertogeneratereliableparameterestimatesfor thehypothesestested.First,wereducedtheparameterindexmatrices(PIMs)bysettingrecapture probabilityequaltocaptureprobability(P)andimmigrationrateequaltoemigrationrate(G),so therewereonlyparameterestimatesgeneratedforinitialcaptureprobabilityandemigration immigration.Forthreespeciesofchipmunkyellowpine,shadowandlodgepolechipmunk andDouglassquirrel,therecaptureratebetweenyearswastoolowtogeneratereliable emigrationimmigrationparameters,sothisparameterwasfixedatzeroformodelsofthese species.Forthetwospeciesobservedatthefewestnumberofsitesshadowandlodgepole chipmunkitwasnotpossibletoproducereliablepopulationestimatesevenwiththe“dot” model.However,modelsforthesespecieswereabletogenerateestimatesofsurvivaland captureprobability.

88 Wereportonthe10toprankedmodelsforeachspecies,inadditiontographsdepicting thefunctionalrelationshipbetweensurvivaloremigrationandpertinentcovariatesrelatingto developmentanddisturbance.Allthedetailedoutputfrompopulationmodelingisprovidedin Appendices3.13to3.19..Modelaveragingwasusedtogeneraterealparameterestimates,and estimatesofabundancearepresentedgraphicallyasafunctionofsamplingyear. Longearedchipmunkswerethemostnumerousandevenlydistributedofallthesmall mammalspeciessampled.Modelselectionrevealedthatsamplingyearwasthemostimportant determinantofsurvivalrate(Table3.5),withannualsurvivalbeinggreaterbetween2003and 2004(S=0.4002,SD S=0.0348)thanbetween2004and2005(S=0.1415,SD S=0.0207)(Fig. 3.8).Developmentatthe1000mspatialscalealsoinfluencedsurvival(Table3.5;Fig.3.8),but thedecreaseinsurvivalwithincreasingdevelopmentwaslesspronouncedthantheyeareffect. Emigrationimmigrationwasmostaffectedbygroupaffiliation,aswellasdevelopmentatthe 1000mscale(Table3.5;Fig.3.9),withemigrationimmigrationratesincreasingwith development.Juvenilemalesandfemalesweremorelikelytomoveintoandoutofasitethan adultmales(Fig.3.9),butreliableestimatescouldnotbeproducedforadultfemalelongeared chipmunks. Survivalinyellowpinechipmunkswasinfluencedbydevelopmentanddisturbance,as wellasgroupaffiliationandsamplingyear(Table3.6).Adultsurvivalratesweregreaterthan juvenilesurvivalrates,andannualsurvivalwasgreaterbetween2003and2004thanbetween 2004and2005forallgroups(Fig.3.10).Developmentatthe300mscalehadapronounced negativeimpactonadultsurvivalinyellowpinechipmunks(Fig.3.11).Althoughjuvenile survivalratesweremuchlowerthanadultsurvivalingeneral(Fig.3.10),thenegative relationshipwithdevelopmentwasweakerforjuvenilesthanthatforadults(Fig.3.11). Disturbanceintheformoffrequencyofdogsatthesitealsoinfluencedsurvivalmoresofor adultsthanjuveniles( βDOGS =0.2451,SE DOGS =0.1267;Table3.6).Theimpactoflowerannual survivalbetween2004and2005isshownbythedramaticdecreaseinadultpopulationsizein 2005(Fig.3.10). Samplingyearwasthemostimportantfactoraffectingshadowchipmunksurvival,but developmentatthe1000mscaleanddisturbancealsoaffectedsurvival(Table3.7).Development hadanegativeeffectonsurvival(Figure3.12),whiledisturbanceintheformofdogandhuman usepositivelyimpactedsurvival(Figure3.13and3.14).Incontrast,survivalratesinthe lodgepolechipmunkwerenegativelyrelatedtobothdisturbancefactors(Figure3.15and3.16), aswellastodevelopmentatthe300mscale(Figure3.17;Table3.8). Sexandagewereimportantfactorsaffectinggroundsquirrelsurvivalandemigration (Table3.9and3.19).ForCaliforniagroundsquirrels,developmentatthe300mscalewasthe mostinfluentialcovariateaffectingtheseparameters(Figure3.18and3.15).Developmenthada significantnegativeimpactonCaliforniagroundsquirrelsurvival( βD300 =0.9360,SE D300 = 0.3711;Fig.3.19),andsurvivalratesforfemalesweregreaterthanmalesurvivalrates(Fig. 3.16).AgewasthemostimportantfactoraffectingemigrationimmigrationratesinCalifornia groundsquirrels(Table3.9,Fig.3.19),withjuvenilesexhibitingamuchgreaterpropensityfor dispersalthanadults.Theslightlypositiverelationshipbetweendevelopmentandemigration immigrationratewasminimal( βD300 =0.1075,SE D300 =0.8373;Fig.3.17). Agewasthemostimportantfactoraffectinggoldenmantledgroundsquirrelsurvival (Table3.10)withadultsexhibitingmuchhighersurvivalratesoverallthanjuveniles(Figure 3.14).However,developmentatthe1000mscaledidhaveanimportantnegativeimpactonadult survivalrates(Fig.3.20).Again,emigrationimmigrationwasfacilitatedbydevelopmentin

89 goldenmantledgroundsquirrels,withemigrationimmigrationratesincreasingwithincreasing developmentatthe1000mscale(Fig.3.21).Malesofthisspeciesweremorelikelytoemigrate thanfemales. Douglassquirrelswerenotcapturedfrequentlyenoughacrossyearstoestimate emigrationimmigrationrates.However,developmentatthe300mand1000mscalesnegatively influencedDouglassquirrelsurvivalrates(Table3.24,Fig.3.22).Shiftsinpopulationsizewere bestexplainedbyyearandbyadultjuvenileandmalefemalestatus(Table3.24). Ourestimatesofpopulationparametersforsquirrelsandchipmunksbasinshowedthat populationsize,survivalratesandemigrationimmigrationratesvariedbyspecies,age,sexand year.Asonewouldexpect,adultshadhighersurvivalratesandloweremigrationratesthan juvenilesinallcaseswhereparameterestimatescouldbegenerated.Similarly,maleshadlower survivalratesandhigheremigrationimmigrationratesthanfemales.Thehighestsurvival estimateswereforthegroundsquirrelsandthetwolargerbodiedchipmunkspecies(longeared andshadowchipmunk),whilethelowestsurvivalestimateswereforthelodgepolechipmunk andtheDouglassquirrel.Forchipmunkspecies,samplingyearwasanimportantexplanatory factorimpactingsurvival,andlowannualsurvivalbetween2004and2005wasfollowedbya dramaticdecreaseinadultpopulationsizesoflongearedandyellowpinechipmunksinthe summerof2005.Thissuggeststhatregionwidefactors(e.g.weather,resourceavailability)were affectingannualsurvivalinthesespecies.

90 Table3.5.ToptenmodelsforthelongearedchipmunkbasedonAICcrankshowingtheimportanceoftime(t,y),ageandsex(g),development anddisturbanceonsurvival(S),emigration(G),captureprobability(P),andabundance(N). AICc Model Rank ModelParameterization AICc DeltaAICc k Deviance Weights Likelihood 1 {S(t),G(g+D1000),P(g*y),N(g*t)} 2485.18 0 0.43262 1 30 2424.41 2 {S(t+D1000),G(g+D1000),P(g*y),N(g*t)} 2486.46 1.2721 0.22902 0.5294 31 2423.63 3 {S(t),G(g+D300),P(g*y),N(g*t)} 2488.40 3.211 0.08687 0.2008 30 2427.62 4 {S(t+PEOPLE),G(g+PEOPLE),P(g*y),N(g*t)} 2489.32 4.1362 0.05469 0.1264 31 2426.50 5 {S(t),G(age+D1000),P(g+y),N(g*t)} 2489.52 4.3323 0.04959 0.1146 23 2443.06 6 {S(t+D300),G(g+D300),P(g*y),N(g*t)} 2490.04 4.8558 0.03817 0.0882 31 2427.22 7 {S(t),G(g+PEOPLE),P(g*y),N(g*t)} 2490.12 4.9331 0.03672 0.0849 30 2429.35 8 {S(t+PEOPLE),G(age+PEOPLE),P(g+y),N(g*t)} 2491.07 5.8877 0.02278 0.0527 23 2444.62 9 {S(t+D1000),G(age),P(g+y),N(g*t)} 2492.67 7.4836 0.01026 0.0237 23 2446.21 10 {S(t+DOGS),G(g+DOGS),P(g*y),N(g*t)} 2492.69 7.5037 0.01016 0.0235 31 2429.86

0.5 1.2 0.45 1 0.4 0.35 0.8 0.3 AM 20032004 0.25 0.6 JF 20042005 0.2 Survival JM 0.15 0.4 0.1 0.2

0.05 Emigration-Immigration. 0 0 0 10 20 40 60 0 10 20 40 60 % Developed 1000m % Developed 1000m Figure3.8.Functionalrelationshipbetweenestimatedannual Figure3.9.Functionalrelationshipbetweenestimated survivalrateanddevelopmentatthe1000mspatialscalefor emigrationratesanddevelopmentatthe1000mspatialscalefor longearedchipmunksbasedonthesecondrankedmodel. longearedchipmunks.Parameterestimatesforfemalesurvival couldnotbeobtainedforthisspecies.Adultmale(AM), juvenilefemale(JF)andjuvenilemale(JM)estimatesfromthe toprankedmodelarepresented.

91

Table3.6.ToptenmodelsfortheyellowpinechipmunkbasedonAICcrankshowingtheimportanceoftime(t),ageandsex(g),development anddisturbanceonsurvival(S),captureprobability(P),andabundance(N).Modelswerenotabletoproducevalidestimatesfortheemigration parameter,G,sothisparameterwasfixedat‘0’toreducemodelcomplexityandobtainreliableestimatesfortheremainingparameters. AICc Model Rank ModelParameterization AICc DeltaAICc k Deviance Weights Likelihood 1 {S(g+t+D300),G(0),P(g+t),N(g*t)} 2585.25 0 0.28547 1 51 2481.19 2 {S(g+t+DOGS),G(0),P(g+t),N(g*t)} 2586.28 1.0345 0.17018 0.5961 51 2482.22 3 {S(g+t+D500),G(0),P(g+t),N(g*t)} 2586.59 1.3366 0.14632 0.5126 51 2482.52 4 {S(g+t+D100),G(0),P(g+t),N(g*t)} 2587.39 2.1425 0.0978 0.3426 51 2483.33 5 {S(g+t+D1000),G(0),P(g+t),N(g*t)} 2587.87 2.6223 0.07694 0.2695 51 2483.81 6 {S(g+t+PEOPLE),G(0),P(g+t),N(g*t)} 2587.88 2.6301 0.07664 0.2685 51 2483.82 7 {S(g+t),G(0),P(g+t),N(g*t)} 2588.09 2.8403 0.06899 0.2417 50 2486.11 8 {S(g+D300),G(0),P(g+t),N(g*t)} 2589.23 3.9802 0.03902 0.1367 50 2487.25 9 {S(g),G(0),P(g+t),N(g*t)} 2591.81 6.5585 0.01075 0.0377 49 2491.90 10 {S(age+d300),G(0),P(g+t+y),N(g*t)} 2592.36 7.1127 0.00815 0.0285 28 2535.74

0.25 0.16 0.14 0.2 0.12 AF AF 0.1 0.15 AM AM 0.08 JF

JF Survival 0.06

Survival 0.1 JM JM 0.04

0.05 0.02 0 0 0 5 20 35 50 20032004 20042005 % Developed 300m Figure3.10.Parameterestimatesforadultfemale(AF),adult Figure3.11.Functionalrelationshipbetweenannualsurvival male(AM),juvenilefemale(JF)andjuvenilemale(JM)annual anddevelopmentatthe300mspatialscaleforadultfemale survivalrateinyellowpinechipmunks. (AF),adultmale(AM),juvenilefemale(JF)andjuvenilemale (JM)yellowpinechipmunksunderthetoprankedmodel.

93 Table3.7.ToptenmodelsfortheshadowchipmunkbasedonAICcrankshowingtheimportanceofyear(t,y),age,sex,developmentand disturbanceonsurvival(S)andcaptureprobability(P).Modelswerenotabletoproducevalidestimatesfortheemigrationparameter,G,sothis parameterwasfixedat‘0’toreducemodelcomplexityandobtainreliableestimatesfortheremainingparameters. AICc Model Rank ModelParameterization AICc DeltaAICc k Deviance Weights Likelihood 1 {S(t),G(0),P(age+t*y),N(.)} 795.30 0 0.23091 1 29 731.48 2 {S(t+D1000),G(0),P(age+t*y),N(.)} 795.64 0.3373 0.19508 0.8448 30 729.40 3 {S(t+DOGS),G(0),P(age+t*y),N(.)} 795.69 0.3821 0.19076 0.8261 30 729.44 4 {S(t+PEOPLE),G(0),P(age+t*y),N(.)} 795.75 0.4452 0.18483 0.8004 30 729.51 5 {S(t+D100),G(0),P(age+t*y),N(.)} 797.31 2.0103 0.08451 0.366 30 731.07 6 {S(t+D300),G(0),P(age+t*y),N(.)} 797.61 2.3013 0.07307 0.3164 30 731.36 7 {S(age+D1000),G(0),P(age+t*y),N(.)} 800.70 5.4 0.01552 0.0672 30 734.46 8 {S(age),G(0),P(age+t*y),N(.)} 801.11 5.8018 0.01269 0.055 29 737.29 9 {S(sex),G(0),P(age+t*y),N(.)} 801.12 5.8196 0.01258 0.0545 29 737.30 10 {S(sex),G(0),P(sex+t*y),N(.)} 813.36 18.054 0.00003 0.0001 29 749.54

0.5 0.6 0.45 0.4 0.5 0.35 0.4 0.3 20032004 20032004 0.25 0.3 20042005 20042005 0.2 Survival Survival 0.15 0.2 0.1 0.1 0.05 0 0 0 10 20 0.05 0.1 0.15 0.2 % Developed 1000m Frequency of Dog Use Figure3.12.Functionalrelationshipbetweenestimatedover Figure3.13.Functionalrelationshipbetweenannualsurvivalin wintersurvivalrateanddevelopmentatthe1000mspatialscale shadowchipmunksandfrequencyofdoguseunderthethird forshadowchipmunksbasedonthesecondrankedmodel. rankedmodel.

94

0.6

0.5

0.4 20032004 0.3 20042005 Survival 0.2

0.1

0 0 0.75 1.5 Frequency of Human Use Figure3.14.Functionalrelationshipbetweenannualsurvivalinshadowchipmunksand frequencyofhumanuseunderthefourthrankedmodel.

95 Table3.8.ToptenmodelsforthelodgepolechipmunkbasedonAICcrankshowingtheimportanceofdisturbanceanddevelopmentonsurvival (S)aswellastheinfluenceoftimeoncaptureprobability(P).Modelswerenotabletoproducevalidestimatesfortheemigrationparameter,G,so thisparameterwasfixedat‘0’toreducemodelcomplexityandobtainreliableestimatesfortheremainingparameters.Thepopulationestimates werealsonotvalid,sothepopulationparameterwasreducedtoa“dot”modelforpurposesofaddressinghypothesesconcerningtheinfluenceof developmentanddisturbance. AICc Model Rank ModelParameterization AICc DeltaAICc k Deviance Weights Likelihood 1 {S(.+DOGS),G(0),P(t),N(.)} 364.18 0 0.20547 1 10 341.91 2 {S(.),G(0),P(t),N(.)} 364.23 0.0492 0.20048 0.9757 9 344.40 3 {S(.+D300),G(0),P(t),N(.)} 364.94 0.7567 0.14075 0.685 10 342.67 4 {S(.+PEOPLE),G(0),P(t),N(.)} 365.18 0.9969 0.12482 0.6075 10 342.91 5 {S(.+D1000),G(0),P(t),N(.)} 365.61 1.4303 0.1005 0.4891 10 343.35 6 {S(sex),G(0),P(t),N(.)} 366.34 2.1614 0.06973 0.3394 10 344.08 7 {S(age),G(0),P(t),N(.)} 366.36 2.1817 0.06902 0.3359 10 344.10 8 {S(.+D100),G(0),P(t),N(.)} 366.53 2.3502 0.06345 0.3088 10 344.27 9 {S(age),G(0),P(g+t),N(.)} 368.83 4.6476 0.02012 0.0979 11 344.08 10 {S(age),G(0),P(g+t),N(g)} 371.36 7.1783 0.00568 0.0276 12 344.08

0.5 0.3 0.45 0.4 0.25 0.35 0.2 0.3 0.25 0.15 0.2 Survival Survival 0.15 0.1 0.1 0.05 0.05 0 0 0 0.3 0.6 0 0.5 1 1.5 Frequency of Dog Use Frequency of Human Use Figure3.15Functionalrelationshipbetweentheestimated Figure3.16.Functionalrelationshipbetweenannualsurvivalin annualsurvivalrateandfrequencyofdoguseforlodgepole lodgepolechipmunksandfrequencyofhumanunderthefourth chipmunksbasedonthetoprankedmodel. rankedmodel. 96 0.2 0.18 0.16 0.14 0.12 0.1 0.08 Survival 0.06 0.04 0.02 0 0 10 15 25 30 40 50 % Developed 300m Figure3.17.Functionalrelationshipbetweenannualsurvivalin lodgepolechipmunksanddevelopmentatthe300mspatial scaleunderthethirdrankedmodel.

97 Table3.9.ToptenmodelsfortheCaliforniagroundsquirrelbasedonAICcrankshowingtheimportanceofsex,age,developmentand disturbanceonsurvival(S)andemigration(G),aswellastheimportanceofgroup(g),samplingoccasion(t)andyear(y)oncaptureprobability (P)andabundance(N). AICc Model Rank ModelParameterization AICc DeltaAICc k Deviance Weights Likelihood 1 {S(sex+D300),G(age),P(g+t+y),N(g*t)} 1541.88 0 0.54865 1 30 1479.50 2 {S(sex+D300),G(age+D300),P(g+t+y),N(g*t)} 1544.02 2.1453 0.1877 0.3421 31 1479.48 3 {S(sex+D1000),G(age),P(g+t+y),N(g*t)} 1544.73 2.8525 0.13179 0.2402 30 1482.35 4 {S(sex+D100),G(age),P(g+t+y),N(g*t)} 1545.78 3.9064 0.07781 0.1418 30 1483.40 5 {S(sex+PEOPLE),G(age),P(g+t+y),N(g*t)} 1548.20 6.3201 0.02328 0.0424 30 1485.82 6 {S(sex+DOGS),G(age),P(g+t+y),N(g*t)} 1548.38 6.5024 0.02125 0.0387 30 1486.00 7 {S(sex),G(age),P(g+t+y),N(g*t)} 1550.04 8.1593 0.00928 0.0169 29 1489.81 8 {S(t),G(age),P(g+t+y),N(g*t)} 1558.55 16.6707 0.00013 0.0002 29 1498.32 9 {S(age),G(age),P(g+t+y),N(g*t)} 1558.92 17.0404 0.00011 0.0002 28 1500.84 10 {S(age),G(0),P(g+t+y),N(g*t)} 1567.01 25.1298 0 0 27 1511.08

0.7 1 0.9 0.6 0.8 0.5 0.7 0.6 0.4 Females Adults 0.5 Males Juveniles 0.3 0.4 Survival 0.2 0.3 0.2 0.1 Emigration-Immigration 0.1 0 0 5 20 30 5 20 30 % Developed 300m % Developed 300m Figure3.18.Functionalrelationshipbetweenestimatedannual Figure3.19.Functionalrelationshipbetweenemigrationrate survivalrateanddevelopmentatthe300mspatialscalefor anddevelopmentatthe300mspatialscaleforCalifornia Californiagroundsquirrelsbasedonthetoprankedmodel. groundsquirrelsbasedonthesecondrankedmodel.

98 Table3.10.ToptenmodelsforthegoldenmantledgroundsquirrelbasedonAICcrankshowingtheimportanceofage,sexanddevelopmenton survival(S)andemigration(G),aswellastheimportanceofgroup(g)andsamplingoccasion(t)oncaptureprobability(P)andageonabundance (N). AICc Model Rank ModelParameterization AICc DeltaAICc k Deviance Weights Likelihood 1 {S(age),G(sex),P(g+t),N(age)} 1271.94 0 0.17223 1 17 1236.77 2 {S(age+D1000),G(sex),P(g+t),N(age)} 1272.40 0.4597 0.13687 0.7947 18 1235.09 3 {S(age),G(sex+D1000),P(g+t),N(age)} 1273.55 1.6058 0.07717 0.4481 18 1236.24 4 {S(age+D300),G(sex),P(g+t),N(age)} 1273.60 1.6593 0.07513 0.4362 18 1236.29 5 {S(age),G(sex+D300),P(g+t),N(age)} 1273.68 1.742 0.07209 0.4186 18 1236.37 6 {S(age+D100),G(sex),P(g+t),N(age)} 1273.75 1.8117 0.06962 0.4042 18 1236.44 7 {S(age),G(sex+DOGS),P(g+t),N(age)} 1273.82 1.881 0.06725 0.3905 18 1236.51 8 {S(age+DOGS),G(sex),P(g+t),N(age)} 1273.91 1.9657 0.06446 0.3743 18 1236.60 9 {S(age),G(sex+PEOPLE),P(g+t),N(age)} 1274.07 2.1268 0.05947 0.3453 18 1236.76 10 {S(age+PEOPLE),G(sex),P(g+t),N(age)} 1274.08 2.1389 0.05911 0.3432 18 1236.77

0.6 0.9 0.8 0.5 0.7 0.4 0.6 Adults 0.5 Females 0.3 Juveniles 0.4 Males Survival 0.2 0.3 0.2 0.1 0.1 Emigration-Immigration. 0 0 5 20 30 40 50 5 20 30 40 50 % Developed 1000m % Developed 1000m Figure3.20.Functionalrelationshipbetweenestimatedannual Figure3.21.Functionalrelationshipbetweenemigrationrate survivalrateanddevelopmentatthe1000mspatialscalefor anddevelopmentatthe1000mspatialscaleforgoldenmantled goldenmantledgroundsquirrelsbasedonthesecondranked groundsquirrelsbasedonthethirdrankedmodel. model. 99 Table3.11.ToptenmodelsfortheDouglassquirrelbasedonAICcmodelweightshowingtheimportanceofdevelopmentonsurvival(S),aswell astheimportanceofsamplingoccasion(t)oncaptureprobability(P)andsexandage(g)andyear(t)onabundance(N). AICc Model Rank ModelParameterization AICc DeltaAICc k Deviance Weights Likelihood 1 {S(.+D300),G(0),P(t),N(g*t)} 751.47 0 0.22843 1 22 704.55 2 {S(.+D1000),G(0),P(t),N(g*t)} 751.49 0.0263 0.22545 0.9869 22 704.58 3 {S(.),G(0),P(t),N(g*t)} 752.27 0.8014 0.15302 0.6699 21 707.61 4 {S(t+D300),G(0),P(t),N(g*t)} 753.14 1.6779 0.09872 0.4322 23 703.95 5 {S(.+DOGS),G(0),P(t),N(g*t)} 753.97 2.5041 0.06531 0.2859 22 707.05 6 {S(t),G(0),P(t),N(g*t)} 754.09 2.6229 0.06155 0.2694 22 707.17 7 {S(sex),G(0),P(t),N(g*t)} 754.16 2.6949 0.05937 0.2599 22 707.25 8 {S(.+D100),G(0),P(t),N(g*t)} 754.18 2.717 0.05872 0.2571 22 707.27 9 {S(.+PEOPLE),G(0),P(t),N(g*t)} 754.53 3.0619 0.04942 0.2163 22 707.61 10 {S(.),G(0),P(g),N(g*t)} 771.76 20.296 0.00001 0 17 736.02

0.25

0.2

0.15 300m 1000m 0.1 Survival

0.05

0 0 15 30 45 60 % Developed Figure3.22.Functionalrelationshipbetweensurvivaland developmentattwospatialscalesforDouglassquirrel.

100 Discussion WefoundthatpatternsoftotalspeciesrichnessandrelativeabundanceintheLakeTahoe basinwerenotgreatlyinfluencedbyurbandevelopmentandassociateddisturbance.Small mammalspeciesarerelativelyabundantintheforestsofLakeTahoe,andtheretentionof elementsofnativeforestevenwithinmoredevelopedareasofTahoeislikelytoretainhigher populationsthanwouldotherwiseoccurindevelopedareas. Theweakunimodalinfluenceofdevelopmentonabundancecouldbeduetogreater disturbancefrequencyand/orintensityatdevelopedwhencomparedtoundevelopedsites.Since themostimportantfactorinfluencingthediversityanddistributionofmanysmallmammal speciesishabitatstructure(Lawlor2003)andhabitatstructureinforestsystemsisshapedlargely bydisturbance.Disturbancecancreatenewhabitatconditionsoritmayreducethenumberof individualsofaparticularspecies,therebyallowingotherspeciestocolonizeandexploitnew habitats(Reice2005).Developmentcanalsochangethedominancestructureofcommunities, wheregeneralistspeciescandominatethecommunity.Urbandevelopmentnearasitemaybe creatinganintermediatedisturbancepattern(Connell1978)thatallowsmorespeciestopersistat asinglelocation.Inaddition,therelativelypredictabledisturbancefrequencyandintensityin highlymanagedurbanlandscapesmayactuallyprovideacertainlevelofhabitatstabilitythat allowsthesespeciestomaintainhigheroverallpopulationsizes.However,theabundancepattern exhibitedbytheherbivoregroupindicatesthatdevelopmentcanreachathresholdwhere disturbanceintensity/frequencycanexceedtheoptimallevel. Itismostlikelythatchangesinabundanceaffectedchangesindetectability,thusaltering richnessestimatesamongyears.Specieshaveahigherprobabilityofdetectionwhentheyare abundant.Indeed,higherrichnesscoincidedwithanoverallincreaseintheestimatedpopulation sizeofchipmunks,goldenmantledgroundsquirrelsandDouglassquirrelsfrom2003to2004, followedbyadecreaseinbothspeciesrichnessandpopulationsizein2005.Eachofthese speciesreliesonpineconeseedsasamajorfoodresource(VanDersal1938;Smith1943;Tevis 1952,1953;Grinnell&Dixon1918;Gordon1943;Hoffmeister1986;Steele1999;Lawlor 2003);therefore,itispossiblethattheirpopulationsmaybefollowingfluctuationsincone productionamongyears(Smith1970;Buchanan et al 1990).Inturn,anincreaseinoverall abundancewouldincreasedetectability,whichwouldresultinmorespeciesbeingdetectedper sitein2004relativetotheothertwoyears. Inadditiontourbandevelopmentsurroundingsites,thepercentcoverofbaregroundat thesitewasanimportantfactorthatwaspositivelyassociatedwithbothspeciesrichnessand abundance.Baregroundontheforestfloorisalikelyconsequenceofgroundleveldisturbance removinglitterandpreventingplantgermination.Suchapatternofclearingmaysimulate conditionstypicalofearlysuccessionalcommunities.Sincemanyforestspecieshaveadaptedto useearlysuccessionalhabitats,disturbancethatincreasestheamountofbaregroundatasite mayallowspeciesassociatedwithearlierseralconditionstopersistatsiteswheretheymaynot otherwise.Specieswefoundatoursitesthatareoftenfoundinnewlydisturbedstandsinclude voles,jumpingmiceanddeermice(Hallett&O’Connell1997).Thefactthatsmallmammal speciesrichnessandabundancearepositivelyrelatedtotheamountofurbandevelopmentand theamountofbaregroundindicatesthattheimpactsofdisturbanceinurbanlotsmaybesimilar ineffecttonaturaldisturbanceregimesthatfacilitatespeciescoexistenceandproductivity. AnotherformofdisturbanceexperiencedbyLakeTahoebasinspeciesisthepresenceof humansanddomesticdogs.Wefoundthathumandisturbancehadvariableeffectsonsmall

101 mammalspecies.Whilethefrequencyofusebypeoplewasfoundtobepositivelyassociated withspeciesrichness,therewasanegativerelationshipbetweentotalrelativeabundanceand humanuse.Sincethespeciesdetectedinthehighestnumbersatallsitesweregroundsquirrels andchipmunks,thispatternmaybeareflectionofanegativeeffectofhumandisturbanceon thesespeciesinparticular.Groundsquirrelsandchipmunksarediurnalandprimarilyterrestrial. Sincehumanactivityoccursmostlyduringthedayandatgroundlevel,itisverylikelythatthese speciesarenegativelyaffectedbyhumanactivity.Inturn,adecreaseintheabundanceof numericallydominantspeciesmightallowotherlessabundantspeciestooccupyanarea. Inthecaseofdomesticdogs,wefoundthattheirpresencewaspositivelyassociatedwith treesquirrelabundance.Whiledogscouldpotentiallyharassandpreyonrodents,theirpresence didnothaveanegativeimpactonarborealsquirrelrelativeabundance.Infact,itmaybethatthe presenceofdogsactuallydetersmoreefficientpredatorsofthesesquirrels.SinceDouglas squirrelsspendmuchoftheirtimeintrees,theyareofteninaccessiblepreyitemsforterrestrial predatorssuchasdogsandcoyotes.However,mustelidpredators(includingmembersofthe weaselfamily)thatareadeptatclimbingmayactuallybedeterredbythepresenceofdogs. Therefore,domesticdogsmayprovidesomedegreeofprotectionfrompredationfortree squirrels,allowingthemtopersistinhighernumbers. WhiledevelopmentanddisturbanceinfluencedLakeTahoebasinsmallmammals,we alsofoundthathabitatheterogeneity(i.e.,thenumberofdifferentCWHRhabitattypes) surroundingsiteshadasubstantialpositiveeffectonspeciesrichness.Sincemanyoftheforest dwellingsmallmammalspeciesaresympatricandhavesimilarresourcerequirements,they assortbasedonmicrohabitatordietarydifferences(Lawlor2003),adaptationsthatevolvedinthe heterogeneouslandscapecreatedbynaturalforestdisturbancedynamics.Heterogeneous landscapesofferagreaterdiversityofresources,bothspatiallyandtemporally,whichincreases animaldiversity(Rosenzweig&Abramsky1993).Therefore,maintainingadequatelevelsof habitatdiversityatthelandscapescalewillbeimportantformaintainingspeciesdiversity. Thespeciesidentifiedbythisstudythatmaybemostvulnerabletohabitatalterationand developmentinthebasinareshadowchipmunks,lodgepolechipmunksandshrews.These speciesexhibitedadistributionthresholdwithrespecttourbanizationandwerenotdetectedat sitesthatexceededmoderatelevelsofdevelopmentordisturbance.Forthesespecies,habitat qualitymaybeadverselyimpactedbydevelopmentand/ordisturbance.Shrewscomposedthe onlyfunctionalgroupwherespecifichabitatswereidentifiedasimportantfactorsassociatedwith relativeabundance.Forshrews,acombinationofSierranmixedconiferandwhitefirhabitat bothatandadjacenttothesitepositivelyaffectedrelativeabundance.Inaddition,theamountof montaneriparianandredfir/subalpineconiferhabitatatassitepositivelyinfluenced abundance.PreviousresearchhasalsofoundTrowbridge’sshrewtobeassociatedwithfir forests,typicallywithadryforestfloor(Dalquest1948;George1988),andinthecentraland southernSierratheyarelikewisemostabundantinthemixedconifervegetationzone(Verner& Boss1980).Thisindicatesthatshrewsarehabitatspecialiststhatdependonrelativelyfew specifichabitattypes.Ifurbandevelopmentdegradesimportanthabitatsforthespecieswe identifiedhereassensitivetodevelopmentanddisturbance,thenanoveralldecreaseintheir distributionandabundancemayresult. Wefoundthatpopulationdynamicsofsquirrelsandchipmunkswereadverselyaffected byurbandevelopment.Thedegreeofresponsevariedamongthesespecies,buttheevidencewas consistentacrossallspecies:survivalratesdecreasedandemigrationratesincreasedas developmentpressureincreased.Thefactthatsurvivalwasnegativelyimpactedbydevelopment

102 isanindicationthathabitatconditionsinurbanareasmaybedegraded.Furthermore,ahigher propensityofindividualstomoveintoandoutofurbansiteshasnegativeimplications,because whenindividualsdispersemortalityriskincreases,particularlyifthematrixbetweenhabitat fragmentsprovestobeinhospitable(Ray2005).Therefore,maintainingpatchesofforesthabitat withintheurbanmatrixisimportantforfacilitatingsuccessfuldispersalandultimatelysustaining interconnectedpopulationsofsmallmammalspecies. Understandinghowthedistributionandabundanceofsmallmammalspeciesinfluences forestfunctionandbiodiversityhaseconomicandconservationimplicationsbeyondthe relevanceofbasicecologicalinquiry.Smallmammalsareanintegralpartoftheforest ecosystem,andtheroleofsmallmammalsinforestdynamicsismultifacetedandcomplex. Smallmammalsareanessentialcomponentofforestfoodwebsandplayanimportantpartinthe reproductivelifehistoryofmanyforestplants.Theassociationofsmallmammalswithother forestspecieshasbothdirectandindirecteffectsonforesthealthandregeneration,biodiversity andecosystemfunction(Sullivan et al 1993,Maser et al 1978,McShea2000,Sirotnak&Huntly 2000).Therefore,identifyingthenatureofspecies’distributionsandcommunitystructurehelps todirectthestudyofpopulationdynamicswithinthesystemandelucidatethemechanismsof communityorganization.Itisimportanttoconsiderthesefactorswhenmakingpredictionsabout theimpactsoffuturemanagementanddevelopment. Weidentifiedseveralimportantexplanatoryfactorsthatinfluencesmallmammalspecies richnessandabundanceintheLakeTahoebasin.Urbandevelopmentanddisturbancepositively affectedspeciesrichnessandabundanceinsomespecies,asdidhabitatvariablessuchaspercent coverofbaregroundandoverallhabitatheterogeneity.However,itisverypossiblethatthe patternofhigherspeciesrichnessandabundanceinurbanareasisnotindicativeofhabitat suitabilityorquality.Insteaditmaybeanearlywarningsignthatthisecosystemissufferingthe negativeimpactsofhabitatfragmentation.Whenhabitatisfragmentedand/ordegradedremnant patchesareexpectedtoinitiallysupportagreaternumberofspeciesandoverallabundanceas individualsarepackedintosmallerandsmallerpatchesofsuitablehabitat(Collinge&Forman 1998).Overtime,speciesarelostandtheecologicalcommunityisdegraded(Johnson& Klemens2005).Thealteredprimarypopulationprocessesweidentifiedareanotherimportant signthatsmallmammalsintheLakeTahoebasinareinthemidstofecologicaldecay(Collinge &Forman1998).Ifdevelopmentpressureanddisturbanceincreases,habitatconditionsmay declinetoapointthatexceedsthecapacityofsomespeciestopersist(Reice2005). WhilemostforestassociatedspeciesintheLakeTahoebasindonotappeartohave reachedadistributionthresholdwithrespecttourbandevelopment,maintaininglandscape linkagesmaybecrucialtopreventinglossofspecies.Theparksandopenspaceinthebasin todaymaybeabletomaintainrepresentativesamplesofspeciesandhabitats;however,theymay notbesufficienttomaintainecologicallyfunctionallandscapes.Ifpopulationprocessesare beingnegativelyimpactedbydevelopmentaswefoundhere,thenremnanthabitatpatchesmay notbeabletomaintainsustainablepopulations.Furthermore,ifthematrixsurroundinghabitat patchesbecomesincreasinglyinhospitabletoalevelthatitpresentsadispersalbarrier,then populationscanbecomeeffectivelyisolatedandspeciesmaybelost.Maintainingstable populationdynamicsinadditiontointerconnectedpopulationsofforestassociatedspecieswill beimportantinpreservingbasinbiodiversityandwillsetthecoursefortheforestcommunity thatwillberealizedinthefuture.

103 Chapter 4: Large Mammals Introduction AwidearrayoflargerbodiedmammalsisassociatedwithforestedhabitatsintheLake Tahoebasin.Manyoftheselargernativespeciesmaybeexpectedtobesensitiveto developmentandhabitatmodificationbecauseoflargehomerangerequirementsandresulting smallerpopulationdensitiescomparedtosmallerbodiedspecies.However,someoftheless specializedspecies,suchasblackbear( Ursus americana ),coyote( Canis latrans ),andblack taileddeer(Odocoileus hemionus )mayrespondpositivelytolowtointermediatelevelsof developmentintermsofincreasedpopulationdensitiesandincreasedreproductivesuccess.In addition,someofthesespeciesmaybeattractedtocertainattributesinthesurroundingurban matrixand,asaresult,maycomeintoconflictwithhumans.Speciesofparticularpublicand/or managementsignificanceinthisgroupinclude:coyote,marten( Martes americana ),muledeer andblackbear.Themarten,blackbear,andcoyoteareamongthetoppredatorsintheLake Tahoebasin.Otherspeciesinthisgroupinclude:spottedskunk( Spilogale putoris ),longtailed weasel( Mustela frenata ),avarietyoftreeandgroundsquirrels,chipmunks,domesticdog( Canis familiaris),anddomesticcat( Felis cattus ).Theobjectivesformediumtolargemammalsareto usedetectionandvisitationdatatoexaminetheeffectsofdevelopmentandhumanactivityon thedistribution,communitycomposition,frequencyofuseandspeciesrichness. Methods DataCollection Mediumtolargebodiedmammalsweresurveyedusingacombinationoftrackand photographicsurveysandpelletgroupcounts.Tracksurveyswereconductedusingenclosed sootedaluminumtrackplates(Barrett1983,Fowler1995,ZielinskiandKucera1995). Photographicevidenceofspeciespresencewascollectedusingremotelytriggeredcameras (ZielinskiandKucera1995).Useofmultipletechniquesmayalsoimprovetheprobabilityof detectingresidentanimalsasresponsestothetrackplatesandcamerasmaydiffer(Campbell, unpublisheddata).Somelargercarnivoreslikecoyotesandbobcatsmaybereluctanttoenter enclosedtrackplatesgiventherelativelylowheightoftheplasticcanopy(openingheight27.5 cm)althoughothers,suchasblackbears,appearundeterred.Further,photographicevidence providesareliablemeansbywhichtodistinguishcoyoteandbobcatdetectionsfromthoseof domesticdogsandcats,whichisnotpossiblefromtracksduetotheoverlapintracksize.The presenceofdeerandleporidssuchassnowshoeharemaynotbeadequatelysampledusingthe abovemethods.Tobetterdescribetheirdistributions,pelletgroupcounts(Smith1968,Krebset al.1987,McKelveyetal.2002)wereused.Eachsampleunitconsistedofatotalof4enclosed trackplates,2remotecameras,and4pelletgroupplotarrays. TrackandCameraSurveys Anarraywasestablishedcenteredontheidentifiedsampleunitcenter.Onetrackplate station(TP1)wasplacednearthesampleunitcenter.Onecamera(TM1)waslocated100m

104 fromTP1onarandomlyselectedazimuth.Threetrackstationswereplacedatadistanceof approximately250mfromthecenterat0º(TP2),120º(TP3),and240º(TP4;Fig.5.1).Oneof thethreeoutertrackplatestationswasrandomlyselectedtobepairedwitharemotecamera (TM2),whichwasestablished100mfromthetrackplatestationonarandomlychosenazimuth. Alldevices(trackplatestationsandcameras)wereestablishedaminimumof30mfromapatch edgeortrail/road.Trackplatesandcameraswerebaitedwithchicken(drummettesfortrack plates,halfchickensforcameras)andbabycarrots,andacommercialscentwasusedasalure. Trackplatesandcameraswerevisitedeverytwodaysforatotaloffivevisits.Aspecies wasdeterminedtobepresentinasampleunitifanydevicewithinthesampleunitrecordeda detectionduringthesurveyperiod.Thetypeofdataderivedfromthesemethodsinclude:species detected/notdetected,speciesidentity(speciesorgenuslevel),dateofvisit,frequencyof visitation,andtimeofvisit(cameras).Theresponsevariablesincludespeciesdetected/not detected,speciesrichness,andfrequencyofuse.Frequencyofvisitationtodetectiondevices withinapatchmaybeusedtorepresenttheintensityofpatchuse(Gehringetal.2003). PelletgroupCounts Atrandomdistancesalongthetransectbetweentrackplatestations,pelletgroupcount plotarrayswereestablished10moffthetransect(Fig.4.1).Thearrayconsistedoffourplots, oneineachcardinaldirectionatadistanceof5m.Eachplothadaradiusofapproximately1.7m toyieldaplotareaofapproximately9.3m 2.Atotalof16plots(4plotsineachof4arrays)were establishedforeachsampleunit.Pelletgroupcountsoccuroncenearthebeginningofthe samplingperiodforeachsampleunit.Thedatarecordedwerespeciesdetected/notdetected. Althoughthenumberofpellets/unitareahasbeenusedtoderiveanindexofspeciesdensityin otherstudies,theindexissensitivetothedefecationrateused(numberofpellets/individual), whichappearstobelocationspecific(Fuller1991).

105 Pelletplotarray Trackplate Camera

~250m

100m 5m centerpoint

Figure4.1.Schematicofthearrangementofsurveydevicesandplots.Onecamerawaspairedwiththe trackplateatthecenterpointandtheotherwasrandomlypairedwithoneoftheremainingtrackplate station. HabitatCharacteristics Thelocationofeachtrackplateandcamerastationwasrecordedusingaglobal positioningsystem(GPS)unitandbasicinformationonmicrohabitatcharacteristicswas collected.Slope,aspect,disturbancewithina30mradiuswererecorded.Vegetationwas describedusingtheCaliforniaWildlifeHabitatRelationships(CWHR)systemtocharacterize thevegetationcommunity,treesizeandcanopyclosure.Wenotedthepresence,sizeanddecay classoftreesandstumpsandidentifiedtospecieswherepossible.Weestimatedtherelative coverbythedominanttreeandshrubspeciesandtheproportionofcoverareaingrass, herbaceous,rock,litterorbaresoil.Basalarea,treespeciescomposition,decayclassand diametersatbreastheightwerecollectedusingvariableplotmethodsusinga20factorprismand aBiltmorestick.Three30mtransectswereestablishedcenteredonalocation5mfromthetrack plateorcamerastationonarandomazimuthtosamplecoarsewoodydebrisandevidenceof anthropogenicdisturbancesuchroads,trailsortrash.Atthecenterpointandatthetransectends, canopyclosurewasmeasuredbydensiometer. ExplanatoryVariables Explanatoryvariableswerederivedfrommeasuredorestimatedcharacteristicsof microhabitatconditionsateachtrackplateandcamera(seeabove),aswellasfromGISdata.

106 GISbasedvariablesgeneratedforeachsampleunitcenterincludedslope,aspect,elevation, proportionofcoverbyforest,meadow,shrub,andherbaceousvegetationtypes,anddevelopment atarangeofspatialscales(Table4.1). DataAnalysis Detectionnondetectiondatawereusedtoevaluatechangesincommunitycompositionwith development,tomodeltheassociationofspeciesrichnesstodevelopmentandtodescribe specieshabitatassociations.Thedetectionofaspeciesatleastoncebyatleastonemethodorat onestation(e.g.,asinglecamera,trackplateorpelletgroupplotdetection)resultedina detectionforthesampleunit.Exceptwherenoted,thedatausedwerelimitedtothedetections fromthecentertrackplate,camera,andpelletgroupplotsforallsampleunits,allowingthe incorporationofdatafromthewidestpossiblearrayofsampleunitsrelativetodevelopmentlevel (n=86).Asubsetofsampleunits(n=11),typicallyinareasofhighlevelsofdevelopment,were ofinsufficientsizetoaccommodatethefullsampleunitarrayof4trackplatesand2camera stations.Attheselocations,weusedasingletrackplateandcamera.Thenumberofpelletgroup plotssampledwassimilarlyreduced. Withsurveydatatherearethreepossibleoutcomes:1)aspeciesmaybeabsentfroma sampleunit;2)itmaybepresentandbedetectedbythesurvey;or3)itmaybepresentbutgo undetectedbythesurvey.Thislattercaseresultsinafalseabsenceforthespeciesduetothe survey’sfailuretodetectit.Predictionsaboutsiteoccupancymustaccountforthisimperfect detectability(MacKenzieetal.2002).Toaccountforthefailuretodetectaspecieswhenpresent, allregressionanalyseswereadjustedtoaccountfortheprobabilityofdetectionofaspecies.The analysesweremodifiedtoallowtheuseofsitecovariates(eg.elevation,vegetationstructureand composition)likelytoaffecttheoccupancyofthesampleunitaswellasvisitcovariatesthat mightaffecttheprobabilityofdetection(eg.timeofyear,weatherconditions,etc). CommunityCompositionandRichness

Therelationshipsbetweenherbivore(rabbits,haresanddeer)andcarnivorespecies richnessandenvironmentalordevelopmentrelatedvariableswasdescribedusingPoisson regression(PROCGENMOD,SASInstitute2003)inamodelselectionframework.Wecreated asuiteofapriorimodelsbasedonexplanatoryvariablesgroupedbytype(e.g.Abiotic, DevelopmentContext,Microhabitatstructure;seeTable4.1)tocapturewhatwebelievedtobe alternativecompetingexplanationsforspeciesdistributionsandtolimitthenumberofvariables inanysinglemodelrelativetosamplesize.Afullmodelforeachgroupwasevaluatedaswellas aseriesofsubmodelsinwhichasinglevariablewasremoved(withreplacement)todetermine themostinfluentialvariablebasedonavariantofAkaike’sInformationCriteria(AIC)adjusted forsmallsamplesizes(QAICc).Thesevariableswerethenassembledintoacombinedmodel andallowedtocompetewiththebestmodelsfromeachgroup.Finally,variablesfromeach groupthatweresignificantatp<0.1wereidentifiedandusedtocreateanadditionalcombined modelforevaluation.Weidentifiedthemostinfluentialvariableintheoverallbestmodelusing theleaveoneoutprocedureandthechangeinQAICcvalue.

107 Table4.1.Variablesusedinregressionanalysestoevaluaterelationshipsbetweenlargemammalrichness andoccurrenceandenvironmentalordevelopmentrelatedvariables. Group Variable Variable Source Code Anthropogenic Dev100 %Areadevelopedwithin100m GIS,development radius model People Numberofpeopleencounteredper Fieldsurveys hour Dogs Numberofdogsencounteredper Fieldsurveys hour Vehicles Numberofvehiclesencounteredper Fieldsurveys hour Development Dev300, %Areadevelopedwithin300m, GIS,development Context Dev500, 500mor1000mradius model Dev1000, DevMax Maximumofabovevalues GIS,development model Abiotic Elev Elevationinmeters,averagewithin GIS,digitalelevation 100marea model Slope Percentslopeaveragedover100m GIS,digitalelevation area model Ppt_mm Precipitation,30yearaveragein GIS,Dalyetal.(2002) mm statisticalmappingof climate Microhabitat Avg_Shrub Sumofaverage%covervaluesfor Fieldmeasurement (composition) allshrubspecies Avg_Herb Sumofaverage%covervaluesfor Fieldmeasurement allherbspecies Avg_Tree Sumofaverage%covervaluesfor Fieldmeasurement alltreespecies Total_Cov Totalaverage%coverofherbs, Fieldmeasurement shrubs,andtrees Microhabitat Vol_Cwd Totalvolumeofcoarsewoody Fieldmeasurement (structure) debris Tree_lg Densityoftrees,≥61cmdbh,perha Fieldmeasurement Tree_sm Densityoftrees,12.527.9cmdbh, Fieldmeasurement perha Snag_Tot Densityofsnags,>30.5cmdbh,per Fieldmeasurement ha

108 Table4.1cont. Group Variable Variable Source Code Macrohabitat Bar_300, Percentareawithin300or1000m GIS,Dobrowskietal. (composition) Bar_1K classifiedasBarren (2005)vegetation For_300, Percentareawithin300or1000m classification For1K classifiedasForesttype crosswalkedtoCWHR Mdw_300, Percentareawithin300or1000m (CDFG1988)habitat Mdw_1K classifiedasMeadowtype types Shr_300, Percentareawithin300or1000m Shr_1K classifiedasShrub Macrohabitat N300_12, Percentofareawithin300or GIS,Dobrowskietal. (structure) N_1K_12 1000mdistancewithtrees<15cm (2005)vegetation dbh classification N34sp_300, Percentofareawithin300or crosswalkedtoCWHR N34sp_1K 1000mdistancewithtrees15–61 (CDFG1988)treesize cmdbhandcanopycover<40% anddensityclasses N34md_300, Percentofareawithin300or N34md_1K 1000mdistancewithtrees15–61 cmdbhandcanopycover≥40% N56sp_300, Percentofareawithin300or N56sp_1K 1000mdistancewithtrees>61cm dbhandcanopycover<40% N56md_300, Percentofareawithin300or N56md_1K 1000mdistancewithtrees>61cm dbhandcanopycover>40% Toexaminechangesinspeciescompositionalongthedevelopmentgradient,weuseda nonparametricmethodtotestfordifferencesincompositionbetweensampleunitsgroupedby the%development.WeusedamultiresponsepermutationprocedurewithSorenson’sdistance measure,anaturalweightingfactorforeachgroup,and1000permutationsofgroupassociations (McCuneandGrace2002).Theteststatistic,T,describesthedifferencesincommunity compositionamongsiteswith01%(n=8),130%(n=38),and>30%development(n=21).We alsoevaluatedtheinfluenceofeachspeciesonthedifferencesamongdevelopmentcategoriesby removingaspeciesfromtheanalysisandthenreplacingitinsubsequentanalyses.Whenthe changeinT,T,ispositive,itindicatesspecieswhosepresencetendtomakecommunity compositionmoredifferentamongdevelopmentcategories;anegativevalueforTindicates specieswhosepresencemakesthecommunitiesmoresimilar.Wealsoevaluatedheterogeneity withindevelopmentcategoriesusingasimilaritymeasure,A,thechancecorrectedwithingroup agreement.WhenA=0,thewithingroupheterogeneityequalsexpectationbychance.AsA→1 thensiteswithinthedevelopmentcategoryaremoresimilartooneanother;forA<0siteswithin thedevelopmentcategoryaremoreheterogeneousthanexpectedbychance.

109 HabitatAssociations

Forcarnivorespecies,logisticregression(PROCNLMIXED,SASInstitute2003) adjustedforspeciesdetectabilitywasusedtorelateindividualspeciesoccurrencetoexplanatory variablesdescribingenvironmentaloranthropogenicconditions(Table4.1).Modelswere developedbasedonlocalcharacteristics(suchascanopyclosure,treeandshrubcompositionand coarsewoodydebris),sampleunitcharacteristics(suchascompositionofhabitattypes, proportionofadjacentareadeveloped),andmatrixcharacteristicsusingconcentricbuffers aroundthesampleunitatvaryingdistances.Asdescribedabove,wegroupedsimilarvariables intogroupsofmodelsandsubmodelsandevaluatedthembasedonavariantofAICadjustedfor smallsamplesizes(AICc).Weassembledtwoadditionalmodelsbasedonthemostinfluential variables(“bestofAIC”;thevariableineachgroupeffectingthegreatestincreaseinAICcwhen removed)andthosevariablesthatweresignificant(“bestofp”;allvariablesfromanygroup withp<0.1). Toidentifywhetherourabilitytodetectspecieschangedalongthedevelopmentgradient, weevaluatedtheinfluenceofdevelopmentonbothlatencytofirstdetection(LFD)andthe probabilityofdetection.WeusedPoissonregressiontoevaluatetherelationshipbetweenLFD anddevelopment.Weemployeda3stepprocesstoevaluatetheinfluenceofdevelopmentwithin 300mondetectability.Firstaspecieshadtohaveaminimumof5detectionswithineachof3 broaddevelopmentcategories(<5%developed,530%developed,>30%developed).Next,we evaluatedtheassociationbetweenspeciesdetectionanddevelopmentbyevaluatingamodelwith developmentasavisitcovariate.Ifasignificantassociationwasfound,weusedmodelselection analysistodeterminewhetheramodelusingdevelopmentasavisitcovariatewasbetterthana modelwithvisitasasitecovariate.Theoutcomeofthisanalysisdictatedhowweproceeded withmodeldevelopmentforthespecies. ActivityPatterns Toexaminedailyactivitypatternsofcarnivores,weusedonlycamerasdetections becausethisistheonlymethodthatrecordedthetimeofdetectionaswellasthespecies detected.Weexamineddailyactivityacrossthedevelopmentgradientbygroupingactivityinto threeperiods:dusktodawn(2000hoursto0559hours),dawntomidday(0600to1259)and middaytodusk(1300to1959). Results SamplingCompleted DuringJunethroughSeptember2003andMaythroughSeptember2004,75samplesites acrossthedevelopmentgradientweresampledusingtheabovemethodswiththefullarrayof trackplates,camerasandpelletplotgroups.At11additionalsites,areducedarrayofasingle trackplate,cameraandpelletgroupplotswasused.Tencarnivoresweredetected,eightnative species,andthedomesticdogandcat,plusthepresenceoffivesquirrelspecies,chipmunks, woodratsandharesanddeer(Table4.2).Resultsdescribedherefocusonthecarnivores, leporidsanddeerdetectedasthesearethespeciesbestrepresentedbythesemethods.

110 Table4.2.Speciesdetectedin2003duringtrackplate,camera,andpelletsurveys.Severalspeciesare difficulttodistinguishandaregroupedbygenusorfamilydesignations. Scientificname Commonname Martes americana Americanmarten Spilogale putoris Spottedskunk Mephitis mephitis Stripedskunk Mustela species Weasels Lynx rufus Bobcat Ursus americanus Blackbear Canis latrans Coyote Procyon lotor Raccoon C. familiaris DomesticDog F. cattus DomesticCat Spermophilis beecheyi Californiagroundsquirrel S. lateralis Goldenmantledgroundsquirrel Tamaisciurus douglasii Douglas’squirrel Glaucomys sabrinus Northernflyingsquirrel Sciurus griseus Westerngraysquirrel Tamias species Chipmunks Neotoma species Woodrats Leoporid species Rabbitsandhares Odocoileus hemionus Blacktaileddeer Domesticdogswerethemostcommonlydetectedspeciesatasampleunitandwere recordedat64%ofsites(n=49)(Fig.4.2).Atonesamplesite,atleast13distinctindividuals wererecordedduringone,10daysurveyperiod.Coyote(n=34),blackbear(n=35),raccoon (Procyon lotor; n=37),andrabbitsandhares(Leporidspecies;n=45)wereeachdetectedat >40%ofsampleunits.Theleastcommonlydetectedspecieswerebobcat(n=2),weasels(n= 2),andspottedskunk(n=3).

0.7 0.6 0.5 0.4 0.3 0.2 0.1 Proportion with Detection with Proportion 0

k r at n n res Dog C rte obcat Skun Deer Coyote B Ma accoo Ha s/ Weasels R lackbeait ipedSkunk B tr S Spotted Rabb Figure4.2.Proportionofsampleunitswithatleastonedetectionofthespeciesduringtrackplate,camera orpelletsurveys.

111 CommunityCompositionandRichness Speciesrichnessdidnotdiffersignificantlyalongthedevelopmentgradient(mean=2.8, s.d.=1.0;median=3)andrangedfrom16species.Ninesampleunitsrecorded4native carnivorespecies.Therewassomevariationinindividualspeciesdistributionsacross developmentclasses(Fig.53).Domesticdogsandraccoonsweredetectedatsamplesites acrossthedevelopmentgradient,butweresomewhatmorecommonatmoredevelopedsites. Felidsoccurredinmostdevelopmentclasses.Wherethespeciescouldbepositivelyidentified (e.g..fromaphotograph),bobcatsaccountedforthedetectionsatlessdevelopedsitesand domesticcatsaccountedforthedetectionsatmoredevelopedsites.Coyoteswererelatively evenlydistributedacrossdevelopmentclasses,occurringinapproximately4060%ofsample sitesineachdevelopmentclass.Martenandblackbearshowedanegativeresponseto developmentwithagreaternumberofdetectionsatlessdevelopedsites.Martensdominated detectionsattheleastdevelopedsites(<1%developed),accountingfor48%ofdetections, whereasdomesticdogsaccountedforthemajorityofdetectionsinallotherdevelopment categories(Fig.4.4).Martensandskunksshowedaskeweddistributionbeingdetectedatonly thosesiteswheredevelopmentwas<30%(Fig.4.5)

1.00 0.90 0.80 0.70 0 0.60 1to15 0.50 16to30 0.40 31to45 0.30 >45 0.20 Proportion with Detection with Proportion 0.10 0.00

t k s en l es er Dog Ca cat ear r e ob art kun ase kunk a D Coyote B M S e S H W Raccoon d lackb tte B triped po S S Figure4.3.Proportionofsamplesitesineachdevelopmentclassthatreceivedatleastonedetectionofthe speciesduringtrackplate,cameraorpelletsurveys.Developmentclassesrefertotheproportionofa300 mradiuscirclearoundthesampleunitthatwasdeveloped.

112 100% Blackbear

Spottedskunk 80% Raccoon

60% Stripedskunk Americanmarten

40% Bobcat DomesticCat

Proportion Total Detections 20% Coyote

DomesticDog

0% 0 1to15% 16to30 31to45 >45% % Developed (300m) Figure4.4.Proportionoftotaldetectionsattrackplatesandcamerasatasampleunitforeachspeciesby developmentcategory.

1.000

Marten 0.800 StripedSkunk 0.600 SpottedSkunk

0.400

0.200 Proportion with a detection a with Proportion 0.000 0 1to15 16to30 31to45 >45 % Developed (300m) Figure4.5.Occurrenceofmustelidsandtheiralliesrelativetoproportionofa300mradiuscirclearound thesampleunitthatwasdeveloped. MRPPanalysisindicatedsignificantdifferencesamongsitesinthethreedevelopment categories(T=4.548;p<0.002).Basedonmultiplecomparisons(significant=p<0.0125), communitiesatlowdevelopmentsites(<1%developed)weresignificantlydifferentfrom communitiesathighdevelopmentsites(>30%developed;T=4.999;p<0.002).Communitiesat

113 siteswithmoderatedevelopment(130%developed)weresignificantlydifferentfrom communitiesatsiteswithlowdevelopment(T=3.179;p<0.011)butnotcommunitiesathigh developmentsites(T=2.436;p<0.030).Speciesthathadthegreatestimpactontheobserved differencesweremartenandblackbear(Table4.3).Blackbearswerefairlybroadlydistributed alongthedevelopmentgradient(Fig.4.3,4.4);theirpresencetendedtomakecommunitiesmore similar(T>0)amongdevelopmentcategories.Incontrast,martensoccurredatsiteswithless development(Fig.4.3,4.4);theirpresencetendedtomakecommunitiesmoredifferentamong developmentcategories(T<0). Modelselectionanalysisforherbivorespeciesrichnessidentifiednosingle,strongmodel (bestmodelweight=28%).Thetopthreemodelscontainedvariablesrelatedtobothbroadscale macrohabitatandmicrohabitatstructure,aswellasanthropogenicinfluencesassociatedwith humandevelopment(Table4.4).Forcarnivores,speciesrichnesswasassociatedwith microhabitatcharacteristics,specificallythevolumeofcoarsewoodydebris,andthedensityof largeandsmalltrees,aswellastheabioticcharacteristicsofthesite(Table4.5,Fog.4.6).

114 Table4.3.ResultsofMultiresponsepermutationprocedureanalysisoflargemammalcommunity composition(7speciesat67sampleunits)intheLakeTahoeBasin20032004.StatisticTreflectsthe differenceincompositionamongdevelopmentcategories;TisthechangeinTwiththeindicated speciesremoved;Aisameasureofheterogeneitywithindevelopmentcategories.WhenTispositive, theremovedspeciestendstomakethecommunitiesmoresimilarwhenpresent;whenTisnegative,the removedspeciestendstomakethecommunitiesmoredifferentwhenitispresent.AllTvalueswere statisticallysignificant(p<0.006)unlessnoted. Speciesremoved #sites T A T Allspeciesincluded 67 4.548 0.068 Blackbear 62 6.601 0.108 1.922 Coyote 61 4.679 0.077 0.131 Spottedskunk 67 4.574 0.070 0.026 Stripedskunk 67 4.524 0.068 0.024 Weasels 67 4.491 0.070 0.057 Bobcat 67 4.410 0.068 0.138 Raccoon 61 4.113 0.068 0.567 Marten 67 2.372 ns 0.041 2.176 Ns:nonsignificant Table4.4.PerformanceofmodelsofherbivorerichnessbasedonQAICcandAkaikeweight.A() indicatesanegativerelationship. Models Variables QAICcWeight Macrohabitat(structure) N34sp_1K()N34md_1KN56sp_1K 175.201 0.2813 1000m N56md_1K Microhabitat(structure) Vol_CwdTree_lg()Tree_sm() 176.039 0.1863 Anthropogenic Dev_100m()PeopleVehic() 176.338 0.1604 Macrohabitat(composition)– For_300Mdw_300*Shr_300 176.419 0.1541 300m Macrohabitat(structure)–300m N300_12()N34sp_300()N34md_300() 176.473 0.1499 N56sp_300() Macrohabitat(composition)– Bar_1KFor_1KShr_1K() 179.044 0.0415 1000m Developmentcontext Dev_300mDev_500mDev_1000m() 181.174 0.0143 Abiotic ElevPpt_mm() 181.9350.0098 Microhabitat(composition) Avg_ShrubAvg_Herb()Avg_TreeTotal_Cov 187.546 0.0006 Bestofp<0.1 Dev_100m()Dogs()SlopeSnag_Tot 182.684 0.0000 Avg_ShrubAvg_Herb()Mdw_1K()Shr_1K()

115 4

3

2 Richness

1

0 0.00 20.00 40.00 60.00 80.00 100.00 Volumecoarsewoodydebris a)

4

3

2 Richness

1

0 0 200 400 600 800 1000 1200 Densityoftrees<27cmdbhperhectare b)

4

3

2 Richness

1

0 0 20 40 60 80 100 Densityoftrees>61cmdbhperhectare c) Figure4.6.Therelationshipofcarnivorespeciesrichnesstoa)thevolumeofcoarsewoodydebris,b)the densityofsmalltrees,andc)thedensityoflargetrees.

116 Table4.5.PerformanceofmodelsofcarnivorerichnessbasedonQAICcandAkaikeweights.A() indicatesanegativerelationship. Models Variables QAICcWeight Microhabitat(structure) Vol_CwdTree_lgTree_sm*() 226.270 0.4828 Abiotic Ppt_mm*()Slope 226.9760.3392 Anthropogenic Dev_100m()People()Dogs 229.743 0.0850 Microhabitat(composition) Avg_Shrub()Avg_Herb()Avg_TreeTotal_Cov 230.465 0.0593 Developmentcontext Dev_300mDev_500m()Dev_1000m 232.814 0.0183 Macrohabitat(composition)– Bar_300Mdw_300Shr_300() 234.037 0.0099 300m Macrohabitat(structure)– N300_12()N34sp_300()N56sp_300() 235.706 0.0043 300m N56md_300() BestofAIC DogsSlopeTree_smShr_300()N34sp_1K() 239.659 0.0006 N56md_1K() Macrohabitat(composition)– N_1K_12()N34SP_1K()N56SP_1K() 240.581 0.0004 1000m N56MD_1K() Macrohabitat(structure)– Bar_1K()Mdw_1K()Shr_1K() 241.919 0.0002 1000m Bestofp<0.1 Dev_Max()Elev()Snag_TotFor_300N300_12 255.326 0.0000 N34sap_300N34md_300N56md_300 *MostinfluentialvariablebasedonQAICc IndividualSpeciesAssociations Onlycoyoteandblackbearweredetectedfrequentlyenoughacrossthedevelopment gradientforfurtheranalysisofdetectability.Neitherspeciesdemonstratedanassociation betweenLFDanddevelopmentwithin300m(coyote:p<0.494;blackbear:p<0.305). Developmentwasnotasignificantvisitcovariateforcoyote(p<0.16),butwassignificantfor blackbear(p<0.0051).Ourabilitytodetectblackbearsgivenpresencedeclinedasdevelopment increased(Table4.6).Modelselectionanalysisindicatedthatthemodelincorporating developmentasavisitcovariatewasthebestmodel(weight=50%),closelyfollowedbythe modelwithdevelopmentasbothasiteandvisitcovariate(weight=24%).Weretained developmentat300masavisitcovariateandalloweddevelopmentvariablesfromotherspatial scalestocompeteassitecovariates. Table4.6.Meanprobabiltiesofoccupancyanddetectionforblackbearbydevelopmentcategories. %Developed(300m) Probabilityofoccupancy Probabilityofdetection Mean Std.Dev Mean Std.Dev <5% 0.513 0.008 0.853 0.009 530% 0.425 0.036 0.738 0.053 >30% 0.299 0.048 0.528 0.087 Speciesdifferedinthesuitesofvariablesmoststronglyassociatedwiththeiroccurrence. Forrabbits/hares,macrohabitatcompositionwasmoststronglyassociatedwithoccurrence (weight=24%),showingastrongassociationwithforestedconditions,followedbyabiotic characteristicsofthesite,macrohabitatstructure,anthropogeniccharacteristicsandmicrohabitat characteristics(Table4.7a).Developmentandhumandisturbancewerenotstrongdeterminants intheoccurrenceofrabbitsandhares.Conversely,theoccurrenceofdeerwasstrongly

117 negativelyassociatedwithdevelopmentandhumandisturbancerelatedvariables,alongwith slopeandmicrohabitatstructure(weight=99%;Table5.7b,Fig.4.7). Table4.7.PerformanceofmodelsofherbivoreoccurrencebasedonAICcandAkaikeweights.A() indicatesanegativerelationship. a)Rabbits/hares Models Variables AICc Weight Macrohabitat(composition)– For_300Shr_300() 91.494 0.2400 300m Abiotic ElevPpt()Slope 92.7500.1279 Macrohabitat(composition)– For_1KMdw_1K()Shr_1K() 92.750 0.1279 1000m Macrohabitat(structure)– N34md_1KN56sp_1KN56md_1K 92.750 0.1279 1000m Macrohabitat(structure)– N34md_300()N56sp_300()N56md_300() 92.750 0.1279 300m Microhabitat(structure) Vol_Cwd()Tree_lg()Tree_smSnag_tot 94.063 0.0663 Anthropogenic Dev_100m()PeopleDogs()Vehic() 94.063 0.0663 Developmentcontext Dev_300mDev_500m()Dev_1000mDev_Max() 94.063 0.0663 Microhabitat(composition) Avg_ShrubAvg_Herb()Avg_TreeTotal_Cov 95.436 0.0334 Bestofp<0.1 Dogs()Snag_TotAvg_Herb()For_300() 96.870 0.0163 N56MD_300()Shr_1K() b)Deer Models Variables AICc Weight BestofP<0.1 PeopleDogs()Dev_300mDev_max()Slope 39.508 0.9991 Avg_ShrubVol_CwdMdw_1K() Abiotic Ppt_mm()Slope 54.8880.0005 BestofAIC Dogs()SlopeVol_CwdTree_lg()Mdw_1K() 56.306 0.0002 Anthropogenic Dev_100m()PeopleDogs() 56.966 0.0002 Developmentcontext Dev_300mDev_500mDev_Max() 59.229 0.0000 Macrohabitat(composition)– Bar_1K()For_1K()Mdw_1K()Shr_1K() 59.920 0.0000 1000m Microhabitat(structure) Vol_CwdTree_lg()Snag_Tot 62.4140.0000 Macrohabitat(composition)– Mdw_300()Shr_300 65.760 0.0000 300m Macrohabitat(structure)– N34sp_300N56sp_300N56md_300 66.438 0.0000 300m Macrohabitat(structure)– N34md_1K()N56sp_1KN56md_1K() 66.792 0.0000 1000m

118 1

0.8

0.6 NotDetected DeerDetected 0.4

Proportionofsites 0.2

0 0 1 2 >2 Dogsdetectedperhour Figure4.7.Thedistributionofdeerdetectionsatsampleunitswithvaryinglevelsofdogdetectionsper hour(includesbothleashedandunleasheddogs). Predictably,thenonnativespecies,domesticdogandcat,werestronglypositively associatedwithanthropogenicinfluences.Fourofthetopfivemodelsfordomesticdogand threeofthetopfivemodelsfordomesticcatcontainedpositiveassociationswiththenumberof people,numberofdogs,and/ordevelopmentatvariousscales(Table4.8a,b).Thebestmodelfor domesticdogwasbasedondevelopmentcontext(weight=92%). Modelscontainingdevelopmentandanthropogeniccharacteristicsalsoperformedwellto describetheoccurrenceoftwonativespeciesconsideredtobetolerantofhumanpresenceand activity:coyoteandraccoon.Threeofthetopfourmodelsforcoyoteoccurrencecontained variablesassociatedwithanthropogenicinfluences(Table4.9a,Fig.4.8).Coyoteoccurrencewas associatedwithdevelopmentwithin100m,humanactivity,vehicles,andmacrohabitat characteristics.Thebestmodelofcoyoteoccurrencewasbasedentirelyonanthropogenic influences(weight=48%).Increasednumbersofvehicleswasassociatedwithadeclinein coyotedetections(Fig.4.8).Raccoonswereassociatedwithdevelopmentatmultiplespatial scales,dogs,microhabitatstructureandmacrohabitatstructureandcomposition(weight=27%; Table4.9b).

119 Table4.8.PerformanceofmodelsofdomesticdogandcatoccurrencebasedonAICcandAkaike weights.()indicatesanegativerelationship. a)Domesticdog Models Variables AICc Weight Developmentcontext Dev_300m()Dev_1000m()Dev_Max* 400.129 0.9169 Anthropogenic Dev_100mPeopleDogs 406.580 0.0364 BestofAIC Dev_100m()Dev_MaxElev()Snag_Tot() 406.910 0.0309 N56MD_300()For_1K()N34MD_1K() Abiotic Elev()Slope() 408.4160.0145 Bestofp<0.1 Dev_100m()DogsDev_MaxElev()Avg_Shrub() 404.549 0.0009 Snag_Tot()Mdw_300For_300()N56md_300() For_1K()Mdw_1K()N34md_1K()N56md_1K() N56sp_1K() Macrohabitat(composition)– Bar_1K()For_1K()Mdw_1K 416.865 0.0002 1000m Macrohabitat(structure)– N34md_1K()N56sp_1K()N56md_1K() 419.343 0.0001 1000m Macrohabitat(composition)– For_300()Mdw_300 420.694 0.0000 300m Macrohabitat(structure)– N34md_300()N56sp_300()N56md_300 422.489 0.0000 300m Microhabitat(composition) Avg_Shrub()Avg_HerbAvg_Tree() 424.511 0.0000 Microhabitat(structure) Tree_lg()Tree_smSnag_Tot() 425.551 0.0000 *MostinfluentialvariablebasedonAICc b)Domesticcat Models Variables AICc Weight Bestofp<0.1 Avg_Herb*N34sp_300 107.447 0.2263 BestofAIC Dev_100m 108.034 0.1687 Anthropogenic Dev_100mPeopleVehic() 108.567 0.1292 Abiotic Slope()Elev() 108.6430.1244 Developmentcontext Dev_300mDev_500m()Dev_Max() 108.834 0.1130 Microhabitat(structure) Vol_Cwd()Tree_lg()Snag_Tot 109.175 0.0953 Microhabitat(composition) Avg_Shrub()Avg_Tree()Total_Cov 110.002 0.0631 Macrohabitat(composition)– For_300()Mdw_300() 111.854 0.0093 300m Macrohabitat(structure)– N34sp_300N34md_300()N56sp_300() 114.033 0.0084 300m Macrohabitat(composition)– For_1K()Mdw_1K()Shr_1K() 115.394 0.0043 1000m Macrohabitat(structure)– N34sp_1KN34md_1K()N56md_1K() 115.403 0.0042 1000m *MostinfluentialvariablebasedonAICc

120 Table4.9.PerformanceofmodelsofcoyoteandraccoonoccurrencebasedonAICcandAkaikeweights. ()indicatesanegativerelationship. a)Coyote Models Variables AICc Weight Anthropogenic Dev_100mPeople*Vehic() 323.936 0.4769 Macrohabitat(composition)–300m For_300()Shr_300 326.8530.1109 BestofAIC Vehic() 327.7320.0715 Bestofp<0.1 Vehic()Avg_Shrub() 328.015 0.0621 Abiotic Elev()Ppt_mm() 328.0620.0606 Macrohabitat(structure)–1000m N34md_1K()N56sp_1KN56md_1K() 328.980 0.0383 Microhabitat(composition) Avg_Shrub()Avg_Tree()Total_Cov 329.388 0.0312 Macrohabitat(structure)–300m N34sp_300()N34md_300()N56sp_300 330.297 0.0198 Macrohabitat(composition)–1000m Bar_1K()For_1K()Mdw_1K 330.762 0.0157 Developmentcontext Dev_300mDev_1000mDev_Max() 331.460 0.0111 Microhabitat(structure) Vol_cwd()Tree_lg()Tree_sm()Snag_tot() 332.063 0.0082 *MostinfluentialvariablebasedonAICc b)Raccoon Models Variables AICc Weight BestofAIC DogsDev_300mTree_lgShr_1K*()N56sp_1K() 222.734 0.2742 Bestofp<0.1 DogsDev_300mDev_500m()Dev_1000mAvg_tree 223.174 0.2178 Shr_1K() Macrohabitat(structure)– N34md_1KN56sp()_1KN56md_1K 224.587 0.1075 1000m Macrohabitat(composition)– Bar_1K()Mdw_1KShr_1K() 224.865 0.0935 1000m Anthropogenic Dev_100mPeople()Dogs 225.445 0.0700 Macrohabitat(composition)– Mdw_300Shr_300() 226.257 0.0466 300m Developmentcontext Dev_300mDev_500m()Dev_1000 227.097 0.0306 Dev_Max() Abiotic ElevSlope() 227.586 0.0240 Microhabitat(composition) Avg_ShrubAvg_TreeTotal_Cov() 227.632 0.0234 Microhabitat(structure) Vol_Cwd()Tree_smTree_lg 228.3510.0164 Macrohabitat(structure)– N34sp_300()N56sp_300()N56md_300() 230.997 0.0138 300m *MostinfluentialvariablebasedonAICc

121 1

0.8

0.6 NotDetected CoyoteDetected 0.4

Proportionofsites 0.2

0 0 25 50 100 >100 Vehiclesdetectedperhour Figure4.8.Thedistributionofcoyotedetectionsatsampleunitswithvaryinglevelsofvehiclesdetected perhour. Twonativespecieswerelessstronglyassociatedwithanthropogenicinfluences:marten andblackbear.Forthesespecies,modelswithenvironmentalorhabitatvariablestendedto performbetterthanthosewithdevelopmentoranthropogenicvariablesonly.Whendevelopment oranthropogenicvariablesdidoccurintopmodels,therelationshipwasgenerallyanegative one. Thebestmodelformartenoccurrencewasacombinedmodelhumanactivity,totalsnag densityandmacrohabitatstructureandcomposition(weight=73%,Table4.10a,Fig.4.9,4.10). Martenwerenegativelyassociatedwithhumanactivityandpositivelyassociatedwiththe numberofsnagsperhectare(Fig.4.9,4.10).Modelsbasedondevelopmentcontext(weight= 0.05%)andanthropogenicinfluences(weight=0.01%)performedpoorlyformartenoccurrence (Table4.10a). Wefirstevaluatedblackbearwithoutaccountingforchangesinprobabilityofdetection withdevelopment.Thebestuncorrectedmodelforblackbearoccurrencewasbasedona negativerelationshipbetweenbearoccurrenceanddevelopment,humanactivityandvehicles (weight=32%).Thenextbestmodelsforblackbearwerecomprisedofvariablesdescribing macrohabitatcompositionandstructure(Table4.10b).Whenweincorporateddevelopmentasa covariateaffectingdetectability,wefoundalowerimportanceofdevelopmentasasitecovariate andelevatedimportanceoflocallandscape(within300m)composition(e.g.amountofforest andshrubhabitattypes)fordescribingblackbearoccurrence.Variablesrelatedtohumanactivity remainedimportant,appearinginthethirdhighestmodel(Table4.11).

122 Table4.10.PerformanceofmodelsofmartenandblackbearoccurrencebasedonAICcandAkaike weights.()indicatesanegativerelationship. a)Marten Models Variables AICc Weight BestofAIC People()Snag_TotShr_300()N56md_300( 93.093 0.7335 )For_1K()N34md_1K* Macrohabitat(composition)–300m Mdw_300()Shr_300() 96.512 0.1327 Macrohabitat(composition)–1000m For_1KMdw_1KShr_1K() 98.642 0.0458 Macrohabitat(structure)–300m N34sp_300()N56sp_300()N56md_300() 99.099 0.0364 Macrohabitat(structure)–1000m N34sp_1KN34md_1KN56sp_1K 99.488 0.0300 N56md_1K Bestofp<0.1 Dev_500m()ElevAvg_HerbAvg_Tree() 102.171 0.0078 N56md_300()N34md_1K Developmentcontext Dev_300m()Dev_500mDev_1000m() 102.731 0.0059 Microhabitat(structure) Tree_sm()Tree_lg()Snag_Tot 103.932 0.0055 Abiotic ElevPpt_mm() 104.665 0.0023 Anthropogenic Dev_100m()People()Dogs 110.240 0.0001 Microhabitat(composition) Avg_Herb()Avg_TreeTotal_Cov() 112.632 0.0000 *MostinfluentialvariablebasedonAICc b)Blackbear Models Variables AICc Weight Anthropogenic Dev_100m()People*()Vehic() 251.728 0.3215 Macrohabitat(structure)–300m N34sp_300N34md_300N56sp_300 252.762 0.1917 Macrohabitat(composition)–300m For_300Shr_300 253.353 0.1427 Macrohabitat(composition)–1000m Bar_1K()For_1KShr_1K 253.657 0.1225 Macrohabitat(structure)–1000m N34sp_1KN34md_1KN56md_1K 254.572 0.0775 Bestofp<0.1 For_300N34md_300For_1KN34md_1K 254.700 0.0727 BestofAIC Snag_TotFor_300N34md_300For_1K 256.715 0.0266 N34md_1K Developmentcontext Dev_300m()Dev_1000mDev_Max() 258.258 0.0123 Microhabitat(structure) Tree_smTree_lg()Snag_Tot 258.277 0.0122 Abiotic ElevPpt_mm() 259.4490.0068 Microhabitat(composition) Avg_ShrubAvg_TreeTotal_Cov() 262.156 0.0017 *MostinfluentialvariablebasedonAICc

123 1

0.8

0.6 NotDetected MartenDetected 0.4

Proportionofsites 0.2

0 0 1 2 3 >3 Peopledetectedperhour Figure4.9.Thedistributionofmartendetectionsatsampleunitswithvaryinglevelsofhumanactivity detectedperhour.

1

0.8

0.6 NotDetected MartenDetected 0.4

Proportionofsites 0.2

0 0 50 100 150 200 >200 Totalsnagsperhectare Figure4.10.Thedistributionofmartendetectionsatsampleunitswithvaryinglevelsofsnagsper hectare.

124 Table4.11.Performanceofmodelsofblackbearoccurrenceaccountingforchangesindetectabilityalong thedevelopmentgradientbasedonAICcandAkaikeweights.()indicatesanegativerelationship. Models Variables AICc Weight Macrohabitat(composition)–300m For_300*Shr_300 250.306 0.2945 Macrohabitat(structure)–300m N34md_300N56sp_300N56md_300() 251.228 0.1858 Anthropogenic People*()Dogs()Vehic() 251.329 0.1766 Macrohabitat(composition)–1000m Bar_1K()For_1KShr_1K 252.591 0.0940 Macrohabitat(structure)–1000m N34sp_1KN34md_1KN56md_1K 253.121 0.0721 Bestofp<0.1 For_300N34md_300For_1KN34md_1K 253.361 0.0639 BestofAIC Snag_TotFor_300N34md_300For_1K 253.816 0.0509 N34md_1K Microhabitat(structure) Tree_smTree_lg()Snag_Tot 253.537 0.0215 Developmentcontext Dev_1000mDev_Max() 255.950 0.0175 Abiotic ElevPpt_mm() 256.7320.0119 Microhabitat(composition) Avg_ShrubAvg_TreeTotal_Cov() 258.068 0.0061 *MostinfluentialvariablebasedonAICc ActivityPatterns Speciesvariedinthetimeofdayduringwhichtheyweredetectedmostfrequently.Dogs weregenerallydetectedduringdaylighthours;incontrast,coyotesweregenerallydetectedafter dusk(after2000hours)andbeforedawn(before0600hours;Fig.4.11and4.12).Ofnoteisthe tendencytowardcoyotedetectionsduringthedayaswellasatnightatthelessdevelopedsample units. Blackbearexhibitedstrongnocturnalbehavioratsampleunitswithmoderatetohigh levelsofdevelopment,whereasbearswereactiveduringalltimeperiodsatlessdevelopedsites (Fig.4.12).Coyotesappearedtobeactiveprimarilyanightacrossthedevelopmentgradientwith someactivityduringthedayatlowtomoderatelydevelopedsites.Raccoonswereactive primarilyatnightbutindicatedatrendtogreateractivityduringdaylighthoursatmore developedsites.

24

20

16

Dog 12 Coyote

Time of day of Time 8

4

0 0 20 40 60 80 % Developed (1000m) Figure4.11.Thetemporaldistributionofcameradetectionsofdogsandcoyotesrelativetothe developmentgradient.

125

Dog Coyote

1.00 1.00

0.80 0.80

DusktoDaw n DusktoDaw n 0.60 0.60 Daw ntoMidday Daw ntoMidday MiddaytoDusk MiddaytoDusk 0.40 0.40 % Detections % Detections %

0.20 0.20

0.00 0.00 0 1to15 16to30 31to45 >45 0 1to15 16to30 31to45 >45 % Developed % Developed Marten Black bear

1.00 1.00

0.80 0.80

0.60 DusktoDaw n 0.60 DusktoDaw n Daw ntoMidday Daw ntoMidday 0.40 MiddaytoDusk 0.40 MiddaytoDusk % Detections % % Detections %

0.20 0.20

0.00 0.00 0 1to15 16to30 31to45 >45 0 1to15 16to30 31to45 >45 % Developed % Developed Figure4.12.Temporaldistributionofcarnivoreactivityacrossthedevelopmentgradient.Timeperiods are:dusktodawn(2000hoursto0559hours),dawntomidday(0600to1259)andmiddaytodusk (1300to1959). Discussion Compositionofthecarnivorecommunitywasaffectedbydevelopmentandhuman disturbancethroughthecompositeofpositiveandnegativeresponsesofindividualspecies. Richnessisnotasensitivemeasureofcommunitychange,giventhesmallnumberofspecies comprisingthecarnivorecommunityandthecompensatoryresponsesobservedamongthe carnivorespecies,wherejustasmanyspeciesappearedtobepositivelyaffectedbydevelopment aswerenegativelyaffected.Changesincompositionwereamoreeffectivemeansofdetecting communitywideresponsestodevelopment.Martenandraccoon,representingnegativeand positiveresponders,respectively,appearedtohavethegreatesteffectoncompositionalongthe developmentgradient.MartenisamongthetopmammalianpredatorsinLakeTahoe,andtheir absenceinmoredevelopedareascouldaffecttheabundanceoftheirprey(primarilyvoles, chipmunksandsquirrels).Raccoonisanomnivore,theirgreateroccurrenceinmoredeveloped areasisunlikelytohaveasubstantiveeffectontrophicdynamics. Speciesareexpectedtovaryintheirresponsetodevelopmentandhumanactivegiven differencesinspeciesmorphologyandlifehistorycharacteristics(Crooks2002,Gehringand Swihart2003).Speciesthatcanutilizeabroadarrayofresourcesmaybelesssensitiveto

126 developmentandconsequentlymoretolerantofaheterogeneousenvironment(Bright1993).The occurrenceandactivityofraccoonsandcoyotes,aswellastheoccurrenceofdogsandcats,were neutrallyorpositivelyassociatedwithhumandevelopmentandactivity.Generalistspeciesmay beneutrallyorpositivelyaffectedbyhabitatmodification,andaremorelikelytoberelatively toleranttobothdevelopmentandanthropogenicdisturbance.Anextremeexampleofthiswould bespeciessuchasraccoons,squirrels,andcrowswhichcanlivecommensallywithhumansand takeadvantageofanthropogenicfeaturesandfoodsources.Changesinthedistributionofthe omnivorousraccoonalongthedevelopmentgradientareunlikelytohaveasubstantiveeffecton trophicdynamics,particularlygiventheirabilitytoexploitanthropogenicresources.However, raccoonsarecapableofreachingextremedensitiesindevelopedareasandmaycomeinto conflictwithhumansandhumanresources(Prangeetal.2004,Ditchkoffetal.2006). Incontrast,theoccurrenceofmarten(ahabitatspecialist)wasnegativelyassociatedwith increasinglevelsofdevelopmentandhumanactivity.Martenisamongthetopmammalian predatorsinLakeTahoe,andtheirabsenceinmoredevelopedareascouldaffecttheabundance oftheirprey(primarilyvoles,chipmunksandsquirrels).Althoughthemartenwasoneofthe speciesdrivingchangesincarnivorecommunitycompositionaccordingtheMRPPanalysis, developmentwasnotstronglyassociatedwithmartenoccurrence.Thisislikelyduetothe limitedoverlapofthecoremartendistributionwithareasofhigherlevelsofdevelopment.The occurrenceofmartensincommunitiestendedtomakethemmoredifferentduetherelative rarenessofthemartenbelow7000’elevationinthebasin.Conversely,thebroadlydistributed blackbeartendedtohomogenizecommunitieswhereitoccurred. Althoughdevelopmentwasagreaterinfluencethanhumanactivityonmostspecies, thosemostsensitivetodevelopmentalsoexhibitedalterationsintheirtemporalpatternsof habitatuse.Thebehaviorofwildlifeindevelopedenvironmentsmaydifferfromthatoftheir counterpartsinlessdevelopedareasduetoadaptationstohumaninducedstressors(Ditchkoffet al.2006,GeorgeandCrooks2006).Basedonthetimingofdetections,coyotesandblackbears intheLakeTahoeBasinappearedtobeactivethroughoutthedayatlessdevelopedsampleunits butprimarilywerenocturnalatmoredevelopedsampleunits.Rileyetal.(2003)notedsimilar patternsforcoyotesinsouthernCalifornia,observingthatanimalsassociatedwithnonnatural areashadhigherlevelsofactivityatnight.Telemetrystudiesofblackbearsalsodescribeduseof urbanareaspredominatelyatnight(BeckmannandBerger2003a,Lyons2005).Thisshiftin activitypatternreducesactivityduringthetimeperiodswiththegreatestactivitybyhumansand domesticdogs.Incontrast,raccoonsexhibitedatrendtowardmorebroadactivityperiodsin areasofgreaterdevelopment,becomingincreasinglyactiveduringdaylighthours,perhaps representingtoleranceofhumanactivityorexploitationofanthropogenicresourcessuchastrash dumps(Prangeetal.2004,Ditchkoffetal.2006).Suchshiftsinactivitypatternmaybe beneficial,benign,ordetrimental(KnightandGutzwiller1995,FridandDill2002)tothe survivalandfitnessofindividuals.Determiningtheconservationimportanceoftheseactivity shiftswouldrequireamorefocusedstudyofthebehaviorofthespeciesconcerned(Gilletal. 2001). Thenearlyubiquitouspresenceofdogshasgreatecologicalsignificance.Thepresenceof dogscanresultinincreasedsensitivity,flushingdistances,andheightenedvigilanceinaffected wildlife(MacArthuretal.1982,Maininietal.1993,Milleretal.2001).Althoughsomewhatless frequentlydetectedatlessdevelopedsampleunits,dogsweredetectedacrossthedevelopment gradientandthemajoritywereoffleash.Thelargenumbersofindividuals(e.g.,aminimumof 13)frequentlydetectedmultipletimesduringasingletendayperiodcouldhaveamyriadof

127 effectsontheoccurrence,abundance,andbehavioroflocalwildlife.Theseresultshighlightthe needforfurtherinvestigationofhowdomesticdogsmaybealteringbirdandmammal communitydynamics.Forexample,inourstudy,theoccurrenceofdeerasindicatedbypellet groupswasalsonegativelyassociatedwiththepresenceofdogs.Lenthetal.(2006)compared wildlifecommunitiesintwoparks,oneallowingdogs,theotherprohibitingdogsinColorado. Theauthorsfoundalteredpatternsofhabitatutilizationbyseveralspecies,decreaseddeer activityinproximitytotrailsfrequentedbydogs,anddecreaseddetectionratesofbobcatinareas wheredogswerepermitted.Interestingly,thedetectionratesofanothercanid,redfox( Vulpes vulpes )werehigherinareaswheredogswereallowed(Lenthetal.2006). Ourfindingthatprobabilityofdetectionwaslowerinmoredevelopedareasisconsistent withBeckmannandBerger’s(2003a,b)resultsthaturbanbearshavesmallerhomerangesand spendsignificantlylesstimeforaging.Bychancealone,urbanbearsmaybelesslikelyto encounterdetectiondevices.Inaddition,urbanenvironmentsarelikelytoofferothernovel sourcesoffood(e.g.,garbagebins,coolers,cabins)whichmaycompetewithdetectiondevices fortheattentionofurbanbears.Therelativedeclineinimportanceofdevelopmentvariables onceweaccountedfortheinfluenceofdevelopmentondetectabilitysuggeststhatthemore significantimpactofdevelopmentwasnotonbearoccupancybutdetectability.Itisinteresting tonotethenegativeinfluencesofhumanrelatedactivity(people,dogsandvehicles)arestill relativelysignificant,appearinginthethirdhighestmodel. Thegenerallypoorperformanceofmodelsofherbivorerichnessmaybeattributableto thisstudy’sbiastowardforestedsampleunitsandtotheemphasisplacedondescribingforest characteristicsinmodeldevelopment.Variablesrelatedtomicrohabitatstructureprovidedthe bestmodelforcarnivorespeciesrichnessfollowedbyintrinsic,abioticsitecharacteristics.Deer andrabbits/haresweremorefrequentlydetectedatlessdevelopedsiteswhichmayreflectthe higherlevelsofassociatedgrounddisturbancewithdevelopment,reducedforageavailability, andthepresenceofdogs. Theobservedrelationshipsbetweenspeciesoccurrenceanddevelopmentduringthe summermaynotbeconsistentwithwinterhabitatuse.Sampleunitssurroundedbyhigherlevels ofdevelopmentappearedtoprovidesomehabitatforspeciestolerantofananthropogenic environment.Informationontheuseofdevelopedareasduringthewinter,whenpatternsofboth humananddogactivitymaybedifferentmightbeinformative.Speciesthatdonotusemore developedareasinthesummerwhenhumanactivitiesmaybemoredispersed,maybeableto utilizesomeareasduringthewinterwhenactivityismorelikelytobeconcentratedatdeveloped recreationareassuchasskiresortsandsnowparks.Sincewinterisamoreenergeticallystressful periodforsomespeciesofwildlife,theuseofmoredevelopedareasduringwintercould representanimportantfunctionoftheseareas.Informationonseasonalshiftsinoccurrence patternsalongthedevelopmentgradientcouldhelpseparatetherelativeimportanceof developmentandhumanactivity,andcouldhelpclarifytheimportanceofmoredevelopedareas forwildlife. Theseanalyseswerebasedondetectiondeviceslocatedatthecenterofforestedsample units.Consequentlytheseresultsbestrepresentuseofnativevegetationwithvaryinglevelsof insulationfromdevelopment.Forspeciessensitivetohumanactivityordevelopment,the availability,abundanceand,potentially,theconfiguration,ofnativevegetationpresumably determineswhetherthesespeciescanuseanareainproximitytodevelopment.Intheabsenceof remnantnativevegetation,somespecies,suchasblackbearandmarten,mightnotbefoundin proximitytoevenlowormoderatedevelopment.Urbanforestlikelyplaysanimportantrolein

128 maintainingthedistributionandabundanceofcarnivoresinthelowerelevationareasofthe LakeTahoebasin.Futureanalyseswillexaminetheinfluenceoftheamountandconfigurationof nativeforestsurroundingeachsampleunitonspeciesoccurrence.

129 Chapter 5: AntAntssss Introduction Manyterrestrialaresensitivetoenvironmentalimpactssuchasfragmentation, disturbance,habitatmodification,ecologicaldisruption,climatechange,andchemicalpollution. Effectiveindicatortaxacanprovideaprewarningofecologicalconsequencescausedby fragmentation–thisattributealonemakesarthropodsanimportantbasisforscientificallybased reservedesignandmanagement(Kremenetal.1993).Antsprovideanidealindicatorgroupfor ecologicalmonitoringandassessingenvironmentalimpacts(KaspariandMajer2000),asthey possessnumerousattributesidealforbiodiversitystudies.Theseattributesincludehighdiversity andnumericaldominanceinnearlyeveryhabitatworldwide(Agostietal.1994,Agostietal. 2000),readilyidentified(Brown2000),easilycollected,sensitivetoenvironmentalchange (Anderson2000),andtheyhaveimportantfunctionsinecosystems,includingimportant interactionswithorganismsfromalltrophiclevelsandthemselvesoccupyingalltrophiclevels (HölldoblerandWilson1990,Kaspari2000,SchultzandMcGlynn2000).

Methods SampleSites Weselected124coresamplesitestorepresentanurbandevelopmentgradientinthe basin.Sincetheprimarysamplingframefocusedonlargerscaleeffectsofdisturbancessuchas development,weadditionallyassessedtheeffectsondiversityatasmallerscale.Wealso assessedtheeffectsofparticulartypesofgrounddisturbancesonantdiversitybymeasuring richnessandabundanceatincreasingdistancesawayfromthreedisturbancetypes:highway, OHVtrail,andresidentialareas.Wesampledmultipletypesofdisturbanceswithinasinglelarge area.Sitesmeetingappropriateconditionsforthedistancefromdisturbancestudywerequite limited,soweselectedonelargeareawherewecouldfitthreereplicatesperdisturbancetype. Withineachofthese'sitereplicates'weplacedfivetraps(distancereplicates)alongtransectsat 0,10,20,50,100,and200metersfromeachdisturbancetype. PitfallTrapping Thesamplingdesigntargetedgrounddwellingantssincemostspeciesconstitutethis categoryratherthantree,shrub,orherbdwellingspecies.Quantitativedataonspecies distributionswereobtainedfromstandardpitfalltrappingmethodsbecauseitisrapid,repeatable, quantitative,andprovidesarelativelyunbiasedsampleofantswithinanarea(Anderson1990, Agostietal.2000).Pitfalltrapsconsistedof6.5cmdiameter(120ml)plasticcups.Thissizeof trapwasappropriateforsamplingantsbecausetrapsofa42mmdiameterhavedemonstratedthe sameefficacyastrapsofvaryingdiameters(Bestelmeyeretal.2000).Trapswereleftopenfor sevendayscontainingapproximately25mlofpropyleneglycol.Weusedpropyleneglycolasa standardpreservativeforantsamplingbecauseitdoesnotdifferentiallyattractorrepelants,itis

130 nontoxictovertebrates,anditkillsspecimensquicklytopreventspecimensfromdestroyingeach other(Bestelmeyeretal.2000). Toassessdifferencesbetweensitesaccordingtothelargescaleprimarysamplingframe, weuseda40x40mgridtoestablish12pitfalltrapspersite.Fourtrapseachwereplacedalong three40mtransectsorientednorthsouthandcenteredonthecenterpointineachplot(Fig. 5.1a).Transectswereseparatedby20m.Weusedsystematicrandomplacementoftrapsalong eachtransect,wherebythefirsttrapwasrandomlyplacedalongthefirst10mofeachtransect andeachfollowingtrapwasstaggeredat10mintervals(Anderson1997).Wemarkedeachtrap withapinflag1mnorthofthetraptoavoiddirectattractionordamagetotrapsbyotheranimals. DisturbanceType(Highway,OHVTrail,orResidential 0m Pitfall 10m Trap

20m 10m 50m 10m 10m 40m Center 100m Point 20m

10m 200m Figure5.1.Antpitfalltrappingarraysfor(a)thelargescaleprimarysamplingframeand(b)thesmall scaledisturbancetypedistancesamplingframe.Distancesongraphicsarenottoscale. Inadditiontositeconditiondataprovidedbyvegetationmeasurements(seeplantsection below),werankedsamplesitedisturbancewithinoursamplinggridsat72sitesin2003.We defineddisturbancetobeanyformanthropogenicmodificationofthesiteanditconsistedof recreationaluse,forestthinning,burning,ortrashbuildup.Werankedsitesasfollows:0=none tolowdisturbanceunaffectedbyrecenthumanlanduseorhadlittleevidenceofvegetationor soildisturbance,withnomorethan10%ofthesitedisturbed;1=moderatedisturbance– vegetationandgroundsurfaceswerenoticeablydisturbed,with10to50%ofthesitehaving evidenceofdisturbance;and2=highdisturbance–siteshighlymodifiedbyhumanlanduse practices,withmorethan50%oftheareaappearingdisturbed. Asecondtrappingarraywasusedtoassessantresponsestosmallscaledisturbances.We establishedatrappingarraywiththreereplicatespersiteatdistanceintervalsof0,10,20,50, 100,and200mfromthedisturbanceextendingintowildlands(Fig.5.1b).Ateachdistance interval,weestablishedalineoffivetrapsspaced10mapartandrunningparalleltothe disturbance.Weattemptedtominimizevariationinoursamplesbyminimizingsitevariability:

131 weselectedsitesonlyinthesouthernpartofthebasin;selectedsitesofsimilarphysiognomy; andselectedsiteswheresamplingtransectsrantowardwildlandsandnotothertypesof disturbances(e.g.,OHV,residential,commercial,roads). PitfalltrapsamplesweresortedtospeciesinourlaboratoryatUniversityofNevada, Reno.Speciesabundanceswerescored(transformedtoordinalscaledata)accordingtostandard methodsusinga6pointscale(Anderson1997):1=1,2=25ants,3=610ants,4=1120 ants,5=2150ants,and6=>50ants.Thisscalingtransformationminimizesdistortionscaused bylargenumbersofindividualsfallingintosmallnumbersoftrapsduetoplacementnearnests and/orforagingtrails. DataAnalysis Weconductedanalyses(usingSYSTATv.10)attheindividual,functionalgroup,and fullcommunitylevel.Fortheseanalyseswecalculatedspeciesrichness(SR)astotalspeciesper siteandasmeanspeciespertrap.Abundancewascalculatedasthesumofabundancescoresat individualtrapsandwasoftenexpressedasapercentageofitsmaximum(i.e.maximumof72 foranindividualspecies).Wegroupedantsintofunctionalguildsthatrepresentedbodysize, nestingstrategies,distributionalpatterns.Bodysizewasmeasuredasthemeanlengthofants measuredinmm.Nestingstrategieswereidentifiedasground,stone,logs,andthatchaccording toP.S.Ward(personalcommunication).Icategorizedeachspecies’nestingstrategiesas1=uses onlyoneneststrategy,2=uses2nestingstrategies,and3=uses3nestingstrategies.Weused elevationalrangeasaproxyforindividualspeciesdistribution.Elevationrangewasdetermined usingcollectiondatafromWheelerandWheeler(1986)andsynthesizedinM.P.Sanford (unpublisheddata). Weconstructedaspeciesaccumulationcurveandpointversussiterichnesscurveto assesstheabilityofoursamplinggridstodetectspecieswithinsites.Speciesaccumulation curvesareoftenusedtoidentifyhowwellatrappingarrayworkedtodetectallormostspecies withinasite.Pointversussitespeciesrichnesscurvesshouldindicatetheturnoverofspecies betweentraps(Anderson1997). Weconstructeddominancediversitycurves(May1975)toexaminecommunityevenness overallsitescombinedandtocomparecommunityevennessbetweenhighandlowdevelopment sites.Wefittedalinearregressionmodeloflogarithmicspeciesabundanceagainstarithmetic speciesrankorderforhigh,moderate,andlowdevelopment(Bazzaz1975,Tokeshi1993). Usingthe100mscaleofpercentdevelopment,sitesweregroupedasfollows:low=0,moderate =0.1–30,high>30%.Theregressionslopeofzeroindicatesacommunitywhereallspecies haveequalabundance,whereasgreaterslopes(i.e.,morenegativeormorepositiveslopes) indicategreaterdominanceofaspeciessubset. Weexaminedcommunity,guild,andindividuallevelresponsesinrelationtopercent developmentatvaryingscales.First,weexaminedtheresponseofspeciesrichnessand abundanceforallsitesoversixdifferentscalesofdevelopment.Second,weassessedpatternsof guildresponsestodevelopmentatthe100mscalebyexaminingscatterplots.Third,we examinedhowindividualspecieschangedinabundancewithincreasingdevelopmentatthe100 mscale. Antresponsestofinerscaledisturbanceswereassessedusingtwoprocedures.First,we examinedresponsesofspeciesrichnessandabundanceacrosssitespecificdisturbancecategories usingaonewayANOVAforeachresponsevariable.Second,theeffectofdisturbancetype

132 (i.e.,highway)anddistancefromdisturbanceswasevaluatedusingatwowayANOVA.To date,wehaveprocessedandanalyzedantdiversityfromthesubsampleof0,50,100m distances. Underthepremisethaturbanizationleadstorecreationalusewithinurbanlots,we assessedthepotentialeffectsofhumanrecreationaluseonantcommunities.Weusedsimple regressionanalysestoexploreresponsesofantrichnessandabundanceagainstsixpotential explanatoryvariablesofhumanrecreationaluse:humandetections,dogdetections,areaof compactedground,areaoftrails,areaofroads,andtotalcompactedsurface.Totalareaof compactedsurfaceisdifferentfromareaofcompactedgroundandwascalculatedbysumming areasofcompactedground,trails,androadswithinoursites. Tofurtherunderstandpotentialsitespecificfactorsthatmaybedrivingchangesinant communities,weexaminedantresponsestothreevegetationcharacteristicsthatmayresult (directlyorindirectly)fromurbanization.Weexaminedcoarsewoodydebris(CWD), impervioussurface,andtreedensity.Pearsoncorrelationcoefficientswereusedtotestwhether thesefactorsmaycausechangesinantrichness,abundance,andguildcomposition. ResulResultsts Fromtheprimarysamplingframework,101sitesweresampledoverthecourseoftwo yearsin2003and2004.Weattemptedtoprovideanevendistributionofsamplesitesaroundthe basin,buteastandwestsideswerelimitedinthehighdisturbancecategories.Thus,our2004 sampleswerelargelyconcentratedonthenorthandsouthsidesofthebasinwheresite physiognomywassimilar. LargescalePatternsofDiversityandDominance

Atotalof32,023individualsfrom46species(Appendix5.1)wererecordedfromthe101 sitesalongtheurbandisturbancegradient.Therichestsubfamilieswere(30species) andMyrmicinae(13species).Themostcommonspeciesrecordedwere Formica sibylla, Formica obscuripes, Formica aserva, and Camponotus modoc . Stennema smithi, Tetramorium caespitum, and Myrmecocystus testaceus (ahotclimatespecies)weretheleastcommonspecies detected.Sitespeciesrichnessrangedfrom3to20species,andaspeciesaccumulationcurve indicatedthatalargemajorityofspecieswerecapturedateachsite(Fig.5.2).Sitespecies richnessandpointspeciesrichnessweresignificantlycorrelated(Fig.5.3;r=0.45, P <0.001), indicatingapredictablepatternofturnoverbetweentraps.Thisalsoexplainswhyabundance wasarelativelystrongpredictorofspeciesrichness(r=0.60, P <0.0001).

133 12

10

8

6

4 Cumulativeno.spp

2

0 0 5 10 15 NumberofTraps Figure5.2.Accumulationofantspeciesinpitfalltraps(12trapspersite)averagedoverallsites.

6

5

4

3

2

1 Meanspeciespertrap

0 0 5 10 15 20 25 Sitespeciesrichness Figure5.3.Patternofsitespeciesrichness(totalnumberofspeciespersite)andpointspeciesrichness (meannumberofspeciesperpitfalltrap)alongthedevelopmentgradient. Speciesrankabundanceplotsdemonstratedthatantcommunitiesinalldevelopment classeswereconsistentwiththebrokenstickcommunitymodel:lowsites( X2=44.5, df =9, p< 0.001);moderatesites( X2=370, df =11, p<0.001);highsites( X2=90, df =10, p<0.001). Lowdevelopmentsiteshadaprogressivelysteeperslopeasmorespecieswereaddedtothe communitythandidhighdevelopmentsites(Fig.5.4),indicatingthatdominancewasgreaterin highdevelopmentareas.Inhighdevelopmentsites,dominanceby Formica sibylla was67.0%to 99.9%greaterthananyotherspecies,whereasthemostdominantspeciesexceededanyother species’abundancebyonly6.1%inmoderatesitesand1.4%inlowdevelopmentsites.

134 4.0

Low 3.5 Moderate 3.0 High

2.5

2.0

1.5 LogAbundance

1.0

0.5

0.0 0 10 20 30 40 SpeciesRank Figure5.4.Dominance diversitycurveforantspeciesintheLakeTahoebasin groupedintourbandevelopmentcategories. Speciesrichnesswasnotsignificantlycorrelatedwithpercentdevelopmentatthe30and 60mscales( P>0.427;Fig.5.5).Atthe100mscale,anonlinearmodelfitwherespecies richnesspeakedatintermediatelevelsofdevelopment–around30%developed( P<0.05). Speciesrichnessincreasedacrossthegradientatthe300m( P =0.06),500m( P =0.02),and 1000m( P =0.03)scales. Anttotalabundancewasnotsignificantlycorrelatedwithpercentdevelopmentatany scale( P>0.19inallcases;Fig.5.6).However,totalabundanceshowedadeclineinthe maximumabundancebyapproximatelyonethirdaslandscapedevelopment(300,500,and1000 m)increased.Theproportionofsiteswithdifferentlevelsoftotalantabundancediffered substantiallybetweenlow(<20%)andhigh(>20%)developmentsites(Fig.5.7),withlow developmentsiteshaving Antspeciesweredividedintofourfunctionalgroupsandwefoundthatspecies abundanceasspecialistgroundnesters(Fig.5.8a),meanelevationalrangeofspecies(Fig.5.8c), meanbodylengthofspecies(Fig.5.8d)didnotdifferacrossthedevelopmentgradient( P >0.05 inallcases).Theabundanceofspeciesspecializingaslognestersdemonstratednosignificant declines( P =0.19)withdevelopment,butthepatternshoweddeclinesinlognesterabundance acrossthedevelopmentgradient.

135 25 25 25 30m 60m 100m 20 20 20 15 15 15

10 10 10

5 5 5 Antspeciesrichness Antspeciesrichness Antspeciesrichness 0 0 0 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 PercentDevelopment PercentDevelopment PercentDevelopment 25 25 25 300m 500m 1000m 20 20 20

15 15 15

10 10 10 5 5 5 Antspeciesrichness Antspeciesrichness Antspeciesrichness 0 0 0 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 PercentDevelopment PercentDevelopment PercentDevelopment Figure5.5.Antspeciesrichnessacrossthedevelopmentgradientdefinedatsixdifferentscales:30m,60 m,100m,300m,500m,and1000mscales. 200 200 200 30m 100m 60m 150 150 150 100 100 100 Antabundance Antabundance 50 50

Antabundance 50 0 0 0 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 PercentDevelopment PercentDevelopment PercentDevelopment 200 200 200 300m 500m 1000m

150 150 150 100 100 100 Antabundance Antabundance Antabundance 50 50 50 0 0 0 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 PercentDevelopment PercentDevelopment PercentDevelopment Figure5.6.Totalabundanceofantsacrossthedevelopmentgradientdefinedatsixdifferentscales:30m, 60m,100m,300m,500m,and1000mscales.

136 14 <20%Development 12 >20%Development

10

8

6 Frequency 4

2

0

0 20 40 60 80 100 120 140 160 180 200 Antabundance Figure5.7.Frequencyofoccurrenceofantabundancevalueswithintwocategoriesofpercent developmentwithin300m. 100 80 (a) (b) 80 60 60 40 40 20 20 Lognestingspecialists

Groundnestingspecialists 0 0 0 20 40 60 80 0 20 40 60 80 PercentDevelopment PercentDevelopment

8000 8.0 (c) (d) 7000 7.0 6000 6.0 5000 5.0 4000 4.0 MeanElevationalRange MeanBodyLength(mm) 3000 3.0 0 20 40 60 80 0 20 40 60 80 PercentDevelopment PercentDevelopment Figure5.8.Antabundancerelativetopercentdevelopmentatthe100mscale.(a)Abundanceofground nesterspecialistspersite.(b)Abundanceoflognesterspecialistspersite.(c)Meanelevationalrangeof species.d)Meanbodylengthofspeciesforeachsite.

137 Individualspeciesresponsestothemultiplescalesofurbandevelopmentindicatedthat eightspecieswereeithernegativelyorpositivelyaffectedbydevelopment(Appendix5.1).Sixof thesespecies( Camponotus vicinus (-), Formica accreta (-), Formica cf. sibylla (-), Formica ravida (+), Formica sibylla (+), and Temnothorax nitens (-))respondedsignificantlytothe60m scaleofdevelopment;onlytwospecies( Formica cf . sibylla (-), Formica ravida (+) )had significantresponsestothe100mscale,twospecies( Formica cf . sibylla (-), Formica ravida (+) )tothe300mscale,nonetothe500mscale,andtwospecies( Formica cf. sibylla (-), Formica neoclara (+)) tothe1000mscale.WeplottedadjustedR2valuesagainstscaleof developmentforsixspecies(Fig.5.9)andfoundthatthe60mscaleonaverageexplained28% moreofthevarianceinspeciesabundancesthan100mscale(p=0.139),50%morethanthe 300mscale(p=0.023),84%morethanthe500mscale(p=0.018),and74%moreforthe 1000mscaleofurbandevelopment(p=0.035).

0.12 0.06 Camponotus vicinus Formica accreta 0.10 0.05 2

R 0.08 0.04

0.06 0.03

0.04 0.02 Adujusted 0.02 0.01

0.00 0.00

0.10 0.8 Formica cf. sibylla Formica ravida 0.08 0.6 2

R 0.06 0.4 0.04 Adusted 0.2 0.02

0.00 0.0

0.06 0.4 Formica sibylla Temnothorax nitens 0.05 0.3 2 0.04 R 0.03 0.2

0.02 Adusted 0.1 0.01

0.00 0.0 0 200 400 600 800 1000 0 200 400 600 800 1000 ScaleofDevelopment ScaleofDevelopment Figure5.9.Speciesabundanceresponsestoincreasingscalesofurbandevelopment.Adjusted R2values arefromunivariateregressionanalysesforeachscaleofdevelopment(60,100,300,500,and1000m).

138 Wealsoexaminedthedistributionofrareandcommonspeciesacrosstheurban developmentgradient(Fig.5.10).Thefrequencyofleastcommon(rare)specieswasgreaterin lowdevelopmentareas(<20%development)( X2=8.85, df =2, p<0.025),whileonlyone specieswasfoundabove60%development.Thisindicatesthestrongtendencyofrarespeciesto occuronlyinlowdevelopmentareas.Examiningdistributionsofthemostcommonspecies indicatestheabilityofthosespeciestouseareaswithawiderangeofdevelopment.

100 CommonSpecies Cammod Camvic 80 Forcfsib Forobs Forsib 60

40 Abundance(%)

20

0

5 RareSpecies Lasfla Lepcal 4 Lioocc Maninv Tetcae 3

2 Abundance(%)

1

0 0 20 40 60 Development(%) Figure5.10.Abundanceofrareandmostcommonantspeciesasafunctionofpercentdevelopmentatthe 100mscale.Antspeciesnamesaregivenasthefirstthreelettersofthegenusandfirstthreeofthe species.

139 SmallscaleDisturbancePatterns Antspeciesrichnessdeclinedsignificantlyasthetotalareaofcompactedsurface(from fieldbasedvegetationmeasurementstakenwithin30mofthecenterofthesite)increased (r2=0.20,df=26, P =0.017;Fig.5.11).Ofthethreevegetationparametersassessed(coarse woodydebris,impervioussurface,andtreedensity),onlytreedensityelicitedaresponseinant speciesrichness( P =0.05).

6

5

4

3

2

Antspeciesrichness 1

0 0 500 1000 1500 2000 TotalCompactedSurface(m 2) Figure5.11.Antspeciesrichnessinresponsetototalcompactedgroundsurfaceatsites. Antrichnesspeakedatmoderatelevelsofsitespecific(withintrappinggrids) disturbances(Fig.5.12).Speciesrichnessdifferedsignificantlybetweenrankeddisturbance classes(02)(F=4.96,df=2, P=0.009),withspeciesrichnessinmoderatelydisturbedsites 25%greaterthaninlowdisturbancesitesand10%greaterthaninhighdisturbancesites.Mean speciespertrapalsodifferedsignificantlybetweendisturbanceclasses(F=4.16,df=2, P= 0.019),butonlywithan18%differencebetweenmoderateandlowdisturbanceandno differencebetweenmoderateandhighdisturbance.Antabundancewasgreatestinthemoderate disturbanceclass,butdidnotvarysignificantlyacrossdisturbanceclasses(F=0.92,df=2, P= 0.39). 15 5 120 12 4 80 9 3

6 2 40

3 1 Antabundance Meanantrichness 0 Meanspeciespertrap 0 0 Low Moderate High Low Moderate High Low Moderate High DisturbanceCategory DisturbanceCategory DisturbanceCategory Figure5.12.Patternsofsiterichness,richnesspertrap,andabundancealongsitespecificdisturbance.n= 72sitesfrom2003sampling.

140 Wealsoexaminedtheeffectofdevelopmenttypesanddistanceonasmallscale.A significanttypebydistanceinteractionwasdemonstrated(F=3.48,df=4, P=0.028),but neitherdistanceortypeshowedsingulareffectsonspeciesrichness.At0m,speciesrichness declinedfromhighways,OHV,andresidentialdevelopments,whereastheinvertedpatternof speciesrichnesswasobservedat100m.Adevelopmenttypeeffectwasobservedforabundance (F=6.437,df=2, P=0.008),whilenodistanceeffectwasobservedonabundance( P=0.30). Asignificanttypebydistanceeffectonantabundancewasobserved(F=5.585,df=4, P= 0.004).Abundancedemonstratedthesameinvertedpatternbetweendevelopmenttypesat0m (declining)and100m(increasing). Discussion Theeffectsofurbanizationonbiodiversityhavelargelyfocusedonareaswithhardened boundariesbetweenurbanareasandwildlands.Therelativemutenessofboundariesbetween wildlandsandurbanforestsintheLakeTahoebasinhasbeenthoughttopreservebiodiversity andforesthealth.However,fewareasescapetheimpactsofhumandisturbance(Wilson1989, Ojimaetal1991),andthisresearchonantcommunitiesdemonstratesthatbiodiversitywas impactedbydevelopmentevenwithinurbanforestswithmutedboundaries.KohandSodhi (2004)foundsimilarresultswherebutterflydiversitywasnegativelyaffectedeveninforested parksadjoininglargerwildlands.Thus,theeffectsofdevelopmentandhumandisturbancenot onlyimpactsdevelopedparcels,buthaveerosiveeffectsonspeciesandpopulationsbeyond developedlands. Variationsinurbandevelopmentatmultiplescaleswereassociatedwithseveralmeasures ofantcommunitystructure,includingspeciesrichness,abundance,compositionoffunctional groups,andtheabundanceofindividualspecies.Ourresultsdidnotindicatedeclinesin biodiversityandabundanceacrossthedevelopmentgradient.Rather,patternsofantdiversity andabundancedemonstrateeffectsfromsitespecificdisturbanceandlargerscaleurban development.Therelationshipbetweenurbandevelopmentandantcommunitystructurevaried dependingonthescaleofanalysis. Antspeciesrichnesswasaffectedbothbyourmeasuresofdevelopmentandsubsequent humanuseswithinurbanforests.Ourmultiscaleapproachprovidesevidenceforthe intermediatedisturbancehypothesis(Connell1978).Peaksinspeciesrichnessatmoderate levelsofurbanizationhavebeenobservedpreviouslyinants(NuhnandWright1979)andother insecttaxa(PawlikowskiandPokomiecka1990,BlairandLauner1997,Blair2001).The mechanismforgreaterantrichnessatsiteswithintermediatelevelsofurbandevelopmentmay becausedfromgreaterenvironmentalheterogeneitythatcansupportmorespecies(Levinand Paine1974,Lauranceetal.2002,McKinney2002).Moderatelevelsofdevelopmentmay providegreaterresourcestosustainspeciessincetheyprovidecomponentsofnaturalhabitats whilealsoincorporatingcomponentsofurbanhabitatsthatantsmayuseadvantageously.Hence, antspeciesrichnessshouldbegreaterinareaswhereurbanavoidingantspeciescanberetained atsiteswithremnanthabitatcomponents,urbanadaptingspeciescanusebothnaturalandurban resources,andurbanexploitingspeciescanoccupyurbanhabitatcomponents. Patternsofspeciesdominancediversityfromhighdisturbanceareastendtohaveasteep decliningcurve,whereasareasoflowerdisturbanceexhibitaprogressiveincreaseincommunity evennesswithaslopeclosertozero(Bazzaz1975,Tokeshi1993).Ourdatahadonlyaminute

141 reflectionofsuchapattern,wherebythedominancediversitycurveforlowsiteshadonlya slightlygreaterdecliningcurvethandidhighdisturbancesites.Thispatternedgestowardthe nichepreemptionhypothesis(Motomura1932,Whittaker1965)wherehighdisturbancesites containdominantspeciesthatoccupyahigherfractionofthetotalnichespacewithina community.Thissuggeststhatantcommunitiesareimpactedfromdevelopmentinsucha mannerthatalterscompetitionandresourceusewithincommunities. Wedividedtheantspeciesintonumerousfunctionalgroups,butfewofourfunctional groupsofantsrespondedstronglytoourindexofurbandevelopment.Ourclassificationsof functionalgroupswereverylimitedbecauseofthelittlepublisheddataonspecificnatural historiesoftheTahoeantfauna.Thuswewererestrictedtofourfunctionalgroupclassifications. First,wepredictedthathighlydevelopedareaswouldcontainlessstructuralhabitatcomplexity thatwouldcauseadeclineinlognestingspecies.Lognestingspecialistsdemonstratedadecline inresponsetodevelopmentintheformofadecliningpowerfunction.Althoughtheabundance oflognestingspecialistswasnotstatisticallycorrelatedwiththevolumeofcoarsewoodydebris atoursites,itislikelythattheabundanceofnestsubstratesaffectedtheirabundance.Thetotal compactedsurfaceareaalsonegativelyaffectedspeciesrichnessofants.Second,disturbedareas arepredictedtocontainspecieswithgreaterbodysize(Southwoodetal.1979,Brown1985, SteffanDewenterandTscharntke1997).However,wedidnotfindevidenceforthisinour urbandevelopmentstudysystem.Third,wepredictedthatspecieswithnarrowelevation distributionswouldbeaffectedmorebydevelopment.However,ourdataindicatenopattern betweenelevationalrangeofspeciesandurbandevelopment.Fourth,groundnestingspecies abundancewaspredictedtoincreasewithdevelopmentbecauseforestinmoreurbansettingsto bemoreopenandcontainlesscoarsewoodydebris.Wefoundnoevidenceforthathypothesis. However,oneimportantfindingherewasthatrarenativespeciesweredetectedatsites withlowdevelopment,whilenonnativespeciesweredetectedinhighdevelopmentareas. Disturbanceecologyandsuccessionaltheorybothpredictthatnativespeciesarehigherin diversityanddominanceinlessdisturbedandoldsuccessionalcommunities(e.g.Inouyeetal. 1987).Ourresultsalsoindicatethatnativerarespeciesaremorepronetoextinctioninhigh developmenturbanforestsandmayhaveareducedabilitytocolonizesuchareasespecially givenlowpopulations(Pimm1991,DenysandSchmidt1998).Abundanceofnativeantspecies (excludingthenonnative Tetramorium caespitum )droppedwithincreasingdevelopment,and noneoftheserarenativespeciesweredetectedinurbanforestswheredevelopmentwasgreater than20%.ThiscorroboratesresultsfromKohandSodhi(2004)whofoundmoreuniquespecies inwildlandsandparksadjoiningwildlandscomparedtomoreisolatedpatcheswithgreater urbanizationinfluences.Nonnativespeciestendtoincreasewithincreasingurbandevelopment (Marzluff2001)andourdatasupportthisgiventheobservationof Tetramorium caespitum withinahighdevelopmentsite.Thus,wildlandswithlowurbandevelopmentprovideimportant benefitsforbiodiversity,andhighdevelopmentsites,althoughharboringadiversityofspecies, providezonesfornonnativeencroachment(seeBlair2001,Marzluff2001). Numerousantspeciesdemonstratedstrongresponsestourbandevelopmentatvarying scalesofresolution.Our60mscaleofurbandevelopmentexplainedthemajorityofvariance forsixspecies,andthesespeciesrespondedlessstronglytogreaterresolutionsofdevelopment (e.g.,100mto1000mscales).Hence,thesedataindicatethatnotonlyarelargescalelandscape modelsimportantindescribingpatternsofabundanceanddiversityofspecies,butthatfinescale resolutionscanexplainpatternsofabundanceanddiversityforsmallerorganismsthatcomprise alargeportionofbiodiversitybutareoftenoverlookedinlargerscaleresearch.

142 SeveralimplicationsforconservationandlanduseplanningofurbanforestsintheTahoe Basinmaybedrawnfromthisstudy.Antspeciesrichnesswashighestinforestsofmoderate levelsofurbandevelopmentandlowdevelopmentsitescontainedmanyuniquespecies, implyingthatareascontaininglowtomoderatelyurbanizedlandscapesarethemostvaluablefor conservingspeciesdiversity,andthereforeshouldbegivenhighestconservationpriority.This corroboratesfindingsfromothertaxonomicgroupsfromthisLTUBresearch.Althoughhigh developmentsitescomprisenativefauna,ourantdataindicatethatthesesitesharbornonnative speciesandtheymayprovidethebasisfornonnativeencroachment.TheTahoeBasinhasbeen relativelybufferedfromtheencroachmentofnonnativespecies,especiallygivenitsmontane basinsettingbetweentwogeographiczoneswithverypervasiveproblemsregardingnonnative invasivespecies.Thecouplingofglobalclimatechangeandhumaninducedspecieschanges shouldbecauseforconcerninthebasin,andwesuggestconservationmeasuresshouldhinder thesepotentiallylargefutureproblems.Further,institutionalconservationresponsesshould maximizenativebiodiversityprotection,whileminimizingopportunitiesfornonnativespecies.

143 Chapter 6: Plants Introduction Fragmentationofthelandscapeproducesremnantvegetationpatchessurroundedbya matrixofdifferentvegetationtypeorlanduse.Theprimaryeffectsofthisarechangesin microclimatewithinthefragmentandisolationofeachpatchfromotherpatches(Saundersetal. 1991).Amyriadofdynamicscanoccurwhenforestsarefragmented,dependingonthe ecosystemandnatureofthedisturbance.Forexample,fragmentedforestsmayhavereduced richnessofnativespecies,particularlyspecialistspeciesthatrelyononeormoreforestfeatures thataresensitivetodisturbance,andtheymayexperiencehigherdisturbancerates,shiftingthe competitiveregimestofavorexoticormatrixspecies(DebinskiandHolt1998).Forest fragmentswithahighedgetoarearatioaremorevulnerabletoinvasionbyexoticormatrix speciesandaresubjecttomoreextremeabioticfactorssuchaswindandtemperature(Saunders etal.1991). Incaseswheretherearelessdramaticdifferencesbetweenmatrixandfragmentssuchas intheLakeTahoebasin,theecosystemeffectsareexpectedtobelessnoticeable.Vegetationin siteswithhighsurroundingdevelopmentarepredictedtohavefewernativespecies,moreexotic species,moreshadeintolerantorearlysuccessionalspecies,lowerdensityofunderstory vegetation,reducedrecruitmentofdisturbancesensitivetreespecies,andhigherincidenceof coniferpathogenscomparedtositesinsimilarvegetationtypesbutwithlittleornosurrounding development.Wealsopredictthatmanyenvironmentalfactorsotherthandevelopment(e.g., logginghistory,firesuppression,localvariationinprecipitationandweather,andedaphic factors)contributetothecurrentconditionofsites.Thus,sitelocation,type,andhistoryareall likelytoaffecttherelativeandabsoluteimpactofcurrentlevelsofdevelopmentandhuman disturbance.

Methods DataCollection VegetationwascharacterizedusingacombinationofU.S.ForestServiceprocedures (Caseyetal.1995)andstandardbotanicalsurveymethods.Thesamplingdesignhadfour primarycomponents(Fig.6.1). • Threelineintercepttransects(30m)toestimatepercentgroundcover,volumeofcoarse woodydebris,litterdepth,soilcompaction,andtocharacterizethephysiognomyof vegetationlayers. • Fourcircularsubplots(7.3mradius)usedtoestimatepercentcoveroftrees,shrubs,and exoticspecies. • Twelvequadrats(1m 2)usedtoestimatepercentcoverofherbaceousplantsandshrubs. • Threeconcentriccircularplots(7.3mradius,17.6mradius,and56.4mradius)usedto describeforeststandstructure.

144 Thesamplingmethodswereconductedateachsite’scenterpoint,whichwaspermanently markedwithrebar.Thispointservedasthestartingpointforalltransectsandthecenterofthe threeconcentriccircles.

Figure6.1.Layoutofsubplots,quadrats,andtransectsemployedatthecenterpointofLakeTahoeUrban Biodiversityprojectin2003. Atthesitecenterpoint,thefollowinggeneralinformationwascollected:percentslope anglemeasuredwithaclinometer;slopeaspect;humandisturbancebytypewithin30mof centerpoint;distancetoallroadsortrailswithin100mofthecenter;distancetowaterwithin 100m;anddistancetoriparianvegetationwithin100m. Alongeachofthethree30mtransects(Fig.6.1),thefollowinginformationwas collected: • PercentGroundCover .Groundcoverestimatesweremadeateverythirdmeter,foratotalof 10onemeterlongsegmentsalongeachtransect.Foreachsegment,thelengthofallplant speciesandnonvegetativegroundcover(baresoil,litter,rock,coarsewoodydebris)that intersectedthetransecttapewasmeasured. • Physiognomy .Verticalstructureoftheplantcommunitywasdescribedusingthepoint interceptmethodalongthethreetransects.Measurementsweremadeeverythirdmeter,fora totalof10samplepoints.Allplantspeciesintersectingthetransecttapeatanyheightabove thepointonthetapewererecorded. • LitterDepthandsoilcompaction .Litterdepthandsoilcompactionmeasurementswere takenatthesame10pointinterceptlocationsusedtosampleverticalstructure.

145 • CoarseWoodyDebris .Volumeanddecayclass(Caseyetal.1995)ofcoarsewoodydebris (logs>10cmdiameter)werecharacterizedalongthethreetransects.Volumewascalculated fromthetwoenddiametersandlengthofthelog. • AnthropogenicFeatures.Thelengthandtype(trail,dirtroad,pavedroad,highway,skilift, parkinglot,house,orcampsite)ofanthropogenicfeaturewererecordedforeachtransect. Four,7.3metersubplotswereestablishedateachsite(Fig.6.1).Coverofeachtree, shrub,andnonnativeplantspeciesinthesubplotwasestimatedtothenearest1%.Eachsubplot wassearchedfor15minutesinordertolistallspeciespresent.Withineachsubplot,percent coverofallplantspecieswasestimatedinthree1m 2quadrats. Threenestedcircularplotswereusedtodescribeforesttreestructureateachsite:1ha (56.4mradiuscircle),0.1ha(17.6mradiuscircle),and0.017ha(7.3mradiuscircle)plots(Fig. 6.1).Withineachcircularplot,thefollowinginformationwasrecordedfortreesandsnags: species,heighttonearestmeterusingaclinometer,diameteratbreastheightusingaDBHtape, decadencecodeforlivetrees(Table6.1),anddecayclass(Caseyetal.1995)forsnags. MeasurementsforthethreecircularplotsarerestrictedtocertainDBHclassesoftreesandsnags: inthe7.3mradiuscirclewemeasuredalltreesandsnags>12.5cmdiameter;inthe17.6m radiuscircle,wemeasuredtrees>28cmandsnags>12.5cmdiameter;andinthe56.4mradius circle,wemeasuredtrees>61cmandsnags>30.5cmdiameter.Inaddition,saplingdensities wererecorded,byspecies,inthe7.3mradiuscircle.The17.6mradiusplotwasusedto measurecanopycover,withamoosehorndevice,atfourlocations;thenumberofcutstumpsby decayclass;thenumberofpiecesoftrash;andtheareaoccupied(inm 2)byanthropogenic featuressuchastrails,dirtroads,pavedroads,highways,andparkinglots. Table6.1.DecadencecodesforlivetreesmeasuresintheLakeTahoeUrbanBiodiversityProjectsites. Decadencecode Decadencefeature 1 Conks,bracketfungi 2 Cavitiesgreaterthan6inchesindiameter 3 Brokentop 4 Large(>12inchesindiameter)brokenlimb 5 Loosebark(sloughing) 6 Mistletoe 7 Deadtop 8 Splittop 9 Thincanopy(relativetoneighboringtrees) 10 Lightfoliarcolor 11 Leafnecroses 12 Frass 13 Sapexudation

146 DataAnalysis ForestStructureandHealth Simplelinearregressions,usingJMPversion5(SASInstituteInc.2003),testedthe effectsofurbanizationonforeststructure.Urbandevelopment,theindependentvariable,was regressedonfollowingdependentvariables:averagepercentcanopycover;estimateddensityof treesperhectare;estimatedbasalareaoftreesperhectare;heightclassdiversity(definedhereas thenumberofheightclassesoccupiedbyvegetation,whereheightclasseswere01m,23m, etc.aboveground.);estimatedsnagdensityperhectare;estimatedsnagvolumeperhectare; averagedecayclassforsnags;volumeofcoarsewoodydebris;averagedecayclassforcoarse woodydebris;andnumberofcutstumps.Volumewasusedforsnags,insteadofbasalarea, becauseitaccountsforthefactthatsnagscanbebrokenoffatvariousheights.Simplelinear regressiondeterminedwhetherdevelopmentwascorrelatedtopercentoftreesshowingdisease symptomsortosoilcompaction. Inadditiontoanalyzingsitecenters,wealsomeasuredvegetationcharacteristicsatthe satellitepointcountstations(4persite)located250metersawayfromthesitecenter.These satellitesitesrepresentthelandscapeatlargebelow7000ftinelevation.Wecomparedthe conditionsofnativeforeststositesnotconstrainedtooccurwithinnativeforesttodeterminethe degreetowhichnativeforestsretainednaturalconditions. SpeciesRichnessandAbundance Tounderstandtheeffectsofurbanizationoncommunitycomposition,simplelinear regressionsweredonebetweendevelopment(independentvariable)andspeciesrichness, diversity,andpercentcoverfor:allspecies,allnativespecies,allexoticspecies,nativeand exoticannualherbs,perennialherbs,annualgrasses,perennialgrasses,shrubs,andtrees (dependentvariables).Totestwhetherrare(occurringinfewerthan5%ofthesites)native specieswereaffectedbydevelopment,bothnumberandproportionofrarenativespeciespersite wereregressedondevelopment.Onlytaxaidentifiedtospecieswereconsideredforthis analysis. SpeciesTurnover Tolookfortrendsinspeciesturnoveralongthedevelopmentgradient,frequencyof occurrencewasexaminedforeachspecies.First,sitesweredividedinto5categories,withequal intervalsofdevelopment,andtheproportionofsiteshavingeachspecieswascalculatedforeach category.Second,datawerevisuallyinspectedforspecieswithstrongtrendsinfrequencyalong thedevelopmentgradient.Onlyspeciesfoundin≥15siteswereselectedforfurtherexamination becausereliablepatternscouldnotbedetectedforrarerspecies.Third,ofthetwentyonespecies showingcleartrends,logisticalregressionwasusedtoexploretherelationshipbetween developmentandspeciespresence/absence.Oldgrowthsiteswereexcludedbecausethey representonlylowdevelopment,westbasinsites.Because21analysesweredone simultaneously,aBonferroniadjustmentwasapplied,thusreducingthecriticalpvalueto0.002 (0.05/21).Logisticregressionswerealsousedtotestwhethernumberofpeopleperhouror numberofunrestraineddogsperhouraffectedspeciespresence/absence.

147 SpeciesPacking Speciesabundancecurveswereusedtocomparespeciespackingbetweenlow(034%, 83sites)andhigh(3570%,35sites)developmentsites.Relativepercentcoverdatawereused tocreatespeciesabundancecurvesforherbsandgrasses,shrubs,andtrees.Specieswere groupedbylifeformtoavoidcomparingspecieswithlargesizeorpercentcoverdifferences. Foreachspecies,percentcoverdatawereaveragedacrossallsites,relativized,andlog 10 transformed.Relativepercentcoverestimateswererankedfrom1n(mostcommontoleast common).Specieswiththesamerelativepercentcoverweregiventhesamerank.Rank abundancecurveswerecreatedtoassessspeciespackingpatterns. CommunityOrdinationandVariancePartitioning Totestwhetherurbanizationhadasignificantinfluenceonplantcommunity composition,variancepartitioningwasusedtoseparatetheeffectsofhumancaused(H)and naturallyoccurring(E)environmentalvariables.CanonicalCorrespondenceAnalysis(CCA) waschosenforitsabilitytoutilizecovariables,anecessarypartofvariancepartitioning,andtest forstatisticalsignificance.CCAisadirectgradientanalysisthatrelatesspeciescompositionto selectedenvironmentalvariables,whileignoringcommunitystructureunrelatedtothese variables(McCuneandGrace2002).CCAwasperformedwithdefaultsettingsbyCanoco4.5 andCanoDraw4.0forwindows(terBraakandSmilauer2002). Twomatriceswereusedforanalysis:thespeciesmatrixandtheenvironmentalvariable matrix.Thespeciesmatrixofaveragepercentcovervalueshad116sitesand69common species.Deletionofrarespecies,occurringin5%orfewersites,isrecommendedforreduction ofnoisewithoutlosingthebulkoftheinformationinadataset(McCuneandGrace2002).The environmentalvariablematrix(116sitesand13variables)containedall(E)and(H)variables. (H)includedpercentdevelopment,GISmodeledpercentimpervioussurfaces,numberof unrestraineddogsperhour,numberofpeopleperhour,andnumberofvehiclesperhour.(E) includedeasting(UTMzone10,NAD27);GISmodeledelevation;GISmodeledaspect (transformedaccordingtoBeersetal.1966,ranging from0(southwest)to2(northeast));dateof finalsnowmelt,inJuliandays,developedspecificallyfortheTahoeBasinbyRoyce(earlier versionsofthemodelinRoyce1997andBarbouretal.1998);GISmodeledsoilwetness;GIS modeledheatloadindex;andGISmodeledaverageannualprecipitation.AllGISmodeled variableswerecalculatedaccordingtoParksetal.(inpress). ThreeseparateCCAordinationswerepreformedinthevariancepartitioning: (1)CCAwithallenvironmentalvariables(bothEandH)andnocovariates.Thisprovidedthe totalinertia(similartovariance)ofthedataset. (2)CCAofEwithHascovariates.Thisremovedtheeffectsofthehumancausedvariables fromtheeffectsoftheenvironmentalvariables. (3)CCAofHwithEascovariates.Thisremovedtheeffectsoftheenvironmentalvariables fromthehumancausedvariables. Fromtheseanalyses,Icalculatedthepercentvarianceexplained:uniquelyby(E), uniquelyby(H),jointlyby(E)and(H),andbyneithersubset(methodsaccordingtoPalmer 2005).This,andsimilarmethodsofvariancepartitioning,arewelldocumentedintheecological

148 literature(Borcardetal.1992,JeanandBouchard1993,OklandandEilertsen1994,Birks1996, OhmannandSpies1998). Results SamplingEffort Inthe2003and2004fieldseasons,wesampled107sitesalongthedevelopmentgradient plusanadditional11oldgrowthsites,originallyidentifiedbyBarbouretal.(2002).The purposeinincludingtheoldgrowthsiteswastoextendthelowdevelopmentendofthegradient andtocomparecommunitycompositionbetweenurban,seralforestsandremote,unlogged forests.Noadditionaldatacollectionisplannedbasedoncurrentfundinglevels. Atotalof387taxawererecordedin118sites,including25unknowns.Thefivemost commonspecieswere Pinus jefferyi (n=114sites), Abies concolor (n=105), Arctostaphylos patula (n=82), Gayophytum diffusum (n=81),and Carex rossii (n=75).Alargeproportion (72%)ofrecordedspecieswererare,definedhereasoccurringin5%(6)orfewersites,while only3%ofspeciesoccurredin50%ormoresites. AnalysisScaleforDevelopment Todeterminethescaleatwhichvegetationconditionsareassociatedwithdevelopment, relationshipswereexploredusingsimplelinearregressionbetweenvariousvegetationmeasures andpercentdevelopmentat4differentscales:100,300,500,and1000mradii.Withafew minorexceptions,conclusionswerethesameforallfourscales(Table6.2).Forthose correlationshavingsignificantresults,coefficientsofdeterminationvariedlittleamongthe scales.Therefore,allthefollowinganalysesarebasedonthe300mdevelopmentindex.We chosetousethe300mdevelopmentindexfordataanalysesforthefollowingreasons: 1)Thechoiceofscaledoesnotappeartoaffecttheconclusionsreachedabout relationshipsbetweenvegetationanddevelopment(Table6.2); 2)Itisintuitivelyreasonabletouseasmallscaleforplantsbecauseoftheirsedentary lifestyle;environmentalinfluenceswithincloseproximityshouldbemoreimportantthan thosefaraway;and 3)Thesamplingframewasdesignedusinga300mbuffer,soitisreasonabletousethis scalefordataanalysis.

149 Table6.2.Correlationsbetweenvariousvegetationmeasuresandpercentdevelopmentatfour scales:100,300,500,and1000mradii. DEV_100M DEV_300M DEV_500M DEV_1000M Totalspprichness NS Positive Positive Positive (r 2=0.043) (r 2=0.045) (r 2=0.038) Nativespprichness NS NS NS NS Exoticspprichness Positive Positive Positive Positive (exponential) (exponential) (exponential) (exponential) Annualherbrichness NS Positive Positive NS (r 2=0.04) (r 2=0.04) Perennialherbrichness NS NS NS NS Shrubspprichness NS NS NS NS Treespprichness NS NS NS NS Totaltreedensity NS NS NS NS TotaltreeBA NS NS NS NS Totalsnagdensity Negative Negative Negative Negative (r 2=0.17) (r 2=0.22) (r 2=0.2) (r 2=0.21) Totalsnagvolume Negative Negative Negative Negative (r 2=0.25) (r 2=0.33) (r 2=0.3) (r 2=0.31) Ave.snagdecay Negative Negative Negative NS (r 2=0.11) (r 2=0.08) (r2=0.06) VolumeofCWD Negative Negative Negative Negative (r 2=0.17) (r 2=0.22) (r 2=0.19) (r 2=0.17) CWDdecay NS NS NS NS Soilcompaction NS NS NS NS Litterdepth NS NS NS NS CommunityStructureandComposition Therewasnosignificantcorrelationbetweennativespeciesrichness(squareroot transformed)(P=0.15),nativeshrubspeciesrichness( P=0.5),nativetreespeciesrichness( P= 0.2),nativeannualherbrichness( P=0.14),ornativeperennialherbrichness( P=0.34)and development.However,nativeperennialgrassrichnesswaspositivelycorrelatedwith development(r 2=0.14, P<0.001).aswascover(r 2=0.13, P<0.001).Thispatternheldfor eastsites(r 2 =0.16forrichness,r 2=0.13foraveragepercentcover),butwasonlysignificantfor averagepercentcoverinwestsites(r 2=0.13).Therewerenonativeannualgrassesfoundinthe study,sothisanalysiswasnotdone. Therewasnocorrelationbetweennative( P=0.86)orexotic( P=0.16)speciesrichness andthenumberofpeopleperhourpresentinthesite.Norwasthereanycorrelationbetween native(P=0.98)andexotic(P=0.78)speciesrichnessandnumberofunrestraineddogsper hour. Totalexoticspeciesrichness(Fig.6.2),exoticannualherbrichness,exoticannualgrass richness,exoticperennialherbrichness,andexoticperennialgrassrichnesswereallpositively correlatedwithdevelopment.Alloftheserelationshipsarenonlinearand,therefore,linear regressionanalysiswasnotapplied.Exoticplantspeciesrichnessexhibitedageometric increaseinresponsetodevelopment,withrapidincreasesobservedabove30%development. Samplesizesforexoticshrubs(n=4)andtrees(n=6)specieswerenotlargeenoughfor regressionanalysis.Allexoticshrubandtreespeciesfoundwerecultivatedorescaped ornamentalsgrowinginornearyards.

150 15

10

5 EXOTICSPPRICH

0

10 0 10 20 30 40 50 60 70 80 DEV_300M Figure6.2.Scatterplotofexoticspeciesrichnessbydevelopment. Atotalof41exoticspecieswerefound,notincludingornamentalgardenplants.Thefive mostcommonexoticspecieswere: Bromus tectorum (18sites,880%development), Dactylis glomerata (17sites,572%development), Taraxicum officinale (15sites,073%development), Elytrigia pontica (11sites,563%development),and Polygonum arenastrum (8sites,3363% development).Fortythreeofthe118sitessurveyed(36%)hadexoticspecies.Siteshaving developmentvaluesbelow42%hadlownumbersofexoticspecies(0to3),whilesiteswith developmentvaluesover42%hadgreatervariation(0to15). Averagepercentcoverofnativeshrubs( P=0.56),perennialherbs( P=0.19),andannual herbs( P=0.26)wasnotcorrelatedwithdevelopment.However,averagepercentcoverofnative treeswasnegativelycorrelated(r 2=0.07, P <0.001)andaveragepercentcoverofnative perennialgrasseswaspositivelycorrelated(r 2=0.13, P<0.0001)withdevelopment.All percentcovervaluesweresquareroottransformedtoachievenormality. SpeciesTurnoverandPacking Ofthe21speciestestedforarelationshipbetweenoccurrenceanddevelopment,7had significant Pvalues(Figure6.3).Resultsshowedthattheprobabilityofoccurrenceincreased withdevelopmentfor:nativeperennialgrasses Festuca idahoensis (r 2=0.17), Poa secunda (r 2= 0.14),and Elymus elymoides (r 2=0.12);exoticperennialherb Taraxacum officinale (r 2=0.17); andexoticperennialgrass Dactylis glomerata (r 2=0.15).Probabilityofoccurrencedecreased fornativeshrubs Arctostaphylos nevadensis (r 2=0.13)and Chrysolepis sempervirens,(r 2= 0.10).Noneofthe21species’occurrencesweresignificantlycorrelatedwithnumberofpeople orunrestraineddogsperhour. Forherbsandgrasses,thetwotrendlineswerealmostidentical,suggestingthatspecies abundancepatternswerenotdifferentforthetwodevelopmentcategories(Figure6.4).Forboth shrubsandtrees,slopesforthelowdevelopmentgroupswereslightlysteeperthanthoseofthe

151 highdevelopmentgroups,butnotdifferentenoughtohaveecologicalconsequences(Figures 6.4). ForestStructure Totalestimateddensityoftrees,>12.5cmdbh,perhectare,wasnotcorrelatedwith development( P=0.53).Brokenintosizeclasses,estimateddensityofsmalltreesperhectare, 12.527cmdbh,( P=0.17),estimateddensityofmediumtreesperhectare,2860cmdbh,( P= 0.63),anddensityoflargetreesperhectare,>61cmdbh,( P=0.90)werenotsignificantly correlatedwithdevelopment;howeversmalltreedensitydiddeclinewithdevelopment.Tree densitywassquareroottransformedforallanalyses.Theseresultssuggestthatdevelopment doesnotaffecttotaltreedensity,butitappearstohaveanincreasingeffectonthedensityof smallerdiametertrees. Totalestimatedbasalareaoftrees,>12.5cmdbh,perhectare,wasnotcorrelatedwith development( P=0.54).Brokenintosizeclasses,basalareaoflargetrees,≥61cmdbh,per hectare( P=0.78),estimatedbasalareaofmediumtrees,2860cmdbh,perhectare( P=0.45), andestimatedbasalareaofsmalltrees,12.527cmdbh,perhectare( P=0.34)werenot correlatedwithdevelopment.Basalareawassquareroottransformedforlarge,medium,and smalltrees. Averagenumberofheightclassesencountered(squareroottransformed)inasitewasnot significantlycorrelatedwithdevelopment(r 2=0.026, P=0.08);howeveritdiddeclinewith development.Heightclassdiversitywasdefinedasthenumberofheightintervals(anexample heightintervalis01mabovetheground)occupiedbyvegetation. Totalestimateddensityofsnags,>12.5cmdbh,perhectare,wassignificantlynegatively correlatedwithdevelopment(r 2=0.22, P<0.0001).Inaddition,varianceofsnagdensity decreasedwithincreasingdevelopment.Developmentwassignificantlynegativelyassociated withdensityoflargesnags,>30.5cmdbh(adj.R2=0.26, P<0.001;Fig.6.5),andsmallsnags, <30.5cmdbh(adj.R2=0.067, P=0.007).Totalestimatedvolumeofsnagsperhectarewas alsonegativelyassociatedwithdevelopment.

152 1.00 1.00 1 1 0.75 0.75 0.50 0.50 0 0 Poasecunda

Dactylisglomerata 0.25 0.25 0.00 0.00 10 0 10 20 30 40 50 60 70 80 10 0 10 20 30 40 50 60 70 80 DEVELOPMENT DEVELOPMENT 1.00 1.00 1 0.75 0.75 1 0.50 0.50 0 Elymuselymoides Festucaidahoensis 0.25 0.25 0 0.00 0.00 10 0 10 20 30 40 50 60 70 80 10 0 10 20 30 40 50 60 70 80

DEVELOPMENT DEVELOPMENT 1.00 1.00 1 1 0.75 0.75 0.50 0.50 0 0

0.25 Taraxacumofficinale 0.25

Arctostaphylosnevadensis

0.00 0.00 10 0 10 20 30 40 50 60 70 80 10 0 10 20 30 40 50 60 70 80 DEVELOPMENT DEVELOPMENT 1.00 1 0.75 0.50 0 0.25 Chrysolepissempervirens

0.00 10 0 10 20 30 40 50 60 70 80 DEVELOPMENT Figure6.3.Logisticregressionsforabsence(0)orpresence(1)of5species.

153

Herbs and Grasses 3.5 HIGH LOW 3 Linear(HIGH) Linear(LOW)

2.5

2

y=0.0472x+1.0806(LOW) 1.5

Log10 (Relative % Cover) % (Relative Log10 1

y=0.0477x+1.0887(HIGH)

0.5

0 0 10 20 30 40 50 60 Species Rank

Shrubs 6

HIGH LOW 5 Linear(LOW) Linear(HIGH)

4

y=0.1234x+5.699(HIGH) 3

2 Log10 Log10 (Relative Cover) % y=0.139x+5.7129(LOW)

1

0 0 5 10 15 20 25 30 35 Species Rank

Trees 6

HIGH LOW 5 Linear(HIGH) Linear(LOW)

4

3 y=0.357x+5.1833(HIGH)

2 Log10 Log10 (Relative%Cover)

y=0.4515x+5.4174(LOW)

1

0 0 2 4 6 8 10 12 Species Rank Figure6.4.Speciesrankvs.log(10)relativepercentcoverforherbsandgrasses,shrubs,andtreesin high(3570%)andlow(034%)developmentcategories.Note:linearregressiontrendlinesinherbsand grassesareoverlapping.

154

120

100

80

60

40 (>30cm (>30cm dbh/ha)

Large snag density density snag Large 20

0 0 20 40 60 80 Development (%)

Figure6.5.Scatterplotandregressionlineforlargesnagdensityperhectarerelativetopercent developmentwithin300m. Numberofcutstumps(logtransformed)wasslightlypositivelycorrelatedwith development( P<0.0001,r 2=0.17)(Fig.6.6).Thefrequencyofoccurrenceofcutstumpsata siteincreasedwithdevelopment;above50%developedsitesgenerallyhadsomecutstumps, evidencingtheoccurrenceofrecentmanagement.

5

4

3

2

LOGCUTSTUMPS 1

0

10 0 10 20 30 40 50 60 70 80 DEV_300M Figure6.6.Simplelinearregressionofnumberofcutstumps(logtransformed)bydevelopment. Averagesnagdecayclass(15)wasslightlynegativelycorrelatedwithdevelopment( P= 0.005,r 2=0.08)(Fig.6.7).Lessdevelopedsitesgenerallyhadolder,moredecayedsnagsthan

155 moredevelopedsites,withthetrendsuggestingasteadydeclineintheprevalenceofmore decayedsnagswithgreatersurroundingdevelopment.

4.5

4

3.5

3

2.5

2

1.5 AVE_DECAY_CLASS 1

0.5 10 0 10 20 30 40 50 60 70 80 DEV_300M Figure6.7.Simplelinearregressionofaveragesnagdecayclass(15,onebeingleastdecayedand5 beingmostdecayed)bydevelopment. Volumeofcoarsewoodydebriswassignificantlynegativelyassociatedwith development(adj.R 2=0.135, P<0.001)(Fig.6.8).Volumeofcoarsewoodydebrisranged from0m 3to56m 3/ha.Variancewashighatthelowerendofthedevelopmentgradient:atsites with<5%development,logvolumeaveraged73.1m3/hawithastandarddeviationof75.01 (range=0–283.5m3);.atsiteswith>40%development,logvolumewas75%lower,withan averagedof16.9m3/haandstandarddeviationof31.83m3/ha(range=0–140.4m3).This indicatesthatthevolumeofcoarsewoodydebriswasquitevariableandfrequentlyhighinlowto moderatedevelopmentsites,butitwasconsistentlylowinhighdevelopmentsites,particularlyat sitessurroundedby>40%development.Approximately35%ofremnantundevelopedforests had>100m 3/haofcoarsewoodydebris,whichequatestoapproximately100logsperha>60 cm(24in)diameterand3.3m(10ft)long,or300logsperha>28cm(11in)diameterand>3.3 m(10ft)long.Theremainingsitesaveraged25.6m 3/ha,orapproximately75logsperha>28 cm(11in)diameterand3.3m(10ft)long(ortheirequivalent). Simplelinearregressionwasusedtodetermineiftherewasarelationshipbetween developmentandaveragedecayclassofcoarsewoodydebris(onascaleof15,onebeingthe leastdecayedand5beingthemostdecayed).Analysisshowednocorrelation( P=0.21). Averagesoilcompaction( P=0.15)andaveragelitterdepth( P=0.59)werenot correlatedwithdevelopment.Soilcompactionwasnotcorrelatedwithnumberofpeopleper hour( P=0.72),numberofdogsperhour( P=0.70),ornumberofunrestraineddogsperhour(P =0.81).Ourmeasureofsoilcompactionwasnothighlysensitive,sothisnegativeresultisnot conclusive. Thecomparisonofremnantforeststothesurroundinglandscapealongthedevelopment gradientrevealedthatremnantforestsretainedmanyoftheirnaturalcharacteristicsathigher levelsofdevelopmentcomparedtothesurroundinglandscape(Fig.6.9).Althoughcanopycover

156 didnotvarysignificantlywithdevelopmentinremnantforests,itwassignificantlylower throughoutthelandscape(adj.R 2=0.119, P<0.001)athigherdevelopment.Similarly,tree densitiesdidnotvarysignificantlywithdevelopmentinremnantforests;however,inthe surroundinglandscape,thedensitiesofsmall(>12.527cmdbh)andmedium(2860cmdbh) diametertreesdensityweresignificantlylowerinareaswithhigherdevelopment(adj.R 2= 0.140, P<0.001,andadj.R 2=0.204, P<0.001,respectively).Interestingly,largetree(>61cm dbh)densityinthesurroundinglandscapedidnotchangesignificantlywithdevelopment(P= 0.296),butremnantforestshadalowerrangeoftreedensitiesthanthesurroundinglandscape (Fig.6.9).

300 250 /ha) 3 200 150 100 50 0 Volume logsof (m 50 0 10 20 30 40 50 60 70 80 Development (%) Figure6.8.Simplelinearregressionofvolumeofcoarsewoodydebris,measuredinm 2/ha,by development. 100 1200

80 1000 800 60 LandscapeCC Landscapesmtree 600 40 ForestCC Forestsmtrees 400 20 (%) cover Canopy 200 0 Small (no./ha) density tree 0 0 20 40 60 80 0 20 40 60 80 Development Development 700 200 600 500 150 400 Landscapemedtree Landscapelgtree 100 300 Forestmedtree Forestlgtree 200 50 100

0 density (no./ha) Large tree 0 Medium density (no./ha) tree 0 20 40 60 80 0 20 40 60 80 Development (%) Development (%) Figure6.9.Scatterplotsshowingtherelationshipsbetweenvegetationcharacteristicsanddevelopment fortwotypesofsites:remnantnativeforestsandthesurroundinglandscape.Datawerecollectedat375 sitesbelow2100minelevationintheLakeTahoebasinin20032005.

157 Remnantforestandthesurroundinglandscapebothshoweddecliningsnagandlog densitiesasdevelopmentincreased(Fig6.10).Atlowerlevelsofdevelopment,smallandlarge snagdensitieshadahigherrangeofvaluesinthesurroundinglandscapecomparedtoremnant forests.Thisismostlikelyanartifactofthelargersamplesizeforlandscapesitescomparedto remnantforestsites(300vs.75,respectively).Shrubcoverdeclinedsignificantlyinsurrounding landscapewithincreasingdevelopment,unlikeremnantforestswhichshowednochangein shrubcover.Sitesinthesurroundinglandscapehadawiderrangeofshrubcovervalues,most likelyreflectingtheoccurrenceofsitesinshrubdominatedvegetation.Herbaceousplantcover didnotdeclinesignificantlyinthesurroundinglandscapeorremnantforests,anditappearedto havesimilarvaluesbetweenthetwolocations.

400 300 350 250 300 200 250 Landscapesmsnag Landscapelgsnag 200 150 Forestsmsnag Forestlgsnag 150 100 100 50 50 0 0 snag Large (no./ha) density Small snag (no./ha) density 0 20 40 60 80 0 20 40 60 80 Development (%) Development (%) 80 100 70 80 60 50 Landscapelogs 60 Landscapeherbs 40 Forestlogs Forestherbs 30 40 20 20 Log (m/ha) density 10

0 plant richness Herbaceous 0 0 20 40 60 80 0 20 40 60 80 Development (%) Development (%)

100 90 80 70 60 Landscapeshrubcover 50 Forestshrubcover 40 30 Shrub cover (%) Shrub cover 20 10 0 0 20 40 60 80 Development (%) Figure6.10.Scatterplotsshowingtherelationshipsbetweendeadwoodandunderstoryplant characteristicsanddevelopmentfortwotypesofsites:nativeforestsandthroughoutthelandscape.Data werecollectedat375sitesbelow2100minelevationintheLakeTahoebasinin20032005.

158 CommunityOrdinationandVariancePartitioning IntheCCAwithallvariables,ordinationaxis1washighlycorrelatedwithwetness(r= 0.85),nosnowdate(r=0.81),andeasting(r=0.75);axis2wascorrelatedwithslope(r=0.60) andaspect(r=0.56)(Figure6.11).Thesepatternslargelyreflectthestrongprecipitation gradientacrossthebasin,withthewestsiteshavinghighwetness,latesnowmeltdate(duetothe generaleastfacingaspectandshadingbydensefirforests),andhighprecipitation,whiletheeast basinhaslowprecipitationandhighheatloadindex(duetothegeneralwestfacingaspectand openJefferypineforests).Development,impervioussurfaces,numberofpeopleanddogsper hourweresomewhatcorrelatedwitheasting,sincesitesintheeastpartofthebasinweremore developedthaninthewestbasin.

M12 VH125 1.0

H03

VH126 H10 ASPECT M33 WH111 M06 M37 M20 H07 VH50 H02 V03 H115 L16 M07 H120 IMP SURF V08 M35 L38 M14 VH127 WH110 L01 WH101 L06 M11 L08 H119 DEVELOPMENT WL77 WL62 V05 T344 V10 H04 M05 NO SNOW L12 VH72 M22 V07 H61 WH104 M26 PRECIP T341 T315 M17 WH108 L20 M03 VEHICLES L17 M18 WETNESS V09 T337 L09 L10 L36 M15 H05 T345 HLI M23 V74 L07 H76 V06 M04 PEOPLE T335T313 L23 T352 V02 VH123 M113 H01 L33 V04 DOGS VH129 V66 M21 L11 L05 WL73 V68 M112 V69H121 EASTING V60 T343V64 M01L03 V56 L15 L21 M10 H54 VH122 ELEV WH100 T322 M08 H75V01 L13 H09 T314 L28 VH128H114 L14 M36 L37 M09 SLOPE H53

M13 L04 M40 1.0 1.0 1.0

Figure6.11.Biplotofsiteswithenvironmentalvariables:snowmeltdate(nosnow),GISmodeled averageannualprecipitation(precip),GISmodeledsoilmoisture(wetness),GISmodeledelevation (elev),GISmodeledslope(slope),GISmodeledaspect(aspect),GISmodeledheatloadindex(HLI), easting,numberofdogsperhour(dogs),numberofpeopleperhour(people),numberofvehiclesperhour (vehicles),,developmentwithin300m(development),impervioussurfaceswithin300m(impsurf).

159 InE|H,axes1and2explained8.8%ofthetotalvariationinthedataset(Table6.3).Axis 1wasmoststronglycorrelatedwithwetness(r=0.764),nosnow(r=0.76),andeasting(r= 0.71),whileaxis2washighlycorrelatedwithslope(r=0.90).InH|E,axis1wascorrelated withimpervioussurfaces(r=0.73),andaxis2wascorrelatedwithdevelopment(r=0.71)and peopleperhour(r=0.66).However,neithercanonicalaxis1norallaxestogetherwere significant(Table6.3). Table6.3.SummaryofaxesforCCAof(a)E|H,and(b)H|E. (a) Axis 1 2 3 4 Allaxes Eigenvalues 0.274 0.165 0.103 0.073 Cum.Percentagevarianceof 5.5 8.8 10.9 12.4 speciesdata MonteCarlotestPvalue 0.002 0.002 (b) Axis 1 2 3 4 Allaxes Eigenvalues 0.105 0.074 0.038 0.03 Cum.Percentagevarianceof 2.3 4.0 4.9 5.5 speciesdata MonteCarlotestPvalue 0.082 0.084 Environmentalvariablesexplainedmoreofthevariation(14%)thanhumancaused variables(5%),butmostofthevariancewasunexplained(77%)(Figure6.12).Only4%ofthe datacouldbeattributedtoeitherEorH,suggestinglittleoverlapintheireffects.Partitioningof thedatasetwithallspeciesgavesimilarresults,buthadaslightlyhigherpercentageof unexplainedvariance(82%),suggestingthatinclusionofrarespeciesdidnotcontributetoa betterunderstandingofthedata.

160

a 14%

4%

5% E|H H∩E H|E Unexplained

77%

b 11% 2%

5%

E|H H∩E H|E Unexplained

82%

Figure6.12Variancepartitioningforcommonspecies(a)andallspecies(b).“E”isnaturallyoccurring environmentalvariablesand“H”ishumancausedvariables. Discussion Vegetationinremnantforestswasnotgreatlyalteredinresponsetoincreasing surroundingdevelopment.Inremnantforests,surroundingurbandevelopmenthadnoimpacton treespeciescomposition,density,basalarea,ornumberofcanopylayers.TheTahoebasinisa touristdestinationprimarilyvaluedforitsnaturalbeautyandoutdoorrecreationopportunities (Nechodometal.2000).Inkeepingwiththistheme,themajorityofprivatepropertyowners haveallowednativevegetationtopersistinasomewhatnaturalstate,plantingonlythe occasionalgardenorornamentaltree. Totalspeciesrichnessincreasedslightlywithdevelopment,primarilyduetoincreased numbersofexoticannualandperennialherbandgrassspecies.Exoticspecieswerepresent

161 alongtheentiredevelopmentgradient,includingonesitewith0%urbandevelopmentwithin300 m.Thispatternmetexpectationsofincreasingexoticspecieswithincreasingdevelopment,and suggeststhaturbanlotsaresusceptibletoinvasionbyexoticspecies.Urbanareasweremore susceptibletoinvasionbyexoticspecies,reconfirmingpreviousstudies.Someoftheexotic species,suchas Bromus tectorum , Dactylus glomerata , Taraxicum officinale , Elytrigia pontina , Lotus corniculatus shouldbeofparticularconcerntolandmanagersbecauseoftheirabundance and/orinvasiveness. Exoticspecieshaverecentlybecomerecognizedasasignificantconservationconcern,as theyhavebeenshowntoreplacenativespeciesandmayalterecosystemfunction(Vitousek 1986).Invasioninurbanareasmaybecausedbyincreasedavailabilityofsuitablemicrosites duetosoildisturbancesand/ortramplingofdominantvegetationtocreateopenings,orincreased inputofnutrientssuchasnitrogenandphosphorus(HobbsandHeunneke1992).IntheTahoe Basin,exoticspeciesweremostlikelyintroducedviafoottrafficandvehicles.However,these specieswereoflittleimportancetotheplantcommunityintermsofrelativepercentcover (Figure6.4).Growthandreproductionofexoticspeciesmaybelimitedbythecool,dry montaneenvironment. Urbandevelopmentdidnotappeartoimpactpercentcoverofnativeannualherbs, perennialherbs,andshrubsinremnantforests.However,theslightdeclineinaveragepercent coverofnativetreessuggeststhaturbansiteshavemoreopencanopies.Nativeperennialgrasses increasedinbothrichnessandaveragepercentcoverwithdevelopment,suggestingthattheyare betteradaptedtothestressesofurbanenvironments.Themoreopencanopyandhighheatload index(notdiscussedhereindetail)foundinurbansitesmaygiveperennialgrassesacompetitive advantage. Urbandevelopmentdidnotappeartohaveanimpactontreespeciescomposition,density orbasalareaperhectareinremnantforests.Thediversityofheightclassesoccupiedby vegetationwasnotcorrelatedwithdevelopment.Conversely,inthelargerlandscapedidshowa declineinsmallandmediumdiametertreeswithgreaterdevelopment,indicatingthatnative forestsretainimportanthabitatelements,inthiscaseverticaldiversityofvegetation,thatwould otherwiseberarelyoccurringinadevelopedlandscape. Decadencefeaturesshowednoobviouscorrelationswithenvironmentalfactors. Contrarytoexpectations,diseasesymptomswerenotmorecommoninhighlyurbanizedareas, andfeaturesassociatedwitholdertrees(suchaslargecavitiesorbrokentops)werenotmore prevalentinremotesites.However,lightfoliarcolor,oozingsap,andleafnecroseswere ubiquitous,witnessedonallconiferspeciesthroughoutthelowelevationsofthebasin.Logging intheTahoeBasinhasbeenshowntoincreasedwarfmistletoeinfectionsonJefferypine (Maloney2000),andfiresuppressionhasbeenshowntoincreasetreedensity,accumulationof deadwood,insectandpathogenoutbreaks,andvulnerabilitytocatastrophicfires(ElliotFisket al.1996,Ferrell1996,MaloneyandRizzo2002).Dwarfmistletoeinfections,onJefferypine, aresignificantlyhigherinloggedstandsthanunloggedstandsintheTahoeBasin(Maloney 2000).Therefore,lowelevationseralstandsarealllikelytobeheavilydiseased,regardlessof urbanizationstatus. Urbandevelopmentwasstronglyassociatedwiththelossofwoodydebrisfromthe ecosystem,bothwithinremnantnativeforestsandthesurroundinglandscape.Snagdensity, snagvolume,andvolumeofcoarsewoodydebriswerenegativelycorrelatedwithdevelopment, whilenumberofcutstumpswaspositivelycorrelated.Averagesnagdecayclassdeclineswith development,suggestingthatonlynewlydeadsnagsremaininurbanareas.Inaddition,while

162 undevelopedareasvariedgreatlyinamountofdeadwood,highlydevelopedareaswere consistentlylow. Snagsandlogsareimportantelementsofforestecosystems;theyprovideessential habitat,nestingsitesandfeedingsubstratesforvertebrates(Bull2002),invertebrates(Machmer 2002,LindgrenandMacIsaac2002),bacteriaandfungi(ZielonkaandPiatek2004). Decomposinglogsalsoplayaroleinnutrientandcarboncycling(ZielonkaandPiatek2004). Asymbioticnitrogenfixationindecayinglogs,bynitrogenfixingmicrobes,islikelyan importantcontributortothenitrogencycle,particularlyinplaceswhereatmosphericand symbioticfixationislow(BrunnerandKimmins2003).Decayedwoodplaysarolein maintainingsoilstructurebyprovidingalongterminputofhumustothesoil. Thepropertiesofwoodydebrisdifferamongdecayclasses(Harmonetal.1986,Moriet al.2004).Lessdecayedwooddoesnotprovideagoodgrowingsubstratebecauseofitshardness, lownutrientcontent,andlowmoisturecontent.Norishighlydecayedwoodagoodgrowing substrate.Aswoodydebrisapproachesthepropertiesofsoil,itlosesheight,leadingtoshading andburialbylitter,andinfectionbypathogenicfungiincreases.Consequently,intermediately decayedwoodydebrisprovidesthebestgrowingsubstrateforseedlingestablishment(Morietal. 2004).Therefore,itisimportantthatanecosystemhavearegularsupplyofnewdeadwood, allowingforthecontinuedavailabilityofintermediatelydecayedwood. TheSierraNevada,ingeneral,hasbeensubjecttofiresuppressionforoveracentury, resultinginmyriadecologicalandhumansafetyproblems,suchasalteredforeststructure, increasedtreedensity,increasedaccumulationofdeadwood,increasedinsectoutbreaks,lowered biodiversityandvulnerabilitytocatastrophicfires(ElliotFisketal.1996,Ferrell1996).To combattheseproblems,localmanagershavetakenanactiveroleinreducingdeadwoodbuild up,focusingeffortsparticularlyontheurbanruralinterface.Practicesincludetimberharvest, prescribedburning,vegetationthinning,andcreationofforestopenings(TahoeRegional PlanningAgency2004).Inaddition,activitiesbylocalresidents,suchasfirewoodcollection, contributetothelossofwoodydebris.Evidenceofthesepracticeswasapparentfromthelow numbersofsnagsandlogsandahighnumberofcutstumpsinurbanareas.

163 Chapter 7: Human Use Introduction Disturbancewithinremnantforestsintheformofhumanuseanddomesticanimalsoften accompaniesdevelopmentinthesurroundingarea.Theremovalofsnagsforfirewood,safetyon roadsandtrails,anddefensiblespacefromwildfirearealsocommonpracticesinundeveloped landsinproximitytourbanenvironments.Fragmentationstudiesthatignorehumandisturbance riskconfoundingthesetwostressesbecausepopulationandcommunityleveleffectsof recreationmirrorthoseofsmallpatchsizeandhighpatchisolationinmanycases(Boyleand Samson1985,KnightandGutzwiller1995,Riffelletal.1996,FernándezJuricic2000a, Gutzwilleretal.2002).Selectiveextinctionsbroughtaboutbyhumanpresencemayalsoleadto alteredcompositionalpatternsandcommunitydynamics.Wecharacterizeduseofsitesby peopleandtheirpetstoenableustodistinguishbetweeneffectsassociatedwithfragmentation andhabitatlossfromthoseassociatedwithwithinsitedisturbance,andtodescribethenatureof therelationshipbetweensurroundingdevelopmentandwithinsitedisturbanceintheLakeTahoe basin.Ourgoalistocharacterizethetypes,intensity,andspatialandtemporaldistributionof anthropogenicdisturbanceatsamplesites.

Methods FieldDataCollection A200x200msampleunit(4ha)wasestablishedinassociationwitheachsamplepoint. Samplingforeachspeciesgroupoccurredthroughoutareasofvaryingextents,butthemajority ofsamplesweretakenwithina4haareaaroundthesamplepoint.Instandardsampleunits,4ha encompassedthevegetationplots,antgrid,smallmammalgrid,centerpointcountstation,and centertrackplateandcamerastations.Allsatellitepointcountstationsandmostsatellite trackplateandcamerastationsfelloutsidethe4haarea. StudysitesfortheLTUBprojectweresubjecttodispersedusewithmultipleaccess points.Undertheseconditions,personalobservationisthemosteffectiveandunbiasedsampling methodavailable.Personalobservationconsistedofanobservermovingthroughthestudysite andrecordingdataonthetypeandintensityofuseencountered.Atotalofapproximately1.2km ofsurveyroutesand5countstationswereestablishedwithinthesampleunit.Somesiteswere smallerthan200x200m(definedbytheextentoftheundevelopedarea),andatthesesites transectlengthswerereducedcommensuratewiththereducedsizeofthesites.Atsitessmaller than1ha,notransectswereconducted;oneortwo10mincountswereconductedinstead. Surveyswerestratifiedbydayoftheweek(weekdaynonholiday,andweekendand holidays),timeoftheday(dawntomidday,middaytoevening),andmonth(Maythrough September)(Table7.1).Eachstudysitewassurveyedonceperweek,withonesurveyallocated toeachcombinationoftimeofdayandsegmentofweekoverafourweekperiod.Observers rotatedamongsitessothatanyobserverbiasthatmightexistwasrepresentedequivalently amongstudysites.Theorderinwhichsitesweresurveyedwithinatimeslotwasrotated.

164 Table7.1.Samplingstratausedtopartitionsurveyefforttocharacterizeanthropogenicstressorswithin samplesites. Number Typeofstrata ofstrata Descriptionofstrata Month 5 MaythroughSeptember Segmentofweek 2 Weekdaynonholidayandweekend/holiday Timeofday 2 Morning(dawnto1300hrs),afternoon(>1300todusk) Datarecordedincludedobserver,date,surveystartandendtimes,startandendlocations, routecompleted,andweather.Allencounterswererecordedincludinglocationofdetectionwith respecttotheobserverandtothesampleunit.Otherinformationregardingencountersincluded • typeofuse(truck,ATV,walking,running,bicycle,stationary,etc); • ifstationary,thentypeofactivity(picnic,sitting); • numberofpeopleingroup; • presenceofnonvehicularnoise(shouting,music,machinery); • typeandnumberofdomesticanimals(restrained/unrestrained);and • otheractivities(feedinganimals,littering,on/offtrailuse). Inthecourseofconductingthewalkingsurveyobserversstoppedatdesignatedpointsfor 3minutesandrecordedallencountersduringthattime.Thedistancetodetectionswasrecorded, aswellasthelocationinsideoroutsidethesampleunit.Countsprovideddataonthedensityof usebytype,whereastransectdataprovidedfrequencyofusebytype.Observershadtheoption ofconductinga30sectrafficcountateachcountstation,iftheydeterminedthatrecording trafficduringa3mincountwouldbedistracting.The30seccountsconsistedofobservers tallyingallvehiclesatalldistancesin30seceitherbeforeorafterthe3mincount.Atalater date,thefrequencyanddensityofusebytypewillbesummarizedbysegmentofdayand segmentofweekforeachsite. DataAnalysis Thefrequencybyusetype(encountersalongtransect)andintensity(numberanddensity ofdetectionsduringcounts)ofusewassummarizedbymonth,pertimeofday,andforthe spring/summerseasonasawhole.Wecalculatedfourvariablestodescribetheuseofeachsite bypeople,alldogs,unrestraineddogs,andvehicles.Wecombineddatafromtransectsand countsforallanalyses.Wecalculatedthetotalnumberofpeople(e.g.,walking,running,biking, golfing,standing),totalnumberofdogs,andnumberofunrestraineddogsdetectedperhour withinthesampleunitbasedonthetotalnumberofdetectionsacrossallvisitsmultipliedby60 anddividedbythetotalsurveytimepersite. Wealsocalculatedanindexoftrafficsurroundingthesampleunittoreflecttrafficuse andnoisearoundthesampleunit.Vehicletalliesconsistedoftransects,3mincounts,andin somecases30seccounts.Iftherewasa30seccountconductedataparticularcountstationata particularvisit,wemultipliedthecountby6(toarriveata3minestimate)andsupersededthe numberofvehiclesdetectedduringthe3mincount.Allnonvehicledetectionsduringthe3min countwereretainedforothercalculations;the30seccountcouldonlysupersedethevehicle

165 totalsforcounts.Theresultingvaluefor3min/30seccountswassummedacrossvisitsforeach siteandaddedtothenumberofvehiclesdetectedduringalltransectsurveysateachsite.This valuewasmultipliedby60anddividedbythetotalsurveytimetoyieldthenumberofvehicles detectedperhour. Wesummarizedtheoverallpatternsofuseintermsofthefourusevariablesand performedsimplelinearregressionsbetweenthesevariablesanddevelopmentwithin300m. Results SurveyEffort Weconducted1,684surveysofhumanuseat101sitesovera6monthperiodand distributedbetweenweekdaysandweekends(Table7.2),foratotalsurveytimeof959.9hr.The numberofvisitspersiterangedfrom12to21( x =16.7,s.e.=0.16);thevariationwasaresult ofsomesitesbeingestablishedandthereforesurveyeffortsbeganearlierthanothers.Total surveytimepersiterangedfrom2.33to17.03hrs( x =570.25,s.e.=23.59),withthevariation primarilyafunctionofthesizeofthesites. Table7.2.Numberofvisitsto101sitesalonganurbangradientintheLakeTahoebasinin2004by month,timeofday(early=6amto1pm,late=1pmto8pm),andtimeofweek.“Weekends”include holidays(MemorialDay,IndependenceDay,andLaborDay). Weekdays Weekends Early Late Early Late Total May 10 21 21 33 85 June 73 77 77 68 295 July 136 82 136 96 450 August 122 99 131 99 451 September 100 84 105 114 403 Total 441 363 470 410 1684 UsePatterns

Thenumberofpeopledetectedpersiterangedfrom0to32.3people/hr,includingthe mostheavilyusedsite,WH109N,whichhadnearlythreetimesasmanydetectionsperhouras thenextmostusedsite.Thissmallsite,whichhadveryhighhumanusewithrelativelylittle surveyeffort,wasaclearoutlierandwasomittedfromsitespecificanalysesofdetectionsof people,butretainedforanalysesofdogsandvehicles.Withtheoutlierremoved,thenumberof peopledetectedpersiterangedfrom0to11.18people/hour( x =1.59,s.e.=0.23).Thetotal numberofdogsdetectedperhourpersiterangedfrom0to4.5( x =0.37,s.e.=0.07),andthe numberofunrestraineddogsperhourpersiterangedfrom0to2.33( x =0.24,s.e.=0.04).The numberofvehiclesdetectedperhourpersiterangedfrom0to323.08( x =33.26,s.e.=5.31). Usebypeoplevarieddependingonthemonth,timeofday,andtimeofweek.Use appearedtopeakinJuly(Fig.7.1),wassomewhatheavierintheafternoonandeveningthanin themorning(Fig.7.2),andwassomewhatheavieronweekendsandholidaysthanonweekdays (Fig.7.3).

166

2.5

2

1.5

1

Peopledetectedperhour 0.5

0 May June July August September Figure7.1.Thenumberofpeople/hourineachofthefivemonthssurveyedat101sitesalonganurban gradientintheLakeTahoebasin,2004.Only69sitesweresurveyedinMayand99weresurveyedin June.

2.5

2

1.5

1

Peopledetectedperhour 0.5

0 6amto1pm 1pmto8pm Figure7.2.Thenumberofpeopledetectedperhourinearly(6amto1pm)surveysandlate(1pmto8 pm)surveysat101sitesalonganurbangradientintheLakeTahoebasin,2004.

167 2.5

2

1.5

1

Peopledetectedperhour 0.5

0 Weekdays Weekends&holidays Figure7.3.Thenumberofpeopledetectedperhouronweekdaysandonweekendsandholidays (MemorialDay,IndependenceDay,andLaborDay)at101sitesalonganurbangradientintheLake Tahoebasin,2004. Mostdogsdetectedwerenotrestrained.Ofthe315dogsdetectedwithinsampleunits acrosstheentirestudy,226(72%)ofthemwereunrestrained.Inthe58siteswheredogswere detected,theproportionofdogsunrestrained(asmeasuredbythenumberofunrestraineddogs detectedperhourdividedbythetotalnumberofdogsdetectedperhour)rangedfrom0to1( x = 0.67,s.e.=0.05). Humanusewaspositivelyrelatedtodevelopmentwithin300mofthesitecenter(F(1,98) =12.31, P=0.0007,adj.R 2=0.10;Fig.7.4),whilethenumberofvehiclesshowedaaneven strongerpositiverelationshipwith300mdevelopment(F(1,99)=36.30, P<0.0001,adj.R 2= 0.26;Fig.7.5).Thetotalnumberofdogswasmarginallypositivelyrelatedtodevelopment (F(1,99)=3.52, P=0.0636,adj.R 2=0.02),butnotthenumberofunrestraineddogs(F(1,99)= 1.37, P=0.2451,adj.R 2=0.00).Dogsweremorelikelytoberestrainedinmoredeveloped areas(F(1,56)=6.89, P=0.0112,adj.R 2=0.09;Fig.7.6).

12

10

8

6

4

2 Averagenumberofpeopleperhour 0 0 20 40 60 80 Development(%)

168 Figure7.4.Relationshipbetweenthenumberofpeopledetectedperhouranddevelopmentwithin300m of100sampleunitsintheLakeTahoebasin,2004.

350 300 250 200 150 100

Vehiclesdetectedperhour 50 0 0 10 20 30 40 50 60 70 Development(%) Figure7.5.Relationshipbetweenthenumberofvehiclesdetectedperhouranddevelopmentwithin300 mof101sampleunitsintheLakeTahoebasin,2004.

1.0

0.8

0.6

0.4

0.2 Proportionofdogsunrestrained 0.0 0 20 40 60 80 Development(%) Figure7.6.Relationshipbetweentheproportionofdogsunrestrained(offleash)anddevelopmentwithin 300mof101sampleunitsintheLakeTahoebasin,2004. Discussion Althoughrecreationusewaspositivelyrelatedtodevelopment,itwasclearthatsome siteswithlowdevelopmentreceivedhighuse,particularlynonmotorizeduse.Thismeansthat usecanhaveanimpactindependentofdevelopmentandthatanalysesofdevelopmentshouldnot assumethatformsofhumandisturbanceincreasewithdevelopmentinalinearmanner.Further,

169 itappearsthatsometypesofimpactsfromdogs(e.g.,wildlifeharassmentandmortality)maybe greaterinlessdevelopedareasbecauseagreaterproportionofdogsareunrestrained. Asexpected,peakusemonthswereJune,JulyandAugust,andagreaternumberof peopleontheweekends.Thisindicatesthatsummervisitorscomprisealargeproportionof usersoftheseurbanforestparcels,whichisperhapsanewperspectiveonhowmanyvisitors spendtheirtimeandwhataspectsoflandmanagementinthebasinwillaffectvisitorsatisfaction. Thegreaterlevelofuseinthelatterportionofthedayisconsistentwiththeideathatmost peoplegoforwalkswithorwithoutpetstowardtheendoftheday.

170 Chapter 88:: Landscape Model Introduction Aspartoftheresearchprojectinvestigatingtheroleofurbanforestsinmaintaining biologicaldiversityintheLakeTahoebasin,webuiltspatiallyexplicitmodelsofbasinwide conditionsforspeciesandspeciesgroupssensitivetodevelopment.Themodelswerebasedon datageneratedthroughfielddatacollection,andthenwedemonstratehowtheycanbeusedto makepredictionsaboutabilityofsitesandlandscapestosupportspeciesandassemblages.The modelappliestothelowermontanevegetationzone(<7000ft),whichiswherethemajorityof developmentandhumanusehasoccurred(Fig.8.1).Thelowerelevationvegetationis predominantlyJeffreypineandmixedconiferforests.

Impervioussurfaces Vegetationzones Figure8.1.CoincidenceofdevelopmentandvegetationzonesintheLakeTahoebasin, illustratingthatmostofthedevelopmentisoccurringinthelowerelevationvegetationzones. ThegoalofGISmodelingwastoevaluatethepotentialtomakepredictionsaboutthe presenceorabundanceofspeciesorspeciesgroupsthroughoutthelowermontanezone(below

171 7000ft)toinformourunderstandingofthecurrentandpotentialfutureamountandlocationof highqualityareasforspeciessensitivetohumandevelopment.

MeMeMethodsMe thods RegressionModelDevelopment Weselectedtheresponsevariableswiththestrongestrelationshipwithdevelopmentand/or GISvariablesthatweobservedtovarywithdevelopment,namelyNDVI(Normalized VegetationDifferenceIndex)andcanopycover.Predictivemodelsweredevelopedforthe15 mostresponsivebiologicalmetricsacrossthefourtaxonomicgroups: • Birds o birdspeciesrichness o birdcommunitydominance o groundnesterrichness o cavitynesterrichness • Smallmammals o smallmammalspeciesrichness o smallmammalabundance • Largemammals o blackbearpresence o martenpresence o coyotepresence • Ants o antspeciesrichness o lognestingantrichness o thatchnestingantrichness Weusedallpossiblesubsetsregressiontoderivethebestpredictivemodelforeach responsevariable.ExplanatoryvariableswerelimitedtoGISvariablestoenableustomake predictionsthroughoutthebasin.Foreachresponsevariableforeachtaxonomicgroup,we identifiedtheGISvariablesthathadthepotentialtoaffecttheresponsevariablegivenour ecologicalknowledgeofthesystem.Aswiththeregressionmodelinginthetaxaspecific chapters,dataformanyofthehabitatvariableswereavailableatmultiplespatialscales(e.g., landscapevegetationat100,300and1000m).Themaximumnumberofvariablesconsideredfor inclusionintheallpossiblesubsetsregressionwaslimitedto10%ofthenumberofsitessampled toavoidoverfitting.WeusedAICcvaluestohelpidentifythemostappropriatescaleatwhich todescribefeaturesforwhichmultiplescaleswereanoption.Thespatialscaletoincludeinthe GISmodelswasdeterminedbythemodelwiththe highestrank(greatestmodelweight). Afterselectingthepredictorvariablestouseinthemodels,welookedforpotential interactionsamongthesevariables.Ageneralizedadditivemodeling(GAM)procedurebasedon nonparametricregressionandsmoothingtechniqueswasused,whichcanuncoverstructurein therelationshipbetweentheindependentvariablesandthedependentvariablethatmight otherwisebemissed.GAMwasconductedusingProgramR(RDevelopmentCoreTeam2005).

172 TheallpossiblesubsetsregressionwasconductedusingPROCLOGISTICadjustedfor speciesdetectabilityforpresence/absenceresponsevariables,andforcontinuousvariableswe conductedallpossiblesubsetsregressionusingPROCREGandthenusedPROCGLIMMIXto calculateAICcvaluesandrelativeweights.Foreachnumberofvariables(rangingfrom1tothe maxnumberincludedintheanalysis),weidentifiedthe10modelswiththelowestAICas candidatemodels.Forexample,if6predictorvariableswereincludedintheanalysis,60 candidatemodelswouldbeselected.Weusedmodelaveragingtoderivethefinalpredictive model,thusthefinalmodelsincludedallvariablesanalyzedandtheirassociatedcoefficients. Forcontinuousvariables,PROCGLIMMIXcanaccountforcountdata(allrichnessand abundancedata),butonlyPROCREGcandoallpossiblesubsetsregression.Thus,weuseda twostepanalysisprocessforcountdata.Continuous,responsevariableswerelogtransformed priortotheallpossiblesubsetanalysisinPROCREGsothattheAICcvaluesamongcompeting modelsmostcloselyalignedwithwhattheAICvalueswouldbeinthefinalstepoftheanalysis conductedinPROCGLIMMIX.Thebest10modelsineachnumberofvariableswerecarried forwardintoPROCGLIMMIXwheretheirrelativeAICvalueswerecalculatedandweights assigned.Predictorvariablesforbirdsandsmallmammalswerestandardizedpriortothe analysisbysubtractingthemeananddividingbythestandarddeviation. GISModelDevelopment DevelopmentScenarios Multipledevelopmentscenariosweremodeledtodemonstratethemagnitudeofthe contributionthatpublicparcelsmaketosupportingbiodiversityandtorepresentpotentialfuture developmentoptions.Wepartitionedparcelsintothreecategories:privatevacant(currently undeveloped),ForestServiceurbanparcels,andallpublicurbanparcels.Thiscategorization allowedustomodellikelyfuturedevelopmenttrendsonprivatelands,aswellastoevaluate changesthatwouldresultifthesametrendsoccurredonpublicurbanlands.Althoughitisnot currentlylikelythatpublicparcelswillbeconvertedtoprivateownershiponalargescale, nonethelesswemodeleddevelopmentofpublicurbanparcelstoquantifythecontributionthey maketosupportingbiologicaldiversityinthelowermontanezone(ormorecorrectly,the contributionthatwouldbelostifdeveloped). Wethoughtitwasmostlikelythatsinglefamilyhomeswouldbebuiltonprivateparcels. Wecalculatedcurrentcoverageofdevelopedparcelszonesassinglefamilyhome,andfoundthe averagecoveragetobe51%.Therefore,werepresentedparceldevelopmentbyrandomly assigningdevelopmentto50%oftheparcelacreage.Wealsowantedtorepresentlower intensityuses,suchastheestablishmentoftrailsandpublicserviceuses(e.g.,sedimentponds). Werepresentedthesetypesofusesonpubliclandsbyrandomlyassigningdevelopmentto10% oftheparcel. Wemodeledandcomparedfivedevelopmentscenariosforthisreport;theyarelistedin orderofincreasingextentofdevelopment. 1. Existingconditions 2. Halfofallprivatevacantparcelsdeveloped • Therearecurrently6110undevelopedprivateparcelsinthebasin;so3055parcels wererandomlyselectedandrepresentedashavingasinglefamilyhome(50% developed).

173 3. Allprivatevacantparcelsdevelopedasabove • All6110parcelswererepresentedashavingasinglefamilyhome(50% developed). 4. Allprivatevacantparcelsdevelopedasaboveandallpublicurbanparcelsdevelopedfor somepublicservice • Thereare8348publicurbanparcels–theywereallrepresentedas10% developed. 5. AllprivatevacantparcelsdevelopedasaboveandallForestServiceurbanparcels developed • Thereare3318ForestServiceurbanparcels–theywereallrepresentedas50% developed. ParcelIdentification Thebaselanduselayerforallmanagementscenarioswasthecombinedparcellayer createdinc.2000byTRPA(ltb_landuse_u10.shp).However,thislayerdidnothaveallthe informationneededtorunthemanagementscenarios(ithadlandusebutnotownership). Ownershipwasdeterminedbyconsultingparcellayersprovidedbyindividualagencies.We obtainedaparcellayernamed“CTC_parcels.shp”fromtheCaliforniaTahoeConservancy(Scott Cecchipers.comm.).Wealsoobtainedaparcelownershiplayer(parcels06142006_nad27.shp) fromtheLTBMU(KurtTeuberpers.comm.),whichwasusedtoidentifyBurtonSantiniparcels andprivatevacantparcels. IntheLTBMUlayer,therewere3,332NationalForestSystem(NFS)BurtonSantini(B S)parcelsinthebasin.MismatchesbetweenthebaselanduselayerandtheLTBMUlayer resultedinaslightdecreaseinthefinalnumberofparcelsrepresentedasBSto3,327.Ofthese parcels,onlythosewithcentroids<7000ft(n=2,711)andthosefewparcelswithcentroids above7000ftbut<50hainsize(n=607)wereconsideredeligiblefordevelopmentunderour scenarios,foratotalof3318parcels.This“weeding”wasperformedtoexcludethefewlarge, highelevationparcels(n=9)thatareunlikelytobedeveloped. Theotherpubliclandsinurbanareasinthebasinspanmultipleagencies,including CaliforniaTahoeConservancy(CTC),NevadaStateLands,andcountylands.InCTClayer therewere4,542parcelsownedbyCTCorthathaveaCTCeasement.Mismatchesbetweenthe baselanduselayerandtheCTClayerslightlyreducedthefinalnumberofparcelsrepresentedas CTClandto4,384.Anumberofotherpublicagenciesownandmanageurbanparcelsinthe basin,suchastheStateofNevadaandcounties.Nevadaownedparcelswereselectedinthe LTBMUparcellayerbyselecting“Owner=“State”,“State=NV”and“GenUse=Vac”(n= 485).CountyownedparcelswereidentifiedusingtheLTBMUparcellayerbyselecting“Owner =County”and“GenUse=Vac”(n=170).AswithforestServiceparcels,onlythoseoccurring <7000ftorabove7000ftand<50hawereeligiblefordevelopment.Thefinalselectionof parcelsonthelanduselayerwasperformedaspreviouslydescribedandresultedin478Nevada ownedparcelsand168countyownedparcels.Thisapproachresultedinatotalof5030public urbanparcelsotherthanNFSBSparcels. IntheLTBMUparcellayer,privateparcelswereidentifybyselectingallparcelslabeled as“Owner=Private”and“Landuse=1”(n=6116).Next,allparcelsinthelanduselayerthat hadtheircenterinthese6,116selectedparcelswerelabeledwiththe‘Privatevacant’labelinthe

174 “scenario”field.Thefinalnumberofprivatevacantparcelsrepresentedinthelanduselayerwas slightlyreducedto6,110. DevelopmentRepresentation Developmentwasallocatedtoparcelsbyrandomlyselecting3x3mpixelswithineach parceluntil10or50%ofthepixelsareselected.Inadditiontochangingpixelclassification fromundevelopedtodeveloped,wealsoconsideredthatotherGISvariablesarelikelytochange withdevelopment,suchastreedensityandcanopycover.Weevaluatedcorrelationsamong variablesthatcouldchangewithdevelopmentthatwereavailableinGIS:NDVI,(Normalized DifferenceVegetationIndex),brightnessandcanopycover.Wecreatedaseriesofpoints300 metersapart,andextractedthevaluesofthesethreevariableswithina300mradius.Weonly usedpointswithadevelopmentvalueof>1%intheanalysis.Basedonlinearregression analysis,wefoundthatonlytwovariablesweresignificantlyassociatedwithdevelopment: NDVIandcanopycover(Table8.1).Althoughtherelationshipshadalotofvariability, intuitivelyitwasimportanttoaccountforrelatedchanges,andtheslopeoftherelationshipwith canopycoverwassteep,indicatingahighmagnitudeofchangeincanopycoverwith development. Table8.1.Regressionrelationshipsbetweendevelopment(>1%)andthreevariablesthatcommonly changeasaresultofdevelopment. Variable Adj.R 2 Slope NDVI 0.072 0.0013 Brightness 0 0 Canopycover 0.092 0.219 Torepresenttheserelationshipsinthescenarios,wefirstalteredourdevelopmentvalues foreachscenario,asdescribedabove.Wethensubtractedthecurrentdevelopmentvaluesfrom thedevelopmentvalueineachscenario,givingusanetchange(positiveornegative)in developmentvalueforeachpixel,andthenwecalculatedtheassociatedchangeinNDVIand canopycoverbasedontheregressionequation.Wefinallyaddedtogethertwolayers(thenet changeinNDVIandcanopycoverandtheoriginalNDVIandcanopycoverusedinvarious landscapemodels)toderivethealteredvalues. BirdModeling Atotalof32predictorvariableswereincludedforconsiderationinallpossiblesubsets modeling(Table8.2)althoughthisnumbervariedslightlybyresponsevariable.Inadditionto theselinearterms,quadratictermswerealsoincludedforsixofthesevariables,foratotalof38 variables.Somevariablesweretransformedtoreducetheinfluenceofoutliersoryieldalinear relationshipwiththeresponsevariable.Wefoundnosignificantinteractionsamongthese predictorvariablesbasedonGAManalyses.Modelsupto15variableswereallowed;thehigh numberrelativetothatoftheothertaxonomicgroupsreflectsthelargenumberofsamplepoints (n=375)withbirddata.Byandlarge,modelsdidnotimprovewith>15variablesincluded. Thebest10modelsforeachnumberofvariables,foratotalof150models,wereretainedforuse inmodelaveraging.

175 Table8.2.Variablesincludedinregressionmodelsforpredictingbirdspeciesrichness,birdcommunity dominance,groundnesterrichness,andcavitynesterrichness. Variable Definition DEV150 Developmentwithin150m DEV300 Developmentwithin300m DEV500 Developmentwithin500m DEV1000 Developmentwithin1000m AS150 Proportionaspenwithin150m AS300 Proportionaspenwithin300m AS500RT Proportionaspenwithin500m(sqrt) AS1000 Proportionaspenwithin150m HC150 Proportionhighconifer(LPN,RFR,SCN,SMC)within150m HC300 Proportionhighconifer(LPN,RFR,SCN,SMC)within300m HC500 Proportionhighconifer(LPN,RFR,SCN,SMC)within500m HC1000 Proportionhighconifer(LPN,RFR,SCN,SMC)within1000m Proportionhighconifer(LPN,RFR,SCN,SMC)within1000m HC10002 (squared) LC150 Proportionlowconifer(JPN,WFR)within150m LC300 Proportionlowconifer(JPN,WFR)within300m LC500 Proportionlowconifer(JPN,WFR)within500m LC1000 Proportionlowconifer(JPN,WFR)within1000m RM150RT Proportionriparianmeadow(MRI,PGS,WTM)within150m(sqrt) RM300RT Proportionriparianmeadow(MRI,PGS,WTM)within300m(sqrt) RM500RT Proportionriparianmeadow(MRI,PGS,WTM)within500m(sqrt) RM1000RT Proportionriparianmeadow(MRI,PGS,WTM)within1000m(sqrt) SH150RT Proportionshrubs(MCP,SGB)within150m(sqrt) SH300 Proportionshrubs(MCP,SGB)within300m SH500 Proportionshrubs(MCP,SGB)within500m SH1000RT Proportionshrubs(MCP,SGB)within1000m(sqrt) ELEV Averageelevationwithin3x3cellgridinm ELEV2 Averageelevationwithin3x3cellgridinm(squared) SLOPE Averagepercentslopewithin100m SLOPE2 Averagepercentslopewithin100m(squared) DISTWTR Minimumdistanceinmtostreamorlake DISTWTR2 Minimumdistanceinmtostreamorlake(squared) UTM_N UTMN,zone10 UTM_N2 UTMN,zone10(squared) UTM_E UTME,zone10 CC100 Canopycoverwithin100m CC1002 Canopycoverwithin100m(squared) NDVI AverageNDVIwithin100m BRIGHT Averagebrightnesswithin100m CarnivoreModeling Thirtyonepredictorvariablesrepresentingdevelopment,localandlandscapevegetation compositionandstructureandabioticconditions,wereincludedinalltheallpossiblesubsets

176 regressionanalysesofcarnivoreoccurrence(Table8.3).EvaluationinGAMindicatedno significantinteractionsamongvariables.Themaximumnumberofvariablesinanysinglemodel waslimitedto8variables.Theprobabilityofdetectionwasconsideredinthedevelopmentof thesemodels,asitwasfortheregressionmodelsthatincludedGISandlocalvariables.Inthe caseoftheblackbear,wefoundacorrelationbetweenprobabilityofdetectionanddevelopment, thusweaccountedforthatrelationshipinmodelingbyincludingdevelopmentasavisit covariate. Table8.3.GISvariablesusedinallpossiblesubsetsmodelingprocessforcarnivoreoccurrence. Variable Description ELEV Averageelevation(feet)withina45mradius SLOPE_3X3 Averageslope(degrees)withina45mradius PPT_MM Precipitation(30yearaverage;19712000),inmm NDVI_3X3 AverageNDVIwithina45mradius BRI_3X3 Averagebrightmesswithina45mradius. GRE_3X3 Averagegreennesswithina45mradius. WET_3X3 Averagewetnesswithina45mradius. DIST_STRM Distance,inmeters,totheneareststream DEV_100M Proportionoftheareawithina100meterbufferthatis"developed" DEV_300M Proportionoftheareawithina300meterbufferthatis"developed" DEV_500M Proportionoftheareawithina500meterbufferthatis"developed" DEV_1000M Proportionoftheareawithina1000meterbufferthatis"developed" DEV_MAX Maximumvaluefrom100,300,500,or1000meterscales BAR_300 Proportionoftheareawithina300meterbufferthatisCWHRtype"BAR" Proportionoftheareawithina300meterbufferthatisforested(CWHRtypesJPN,LPN,RFR, FOR_300 SCN,SMC,WFR) Proportionoftheareawithina300meterbufferthatismeadow(CWHRtypesASP,MRI, MDW_300 PGS,WTM) SHR_300 Proportionoftheareawithina300meterbufferthatisshrub(CWHRtypesMCH,MCP,SGB) N34SP_300 Percentofareawithin300meterdistancewithtrees15–61cmdbhandcanopycover<40% N34MD_300 Percentofareawithin300meterdistancewithtrees15–61cmdbhandcanopycover>40% N56SP_300 Percentofareawithin300meterdistancewithtrees>61cmdbhandcanopycover<40% N56MD_300 Percentofareawithin300meterdistancewithtrees>61cmdbhandcanopycover>40% BAR_1K Proportionoftheareawithina1000meterbufferthatisCWHRtype"BAR" Proportionoftheareawithina1000meterbufferthatisforested(CWHRtypesJPN,LPN, FOR_1K RFR,SCN,SMC,WFR) Proportionoftheareawithina1000meterbufferthatismeadow(CWHRtypesASP,MRI, MDW_1K PGS,WTM) Proportionoftheareawithina1000meterbufferthatisshrub(CWHRtypesMCH,MCP, SHR_1K SGB) N34SP_1K Percentofareawithin1000meterdistancewithtrees15–61cmdbhandcanopycover<40% N34MD_1K Percentofareawithin1000meterdistancewithtrees15–61cmdbhandcanopycover>40% N56SP_1K Percentofareawithin1000meterdistancewithtrees>61cmdbhandcanopycover<40% N56MD_1K Percentofareawithin1000meterdistancewithtrees>61cmdbhandcanopycover>40%

177 SmallMammalModeling Fourteenpredictorvariableswereincludedintheallpossiblesubsetsregressionanalysis forsmallmammals(Table8.4).Wefoundnosignificantinteractionsamongthesepredictor variablesbasedonGAManalysis.Forsmallmammalspeciesrichness,themaximumnumberof variablestoincludeinamodelatoncewaslimitedtosevenduetosamplesizeconsiderations. Forsmallmammaltotalrelativeabundance,fivewasthemaximumnumberofvariablesina singlemodel. Table8.4GISvariablesusedintheallpossiblesubsetsmodelingprocessforsmallmammalspecies richnessandtotalrelativeabundance. Variable Definition NDVI AverageNDVIwithin100m BRI Averagebrightnesswithin100m CF500 %coverofconiferforest(JPN,LPN,RFFR,SCN,SMC,WFR)within500m SH500 %coverofshrubs(MCP,SGB)within500m GR500 %coverofgrassland(PGS)within500m MERI_500 %coverofriparian(MRI/WTM)within500m ASP_500 %coverofaspen(ASP)within500m TR1224 Trees1223.9cmDBHwithin500m TR24_500 Trees>24cmDBHwithin500m CANMD500 Moderate&densetreedensitywithin500m D100 Developmentwithin100m D500 Developmentwithin500m D1000 Developmentwithin1000m D1000SQ Developmentwithin1000msquared AntModeling Weconductedallpossiblesubsetsregressionsforthreeantcommunityresponses:ant speciesrichness,abundanceoflognesters,andabundanceofthatchnesters.Weincorporated tenGISderivedpredictorvariables(Table8.5)ineachoftheregressionmodelsforant communityresponses.Welimitedthemaximumnumberofvariablestosevenforinclusionin eachofthefinalmodelstopreventproblemsassociatedwiththenumberofappropriate parametersinagivensamplesize(BurnhamandAnderson2002).

178 Table8.5.GISvariablesusedinallpossiblesubsetsregressionmodelsforantcommunity responses. Variable Definition HLI Averageheatloadindexofa9cellwindowaroundthesite. PPTmm Precipitation(mm)ofsitebasedon30yearmeanfrom19712000). ASP Aspectmajorityvalueofa9cellwindow. NDVI Averagendviofa9cellwindow GRE Averagegreennessofa9cellwindow. IMP100 Impervioussurfaceareawithin100m. DEV60 Averagedevelopmentvalueofa9cellwindow. DEV1000 Averagedevelopmentvaluewithina1000mbuffer. JPN100 Proportionofareawithina100mbufferasJeffreyPine(JPN). CC100 Averagecanopycoverwithina100mbuffer. Results BirdModels Species richness Thefinalmodelforspeciesrichnessretained28variables,withstronginfluencesofUTM N,elevation,percentdevelopmentatseveralscales,NDVI,percentslope,brightness,andlow andhighconiferforest(Appendix8.1).Becausethemanagementscenariosalterboth developmentandNDVI,thescenarioshadstrongeffectsonspeciesrichness. Predictedrichnessvaluesacrossthelandscapewereplacedintothreecategoriesbasedon onestandarddeviationaboveandbelowthemeanpredictedrichnessvalue(roundedoff):high(≥ 20species),moderate(14to20species),andlow(<14species)richness.Increasingintensityof developmentincreasedtheproportionofthelandscapewithlowrichnessanddecreasedthe proportionwithmoderateandhighrichness(Fig.8.2).Theproportionofthelandscapewith highrichnessrangedfrom0.115inScenario1,existingconditions,to0.096inScenario5.The proportionwithlowrichnessrangedfrom0.139inScenario1to0.199inScenario5.

179 50%

40%

30%

20% Low Moderate 10% High

0% Percentchangefromcurrent 2 3 4 5 10%

20% Developmentscenario Figure8.2.Predictedpercentchangeinthreecategoriesofbirdspeciesrichnessinfourdevelopment scenarioscomparedtoexistingconditions.High(≥20species),moderate(14to20species),andlow (<14species)richness. Mapsofmodeloutputsshowdistinctchangesinhighandlowrichnessareasinsome portionsofthebasin(Mapset8.1).ThemostobviousareaofchangeisinSouthLakeTahoe, wherehighrichnessareasintheAlTahoeandSierraTractneighborhoodsreduceinsizeor disappearcompletely.Likewise,highrichnessareaseastofStatelinedecreasedramaticallyin sizewithincreasingdevelopment,evenintheleastintensedevelopmentscenario(Scenario2). Highrichnessareasarealsolostand/orreducedinsizealongtheEastShorenearSpoonerLake, andontheWestShorewestofRubiconBay.Reductionsinsizeofhighrichnessareasare accompaniedbyincreasesinsizeoflowrichnessareasinmostcases. Community dominance Thefinalmodelforcommunitydominanceretained28variables,withstronginfluences ofNDVI,developmentatmultiplescales,elevation,slope,distancetowater,aspen,andlow elevationconiferforest(Appendix8.1).Becausethemanagementscenariosalterboth developmentandNDVI,thescenarioshavestrongeffectsoncommunitydominance. Dominancewasplacedintothreecategoriesbasedononestandarddeviationaboveand belowthemeanpredicteddominancevalue(roundedoff):high(≥0.26),moderate(0.16to0.26), andlow(<0.16).Increasingintensityofdevelopmentdecreasedtheproportionofthelandscape withlowandmoderatedominanceandincreasedtheproportionwithhighdominance(Fig.8.3). Theproportionofthelandscapewithlowdominancerangedfrom0.129inScenario1,existing conditions,to0.109inScenario5.Theproportionwithhighdominancerangedfrom0.133in Scenario1to0.200inScenario5.

180 60%

50%

40%

30% Low 20% Moderate High 10%

0% Percentchangefromcurrent

10% 2 3 4 5

20% Developmentscenario Figure8.3.Predictedpercentchangeinthreecategoriesofbirddominanceinfourdevelopmentscenarios comparedtoexistingconditions.High(≥0.26),moderate(0.16to0.26),andlow(<0.16)dominance. Mapsofmodeloutputsshowdistinctchangesinhighandlowdominanceareasinsome portionsofthebasin(Mapset8.2),althoughchangesarenotasevidentasthoseinrichness. AreasofhighdominanceexpandwithincreasingdevelopmentinSouthLakeTahoe,Round Hill/ZephyrCove,eastofStateline,alongtheeastshoreuptoSpoonerLake,InclineVillage,and eventhefarreachesoftheUpperTruckeewatershed.Changesinhighdominanceareasare accompaniedmainlybyincreasesinmoderatedominanceareas.Lowdominanceareasareless obviouslyaffected. Richness of ground nesters Thefinalmodelforgroundnesterrichnessretained31variables(shortenedto30by droppingthevariablewiththesmallestcoefficienttomeettheconstraintsofArcGIS),with stronginfluencesofelevation,1000mdevelopment,lowelevationconifer,aspen,riparian meadow,highelevationconifer,andUTME(Appendix8.1).Themanagementscenarioshada slighteffectongroundnesterrichnessbecauseoftheiralterationofdevelopment,butasmaller effectthantheydidontotalspeciesrichness.TheregressionmodelwasnotappliedtotheTahoe landscapetoevaluatethescenarios. Richness of cavity nesters Thefinalmodelforcavitynesterrichnessretained32variables(shortenedto30by droppingthetwowiththesmallestcoefficientstomeettheconstraintsofArcGIS),withstrong influencesofcanopycover,brightness,distancetowater,300mand500mdevelopment, NDVI,and500mshrubs(Appendix8.1).Themanagementscenarioshadastrongeffecton

181 cavitynesterrichnessbecauseofthescenarios’alterationofdevelopment,canopycover,and NDVI.TheregressionmodelwasnotappliedtotheTahoelandscapetoevaluatethescenarios. SmallMammalModels TheGISmodelsforsmallmammalspeciesrichnessandrelativeabundanceretained14 variableseach(Appendix8.1).Theyrevealedthatfactorsrelatedtohumandevelopment, vegetation,andhabitattypehadpredictivepower.However,therelativeinfluenceofthese factorsonspeciesrichnessandrelativeabundancedidvary.Forspeciesrichness,developmentat the1000mscalehadthestrongestrelationshipwiththenumberofspeciesobservedatasite. Thisrelationshipwasquadraticinnature,withhigherspeciesrichnessrealizedatsitesinthe middleofthedevelopmentcontinuum.Wefoundasimilarassociationbetweenspeciesrichness anddevelopmentatthe500mscale,butthisrelationshipwasnotasstrong.Theseresultsindicate thaturbanizationaloneisnotastrongpredictorofsmallmammalspeciesrichness.The regressionmodelwasnotappliedtotheTahoelandscapetoevaluatethescenarios. Thefactorthatexhibitedthestrongestrelationshipwithsmallmammalrelative abundancewasthe normalizeddifferenceofthevegetationindex( NDVI)(Appendix8.1). NDVI isameasureofvegetationamountandconditionandisassociatedwithvegetationcanopy characteristics(e.g.,biomass,leafareaindexandpercentageofvegetationcover).Ofthesites includedthisanalysis,NDVIrangedfrom0.320.64,andabundancewashighestatsitesatthe lowerhalfofthisrange(NDVI=0.320.50).Relativeabundancewasalsopositivelyinfluenced bydevelopmentatmultiplescales.TheregressionmodelwasnotappliedtotheTahoelandscape toevaluatethescenarios.Lackingtheabilitytoincludesitespecifichabitatfeaturesin landscapepredictivemodels,theGISmodelsindicatesthatNDVIandbrightnessmaybeuseful surrogatesforcharacterizingsomeofthelocalsiteconditionstowhichsmallmammalmammals areresponding. CarnivoreModels ModelaveragingproducedafinalGISmodelformartenconsistingof21variables (Appendix8.1).Theprobabilityofmartenoccurrencewasnegativelyassociatedwith developmentatmultiplespatialscales(300,500,and1000m)andpositivelyassociatedwith brightnessandtheoccurrenceofmeadowhabitatswithin1000m. Predictedprobabilitiesofoccurrenceacrossthelandscapewereplacedintothree categoriesbasedonthedistributionofvalues,mostofwhichwerenear0or1:high(≥0.90), moderate(0.60to0.90),andlow(<0.60).Theresultsofthelandscapemodelingscenariosfor martensuggestonlyslightshiftsinprobabilityofoccurrenceinresponsetotheextentand locationofdevelopment(Fig.8.4,Mapset8.3).Thismayreflectthespatialdistributionof parcelsthatareeligiblefordevelopmentwhichislikelytobeconcentratedatlowerelevations, closertoLakeTahoe.Thiswouldtendtoreducetheoverlapofareasofmartenoccupancywith eligibleparcelsminimizingimpactsoffuturedevelopment.Itislikelythattheprobabilityof martenoccurrenceintheLakeTahoeBasinisatgreaterriskfromhighelevationrecreationaland residentialdevelopmentratherthanfromthedevelopmentoflowerelevationprivateparcelsor publicurbanlots.

182 10% 8% 6% 4%

2% Low 0% Moderate 2% 2 3 4 5 High 4%

Percentchangefromcurrent 6% 8% 10% Developmentscenario Figure8.4.Changeinproportionofthelandscapeineachofthreeoccupancyprobabilityclassesfor marten.High(≥0.90),moderate(0.60to0.90),andlow(<0.60)probabilityofoccurrence . Twentytwovariableswereretainedinthemodelaveraginganalysisforcoyote (AppendixG).Coyoteoccurrencewasnegativelyassociatedwithamountofforest,NDVI, greenness,anddevelopmentwithin100and300m,andpositivelyassociatedwithamountof shrubtypes(at300mand1000mscales),amountofmeadowtypeswithin1kilometerand developmentwithin500and1000m. Predictedprobabilitiesofoccurrenceacrossthelandscapewereplacedintothree categoriesbasedonthedistributionofvalues,mostofwhichwerenear0or1:high(≥0.90), moderate(0.60to0.90),andlow(<0.60).Underthedevelopmentscenarios,theprobabilityof coyoteoccurrencegenerallyincreasedwithincreasingdevelopmentalthoughthechangewas slight(Fig.8.5,Mapset8.4).Giventhescaledependentresponseofcoyotetodevelopmentand theirassociationwithopenhabitats(e.g.shrubsandmeadows),itislikelythatcoyotescould benefitfromsomelevelofdevelopmentaslongassomenativehabitatsexistwithin500– 1000m.

183 10% 8% 6% 4%

2% Low 0% Moderate 2% 2 3 4 5 High 4%

Percentchangefromcurrent 6% 8% 10% Developmentscenario Figure8.5.Changeinproportionofthelandscapeineachofthreeoccupancyprobabilityclassesfor coyote:high(≥0.90),moderate(0.60to0.90),andlow(<0.60)probabilityofoccurrence . Blackbearoccurrencewaspositivelyassociatedwithwetness,largetreesanddense forestwithin300m,anddevelopmentwithin300m;itwasnegativelyassociatedwithNDVI, meadowanddevelopmentwithin1km,andlargetreesanddenseforestwithin1km(Appendix 8.1).Blackbeararemostlikelyrespondingtodevelopmentinacomplexmanner,basedonthe resultsofthisstudyandresearchconductedbyothersinthebasin(e.g.,BeckmanandBerger 2003a,b).TheregressionmodelwasnotappliedtotheTahoelandscapetoevaluatethe scenarios. AntModels Predictivemodelsweredevelopedforthethreeantcommunitymeasures(Appendix8.1). Antspeciesrichnesshadthestrongestnegativerelationshipswithcanopycoverwithin100m, precipitation,andaspect;ithadthestrongestpositiverelationshipswithgreenness,andheatload index(Appendix8.1).Lognestingantabundancehadthestrongestpositiverelationshipwith NDVIandstrongestnegativerelationshipwithgreennessandcanopycoverwithin100m. Thatchnestingantshadthestrongestpositiverelationshipwithgreennessandthestrongest negativerelationshipwithNDVI.Developmentwasnotastrongpredictorofanyoftheant speciesgroups,butNDVIandcanopycoverdidhavestronginfluenceononeormoremeasures, bothofwhichchangewithdevelopment.TheseregressionmodelswerenotappliedtotheTahoe landscapetoevaluatethescenarios.

184

Mapset8.1.Fivemodelsofbirdspeciesrichnessgivenexistingandpotentialfuturelandscape conditions.Scenario1=existingconditions.Scenario2=50%ofprivatelandsdeveloped(50% coverage).Scenario3=100%ofprivatelandsdeveloped(50%coverage).Scenario4= Scenario3+allurbanpublicparcelsdeveloped(10%coverage).Scenario5=Scenario3+ urbanForestServiceparcelsdeveloped(50%coverage).

185

186 187 Mapset8.2.Fivemodelsofbirddominancegivenexistingandpotentialfuturelandscape conditions.Scenario1=existingconditions.Scenario2=50%ofprivatelandsdeveloped(50% coverage).Scenario3=100%ofprivatelandsdeveloped(50%coverage).Scenario4= Scenario3+allurbanpublicparcelsdeveloped(10%coverage).Scenario5=Scenario3+ urbanForestServiceparcelsdeveloped(50%coverage).

188 189 190

Mapset8.3.Fivemodelsofprobabilityofoccurrenceofcoyotegivenexistingandpotential futurelandscapeconditions.Scenario1=existingconditions.Scenario2=50%ofprivate landsdeveloped(50%coverage).Scenario3=100%ofprivatelandsdeveloped(50% coverage).Scenario4=Scenario3+allurbanpublicparcelsdeveloped(10%coverage). Scenario5=Scenario3+urbanForestServiceparcelsdeveloped(50%coverage).

191

193

194 Mapset8.4.Fivemodelsofprobabilityofoccurrenceofmartengivenexistingand potentialfuturelandscapeconditions.Scenario1=existingconditions.Scenario2= 50%ofprivatelandsdeveloped(50%coverage).Scenario3=100%ofprivatelands developed(50%coverage).Scenario4=Scenario3+allurbanpublicparcels developed(10%coverage).Scenario5=Scenario3+urbanForestServiceparcels developed(50%coverage).

195

197

199

Chapter 99:::: Key Findings anandd Management Applications Thischaptersummarizesthekeyfindingsforeachtaxonomicgroupandthe landscapemodelsfromtheassociatedprecedingchapters.Further,thefindingsare interpretedintermsofthethreeprimarymanagementapplications–development, assessment,andmanagement.Developmentwasinterpretedinbroadterms,including manytypesofdevelopmentsuchastrails,roads,smallscalepublicservice developments,housingdevelopments,andcommercialdevelopment.Assessmentwas interpretedastheabilitytodeterminetherelativedegradationofbiologicaldiversity.We consideredanybiologicalmetricsaspotentialindicatorsiftheyshowedastrongand consistentrelationshipwithdevelopmentand/orhumanactivityandwerefeasibleto measurereliably.Managementwasinterpretedasregulationofvarioustypesofhuman use,includingrecreation,domesticanimalmanagement,andvegetationtreatments leadingtochangesinforeststructure,treesize,treedensity,understorycover,snags,or logs. Human Use

Development 1.Developmentlevelsdonotnecessarilydictatehumanuselevels;however,forthe purposesofsummarizingkeyfindings,humanusesarediscussedundertheheadingof developmentasopposedtomanagement. o Humanuseandnumberofvehicleswereslightlygreaterinmoredevelopedareas, buttheserelationshipswereweak,indicatingthatdevelopmentandhuman disturbancearenotnecessarilyconfounded. o UsewashighestinJuneandJuly,withequivalentlyloweruselevelsinMay, AugustandSeptember. o Usewasapproximately40%greaterinafternoons(>1pm)comparedtomornings (<1pm).Thisindicatesthatspeciesmostactiveintheafternoonorearlyevening wouldexperiencemoredisturbancethanthoseactiveatothertimesofday. o Usewasapproximately40%greateronweekendsandholidayscomparedto weekdays.Thisindicatesthatuselevelsfluctuate,withperiodichighlevelsof use. o Thenumberofdogswasmarginallygreaterinmoredevelopedareas.Nearly 75%ofalldogsdetectedwereunrestrained;however,dogsweremorelikelytobe restrainedinmoredevelopedareas.

201 Assessment 2. Facetsofhumanusehavevariouseffectsonbiologicaldiversity. o Somemeasuresofbiologicaldiversitywereaffectedbypeople,andothersby dogsorvehicles. o Wesuggesttheinclusionofhumanusemeasuresintheassessmentor monitoringofforestconditionsinurbanparcels,sinceincorrectconclusions maybedrawnintheabsenceofthesemeasures.Humanusemeasurescould includethetypeandintensityofdirectusebypeople(e.g.,walking,jogging, bicycling)anddogsonandoffleash,aswellasassociatedgrounddisturbance. o Directmeasuresofusearemosteffectiveinmakinginferencesabouttheir potentialeffectsonbiologicalorphysicalconditionsofinterest.Allthreeof thesemeasuresarereadilyobtained. o Thetypeandcharacterofusebypeopleanddogsaremostreadilymanaged. Management 3. Unleasheddogusehasthepotentialtohavehighimpactsonwildlife. o Theeffectsofdogsarediscussedinassociationwithindividualtaxonomic groups.  Giventhatunleasheddogsweremoreprevalentinlessdeveloped areas,itwouldbedifficulttoreducedogdisturbancethrough regulation.  Educationcanbeaneffectivemethodtoreducetheeffectsofhuman use.  Itwouldbeprudenttoidentifyareaswherecontrollinguse(peopleor dogs)wouldhavethegreatestpositiveeffect.Forexample,sitesthat havehighbiologicaldiversity,uniquespecies,uniquehabitat conditions,orkeysteppingstoneremnantforestsintheurbanizing landscape.

Plants

General o 387taxawereobservedin118sites,including25unknowns. o The5mostcommonspecieswere Pinus jefferyi , Abies concolor , Arctostaphylos patula , Gayophytum diffusum ,and Carex rossi o 72%ofrecordedspecieswererare(occurringin<5%ofsites) o 3%ofrecordedspecieswerecommon(occurringin>50%ofsites) o 41exoticspecieswereencounteredin36%ofsites. o The5mostcommonexoticspecieswere Bromus tectorum , Dactylis glomerata , Taraxicum officinale , Elytrigia pontica ,and Polygonum arenastrum .

202 o Relationshipsbetweenprimarymeasuresofthesmallmammalcommunityand environmentalconditions,includinghumandevelopmentandactivity,aredepicted graphicallyinAppendix9.1anddiscussedindetailbelow. Development 1.Plantspeciesrichnessinnativeforestfragmentsincreasedslightlyinresponseto development.Thiswaslargelydrivenbynonlinearincreasesinrichnessofexotic species.Contrarytoexpectation,richnessofnativespecieswasnotgreatly influencedbydevelopment. o Richnessofexoticspeciesincreasedalongthedevelopmentgradient.  Siteswith<42%developmenthad03exoticspecies,whilesiteswith >42%developmenthadupto15exoticspecies.  Developmenthadapositive,nonlineareffectonrichnessofexotic annualherbs,annualgrasses,perennialherbs,andperennialgrasses. Samplesizesforexoticshrubsandtreesweretoosmalltoevaluate thesesubsetsofexoticspecies.  Increasesinsurroundingdevelopmentmaybeassociatedwithmore opencanopies,whichincreasesthecompetitiveadvantageofexotic speciesandperennialgrasses o Diversityofnativespeciesdidnotdeclinewithincreasesinsurrounding development  Developmentdidnotinfluencespeciesrichnessofnativeannualherbs, perennialherbs,shrubs,ortrees.  Developmentdidnotinfluenceaveragepercentcoverofnativeannual herbs,perennialherbs,orshrubs.  Adeclineinaveragepercentcoverofnativetreeswithincreasing developmentsuggeststhaturbansiteshavemoreopencanopies.  Developmenthadapositiveinfluenceonspeciesrichnessandaverage percentcoverofnativeperennialgrasses,suggestingthattheybenefit fromtheopencanopiesofurbansites.Itisalsopossiblethat developmentismoreprevalentinareaswithmoreherbaceous understories(i.e.,flat,moistareas).Nativeannualgrasseswerenot detectedinstudysites.  Asdevelopmentofsurroundingareasincreased,theshrubs Arctostaphylos nevadensis and Chrysolepis sempervirens occurredless frequently,andthenativeperennialgrasses Festuca idahoensis , Poa secunda ,and Elymus elymoides ;exoticperennialgrass Dactylis glomerata ,andexoticperennialherb Taraxicum officinale occurred morefrequently.Thispatternsuggeststhatexoticsandperennial grassesacquireacompetitiveadvantagewithincreasedlevelsof development,andthatthecommonlyoccurringshrubsbecomeless prevalent,potentiallyasaresultofgrounddisturbancefrompeople.

203 2. Foreststructurewasalteredwithinremnantforests,anditwasalteredtoaneven greaterdegreewithinthesurroundinglandscape. o Thelivingcomponentofforeststructureinundevelopedforestswasnot greatlyinfluencedbyincreasingsurroundingdevelopment,especiallywhen comparedtotheresponseofdevelopedandundevelopedsitesfromthe landscapeatlarge.  Inremnantforests,surroundingdevelopmenthadnoimpactonshrub cover.Incontrast,thesurroundinglandscapeexhibitedlowershrub coverwithincreasingdevelopment.  Inremnantforests,thedensityandbasalareaoflargertreesizeclasses wereunaffectedbydevelopment,andtherewasnoeffectonheight classdiversity.Incontrast,thesurroundinglandscapeexhibitedlower densitiesofsmallandmediumtreesandlowercanopycoverwith increasingdevelopment,suggestingashifttowardfewerlargertrees,a declineinverticaldiversityofvegetationindevelopedareas,anda declineinoverallcover. o Developmenthadnegativeeffectsonthedeadwoodcomponentofremnant forests.  Snagvolumedeclinedindensityandvariabilitywithdevelopment, withsiteswith>10%developmentexhibitinglessthan40%the maximumvaluesachievedbysiteswith<10%development.  Thevolumeofcoarsewoodydebriswasquitevariableandfrequently highinlowtomoderatedevelopmentsites,butitwasconsistentlylow, anaverageof75%lower,inhighdevelopmentsites,particularlyat sitessurroundedby>40%development. o Developmenthadnegativeimpactsonthedeadwoodcomponentofforest structureinbothremnantforestsandthesurroundinglandscape.  Inremnantforestsandthesurroundinglandscape,increasesin developmentwereassociatedwithfewer,smallersnagsinearlier stagesofdecay.  Declinesindeadwoodwerepronouncedinremnantforestsandeven greaterinthesurroundinglandscape. o Remnantforestsweremoreheavilymanagedinmoredevelopedareas,as evidencedbyagreaternumberofcutstumpswithincreasingdevelopment. 3. Decadencefeatureswerenotcorrelatedwithlevelofdevelopment o Contrarytoexpectations,diseasesymptomswerenotmorecommoninhighly urbanizedareas. o Featuresofoldertrees(largecavities,brokentops)werenotmoreprevalentin siteswithlowlevelsofsurroundingdevelopment.

204 Assessment 4. Foreststructureishighlyvulnerabletoalternationthroughmanagementandiseasily measured. o Keymeasuresofforeststructureincludetreedensitybysizeclass(i.e.,small, medium,andlargediametertrees),snagdensitybydiameteranddecayclass, logdensitybydiameterclassanddecayclass,andverticallayering. 5. Exoticplantspeciescompositionandrichnessareimportantmeasuresofsite conditions,aswellassuccessinminimizingthespreadofexoticplants. 6. Fewnativeplantspeciesemergedasimportantindicatorsofsiteconditions,butthe coverofnativeshrubspeciesappearstobeconsistentlyaffectedasdevelopmentand humanuseincrease. Management 7. Despiteincreasinglevelsofsurroundingdevelopment,undevelopedforestremnants retainedmanyimportanthabitatelements(canopycover,largertreedensity, vegetationheightdiversity)thatotherwiseoccurmorerarelyinadeveloped landscape. o Maintainingundevelopedforestinurbanizingareascontributesecologically uniqueandimportantforestconditionsthatwereshowntosupportmanyplant andanimalspecies. o Maintainingnaturalageandsizedistributionsoftreesinforests(i.e.,smaller diametertreesinterspersedwithlargediametertrees)mayhelpretainhabitat quality,particularlyforunderstoryassociatedspeciesofanimals. 8. Snagsandlogsareimportantelementsofforeststructurethatplayavitalroleinthe ecosystembyprovidingfoodsubstratesandhabitat,andcontributingtonutrient cycling. o Greaterretentionandrestorationofsnagsandcoarsewoodydebris, particularlylargerdiametermaterial(>60cmorlargestavailable)wouldbea valuablecontributiontomaintainingandimprovingthequalityofhabitat providedbyremnantnativeforests,particularlyinmoredevelopedareas wheretheyarenecessarilylackinginthesurroundinglandscape. o Targetsnagandlogdensitiescouldbebasedonavarietyoffactors,suchas vegetationtypeandspecialmanagementobjectives. o Thefollowingguidelineswerederivedbasedontherangeofconditions observedatundevelopedsamplesites.  Roughly50%ofremnantundevelopedforestshad>10m 3/haofsnags, whichisthethresholdidentifiedformaintainingbirdspeciesrichness.  Thisvolumeequatesto12snags/ha(5snags/ac)thatare>61cm(24in) diameterand>3.3m(10ft)tall,orproportionatelyfewerpersnagshafor largerand/ortallersnags(seebirdkeyfindingsformoredetails)  Ofthesesnags,roughly80%shouldbedecayclass3orhigher.  Approximately35%ofremnantundevelopedforestshave>100m 3/haof coarsewoodydebris,whichequatestoapproximately100logsperha>60 cm(24in)diameterand3.3m(10ft)long,or300logsperha>28cm(11

205 in)diameterand>3.3m(10ft)long.Theremainingsitesaverage25.6 m3/ha,orapproximately75logsperha>28cm(11in)diameterand3.3 m(10ft)long(ortheirequivalent). o Educationandsigningcouldbehelpfulinretainingsnagsandlogsonpublic andprivatelands,sincetheyarefrequentlythetargetoffuelwoodgathering (legalorotherwise)andtheirecologicalvaluemaynotbecommon knowledge. o Insomeinstances,snagcreationisanoption,anditistheonlyviableoption forimprovingsnagandlogdensitiesinthenearterm. o Treesthatneedtoberemovedbecausetheyaredyingandposeathreatto peopleorpropertymaybecutataheight>10ftabovetheground,creating valuablehabitatforsnagdependentspecieswhileeliminatingtheriskto peopleandproperty. o Logscanbecreatedthroughthesameprocesswheresomelengthsofthetree beingremovedcanbeleftontheground,preferablylargerdiametersections ofthetree.Logsmayneedtobeanchoredinareasheavilyusedfor recreation. 9. Increasedlevelsofdevelopmentfacilitatestheinvasionofexoticspeciesbyaltering thehabitattofavorshadeintolerantspecies,increasinginputofnutrients,and introducingnewspeciesintotheenvironmentviafoottrafficandvehicles o Thecontrolanderadicationofexoticspeciesinundevelopedforestsinmore developedareaswillservetwoimportantfunctions. o Itwillreducethepotentialspreadofexoticplantspeciesintolessdeveloped areasbyeliminatingtheabilityofremnantforeststoserveassteppingstones forestablishingexoticplantpopulationsinlessdevelopedareas.Edgesof largerforesttractsareparticularlyimportantfocalareasforthiswork. o Itwillimprovethequalityofhabitatfornativeplantandanimalspecies withintheremnantforest. o Exoticspecies,suchas Bromus tectorum, Dactylus glomerata , Taraxicum officinale , Elytrigia pontina ,and Lotus corniculatus shouldbeofparticular concerntolandmanagers,becauseoftheirabundanceand/orinvasiveness. o Mostexoticplantspecieswereescapedornamentals.Managerscouldeducate andencouragelocallandownerstoplantnativeornoninvasiveornamental plantstodecreasethesourceofexotics.Inaddition,xericlandscapingalso reducedtheabilityofsomeexoticplantspeciesofbecomingestablished. 10. Keepingdevelopment<40%ofthelandscapewillhelpreducethefrequencyof occurrenceofexoticplantspecies.Themitigatingactivitiesmentionedabovemay helpkeepexoticplantspeciesrichnesslowevenwheredevelopmentexceedsthe40% level.Educatingandencouragingprivatelandownerstoretainmorenaturalforest structureontheirpropertieswillalsocontributetothemaintenanceofbiological diversityinmoredevelopedareas. o Maintainingmaturetreesclearlyhashadapositiveeffectonretainingnative forestconditionsondevelopedparcels. o Additionaleffortscouldincludetheretentionofsomesmallerdiametertrees, retainingstringersoftreessothathighercanopyclosuresareprovidedinsome areas,andtheretentionorplantingofpatchesofnativeshrubs.

206 o Providingadviceonlotmanagementtoachievewildlifeandbiodiversity objectivescouldmakeaverypositivecontributiontowardmaintainingamore connectedandecologicallyfunctionallandscapeinurbanizingareas, particularlysincemostparcelsarenotfenced(anotherimportantcontributor tomaintaininglandscapefunction,butnotonewestudied).. FutureDirectionsforResearch Thefocusofthisstudyonremnantnativeforestslimitedourabilitytodescribe thefullbreadthofchangesexpectedassitesaredeveloped.Wewereabletocompare structuralconditionsindevelopedandundevelopedsites,butwewerenotableto comparethesetwoconditionsintermsofspeciescompositionandcoverofherbaceous plants,ortocategorizesitetypesintomorethantwotypes(remnant,landscape). Additionalinsightswouldbegeneratedbysomeadditionalattentiontothissubject. Insightsintotheinteractionbetweensiteandneighborhooddevelopmentcouldbe derivedthroughadditionalanalysisofexistingdata.Forexample,allsatellitesitescould beclassifiedintooneofmultiplecategoriesofsitedevelopmentandthenreanalyzedto determinehowvariousaspectsofforeststructurechangewithsiteandneighborhood development.Determiningeffectsofdifferenttypesandlevelsofsitedevelopmenton nonwoodyplantcompositionandstructurewouldrequireadditionalfielddatacollection. Afewoldgrowthforeststandsremaininthebasin,andthecharacteristicsthat makethenuniquerelativetootherolderforeststhathavebeenalteredbyhumanactivities areofkeeninteresttoforestecologists.Inthepursuitofrestorationofoldforest conditionsinthebasin,additionalunderstandingastotheuniquecharacteristicsmissing inolderforeststhathavebeenalteredbyhumanactivity,includingsitesinproximityto variouslevelsofdevelopment,wouldprovidehelpfulguidancetomanagement. Theroleoflogsinforestnutrientcyclingandotherforestprocesseshasbeen studiedinotherecosystemsandgeographiclocations;however,itwouldbeinformative toknowthenumberandconditionoflogsthatfacilitatevariousfunctionsandprocesses inbasinforests,particularlythefacilitationofprocessesthatmaybediminishedinmore disturbedforests. Soilcompactioncangreatlychangethehydrodynamicsofforestsites,whichin turnislikelytoaffectmanyotherforestfunctionsandconditions.Althoughwedidnot seestrongdifferencesinherbaceousplantcompositionandstructure,wedidnotobtain sensitivemeasuresofcompactionandweonlysampledinundevelopedforests.Parcel developmentislikelytoincreasecompactionoftheremainingparcelthroughvarious humanactivities,whichmayreducethecapacityoftheundevelopedportionoftheparcel tosupportafullsuiteofecologicalfunctions.Additionalresearchintohowdifferent typesoflandusesaffecttheabilityofasitetosupportitsoriginalbiologicaldiversity wouldinformmanagement. Manyofthesiteswesampledhadbeenmanagedatsomepointinthepast,as evidencedbythepresenceofstumps,andmanyreceivedfueltreatmentssoonafterwe sampledthem.Theeffectsofforestmanagementareofgreatinteresttolandstewards attemptingtomeetmultipleobjectivesonpublicparcels.Sinceoursamplingwas designedtoaddressthequestionofthevalueofundevelopedsitesinadeveloping landscape,wenecessarilyavoidedotherdisturbancesources.Wewereabletoidentify

207 elementsofforeststructureandcompositionthatwereimportantdeterminantsofvarious biodiversitymetrics;howeverwedidnotdirectlyinvestigatethequestionofforest managementeffects.Someadditionalinsightscouldbegainedfromtheexistingdataset byconsideringthepresenceandlevelofmanagementeachsiteexperienced.Further insightswouldrequirefutureresearchbydesigningastudytoaddressthisquestion directly. Birds

General o Sixtysevenbirdspeciesweredetectedandanalyzed.Speciesrichnesspersiteranged from5to28. o Atotalof671nestsof29specieswerelocated,and566nestsweremonitoredfor productivity. o Strongrelationshipswereobservedbetweenbirdcommunityandspeciesmetricsand urbanizationmetrics,aswellasotherenvironmentalvariables–theyarediscussedby managementobjectivebelowandsummarizedinAppendix9.1. Development 1. Changesinspeciescomposition,speciesdiversityandabundanceofindividual specieswithincreasingdevelopment,andstrongassociationswiththeamountof forestinthelandscape,suggestthaturbanlotsandotherremnantforestsserveas valuablehabitatforbirdsintheLakeTahoebasin. o Birdspeciesrichnessdeclinedsteadilywithincreasingdevelopment.  Wedidnotfindthepeakindiversityatmoderatedevelopmentthat someotherstudieshavefound. o Birdspeciescompositionchangedsubstantiallyalongthedevelopment gradient.  Thischangewasdrivenbymanydifferentspecies,mainlyonesmore frequentlyoccurringateithertheloworhighendofthegradient.  Themostcommonspeciesthatwerelessfrequentlyassociatedwith developmentwereDuskyFlycatcher,WhitebreastedNuthatch, HermitThrush,Cassin’sVireo,PileatedWoodpecker,Hairy Woodpecker,ChippingSparrow,HermitWarbler,andTownsend’s Solitaire(basedonMRPP).  Themostcommonspeciesthatweremorefrequentlyassociatedwith developmentwereBrewer’sBlackbird,BandtailedPigeon,Barn Swallow,andTreeSwallow(basedonMRPP). o Birdabundancewasmostcloselyassociatedwithlocalandlandscape vegetation,andsecondarilyhumanactivity  Mostbirdspeciesgroupswerepositivelyassociatedwiththeamount offorestedvegetationinproximitytothesite(150500m),suggesting thatlocalscalefragmentationisaconsiderationinmaintainingrobust populationsofbirdspecies.

208  Abundanceofindividualspeciesgroupswereassociatedwithlocal vegetationfeaturesmostrelevanttotheirniche–invertivores respondedtocanopycover,groundnestersrespondedtoherbcover, cavitynestersrespondedtosnagdensities.  Cavitynesterabundancedeclinedwithdeclinesinsnagvolume– resultssuggestthatsnagvolumes>10m 3/hawererequiredtobeginto supportthefullrangeofcavitynesterabundanceobservedacross undevelopedsites.  Groundnesterabundancewasnegativelyassociatedwithhumanuse andpositivelyassociatedwithaspenriparianecosystems,aswellas coniferforests. o Theabundanceofoverhalfthebirdspeciesanalyzedwasnegativelyor positivelyaffectedbydevelopment. o TheGISbasedpredictivemodelforspeciesrichnessanddominanceshowed similarlystrongassociationswithdevelopment.  Forspeciesrichnessanddominance,weobservedastronginfluenceof bothenvironmentalfactorsandurbandevelopment.  ThefinalGISmodelsforcavitynesterandgroundnesterrichness weremorestronglyassociatedwithhabitat,butshowedassociations withurbandevelopmentatlargerscales(3001000m). 2. Productivityasafunctionofnestsuccesswasevaluatedandspecieswereeither neutralornegativelyaffectedbynearbydevelopment. o Developmentwithintheneighborhoodaroundthenest(300m)hadlimited effectonthedailysurvivalrateofopennesterorcavitynesterspeciesgroups. o Developmentwithincloseproximitytonests(50m)hadanegativeeffecton dailysurvivalrateofopennesterandcavitynesterspeciesgroups,withopen nestersassociatedwithshrubandgroundlocationsfaringworsethanthose locatedintheunderstory. o Nestsuccessdeclinedwithdevelopmentforthreeof10speciesexaminedin detail:Steller’sJay,PygmyNuthatch,andDarkeyedJunco.Additionally, DuskyFlycatcherdidnotevennestinurbanareas(development>10%). Whilethismightnotseemlikealargeproportion,considerthatthese10 specieswereamongthemostcommoninthebasin o Nestsuccesswashighforcavitynestersandconsiderablylowerforopen nesters,whosesuccesswaslowerwithincreaseddevelopment.Amongopen nesters,shrubandgroundnestersfaredworsethantreenesters. o WesternWoodpeweeabundancedeclinedwithincreasingdevelopment,and itsnestswerelowertothegroundindevelopedandhighuseareasheights atwhichtheywerelesssuccessful.Inotherwords,urbanizationappearsto reducepeweenestsuccessindirectlythroughnestheight.Thisresult highlightstheWesternWoodpeweeasapotentialspeciesofconcerninthe urbanizingLakeTahoebasin. o Humanstructureswereusedfornestingbysomespecies,mostlycavity nesters:NorthernFlicker,MountainChickadee,PygmyNuthatch,White breastedNuthatch,WhiteheadedWoodpecker,andSteller’sJay.The reduceddensityofsnagsinmoredevelopedareasmayprecipitategreateruse

209 ofhumanstructures.Thus,twooftheimpactsresultingfromthelackofsnags maybesitesbecomingpopulationsinksforcavitynesters,anddamageto humanstructuresfromcavityexcavation. 3. Urbanareasmayserveas“ecologicaltraps”byattractingspeciesthatexperience lowernestsuccessthere.Atpresent,thereisscantevidencetosuggestthatnative forestsshouldbemanagedtodiscouragenestingbycertainspecies.Todemonstrate ecologicaltrapsmoreconvincingly,behavioralstudiesthatdemonstrateapreference forurbanareaswouldbenecessary. o Twospecies—PygmyNuthatchandSteller’sJay—weremoreabundantin urbanareasbutlesssuccessfulinnesting,suggestingthaturbanareasmay serveasecologicaltrapsforthesetwospecies. o DarkeyedJunco,theonlygroundnesterforwhichwehadnestsuccessdata, bothdeclinedinabundanceandinnestsuccessinurbanareas.Itappearsthat moredevelopedareasmaybeanecologicaltrapforgroundnestersingeneral, giventhattheirabundancewasonlyslightlynegativelyassociatedwith development,buttheirnestsuccesswasgreatlyreducedinmoredeveloped areas.Notonlywasnestsuccessreduced,butwewereunabletolocatemany groundnestsofanyspeciesinurbanareas. o Cavitynestersnestedlowertothegroundinhighdevelopmentthaninlow development,wheretheymaybemoresusceptibletonestpredationand disturbancefrompeople.Lowernestinglikelyresultedfromreduced availabilityoftallsnagsandincreaseduseofhumansubstrates. Assessment 4. Severalspeciesandspeciesgroupswerestronglyassociatedwithdevelopmentand humanactivityandcouldpotentiallybeusedtodemonstratetheconditionand contributionofnativeforestsinurbanareas. o Potentialindicatorsofcompromisedbirdcommunitiesresultingfromurban conditionsincludehighabundanceofBrewer’sBlackbird,Brownheaded Cowbird,andSteller’sJay;highabundanceofgroundforagingomnivores; andlowoverallspeciesrichness. o Potentialindicatorsofundevelopedconditionsincludehighabundanceof DuskyFlycatcher,HermitThrush,PileatedWoodpecker,Westernwood pewee,groundnesters,andcavitynesters. o Surveysthatcharacterizetheentirebirdcommunityarerecommendedfor assessmentratherthantargetedsurveysforparticularspecies. 5. Productivitydataarenotusefulforassessingthevalueofparticularurbanforest remnantsbecausetheyareaggregatemeasuresoverlargenumbersofnests,andthey areexpensivetocollect. 6. Measuresofhabitatconditionmostrelevanttothebirdcommunityincludethe following.Atthesitescale,theamountofdevelopmentwithin30m,snagvolume, treedensity,shrubandherbcover,andcanopycover.Atthelandscapescale,amount ofconifervegetation,theamountofaspenandriparianvegetation,anddevelopment weremostrelevant.

210 Management 7. Disturbancefromhumanusewasofgreaterimportancethanhabitatlossfrom developmentinmanycases. o Humanactivityisafeatureofdevelopmentthatcanbecontrolledevenin areasofhighdevelopment,andthereforeitissomethingthatcanbemanaged toachievebiodiversityobjectivesinkeyareas. 8. Groundforagingomnivoresweremostassociatedwithhumanuse,whichlikely bringsanincreaseinfoodresourcesforthesebirds. o Reducingbirdfeedingandcontrollinggarbagecouldhelpreducenumbersof thesespeciesandcreateamorenaturalbalanceinthecompositionand abundanceofbirdspeciesinthecommunity. 9. Cavitynestersweremostassociatedwithlocalvegetationstructure,especiallysnag volume.Cavitynestersalsonestedlowertothegroundinhigherdevelopment.This patternlikelyresultedfromlesseravailabilityoftallsnags,andgreateruseofhuman structures,inhighdevelopment. o Retainingsnags,andparticularlylargerandtallersnags,withinTahoe’surban environmentsisvitaltomaintainingpopulationsofcavitynestersthere. Snagsshouldberetainedshouldberetainedtotheextentpossiblewithout creatingahazardtoadjacentprivatelands. o Itislikelythattheabsenceofsnagsencouragescavitynesterstoboreholesin houses,causingsignificantpropertydamage.Additionalinformationonthese relationshipsandtheuseofhumanstructuresfornestingmaybeavailable fromothersourcesinthebasin(LakeTahoeCareCenter,California DepartmentofFishandGame,NevadaDivisionofWildlife). o Theapparentsnagvolumethresholdof>10m 3/haequatestoanapproximate minimumof12snags/ha(5snags/ac)thatare>61cm(24in)diameter(or largestavailable)and>3m(10ft)tall.Aminimumsnagheightof>3mis neededtoprovidenestandforagesitesthataresomewhatprotectedfrom harassmentbypeopleordogs.Insituationswheresnagsaretallerorlarger, ecologicalequivalenciescanbecalculated(e.g.,fewertallsnags=moreshort snags).Snagswithgreatervolumemayreceiveproportionatelylessuseper unitvolumesincebirdsuseisconfinedtoasmallerspace(i.e.,multiple speciesorindividualsofthesamespeciesusingthesamesnag),thuswe suggestagreatertotalvolumeofsnagswhensnagdensityislower.Example equivalentsshownherereflecta20%increasetoaccountforfewerindividual snags(diametersrepresentidea;couldalsobeinterpretedintermsoflargest available): • >7snags/ha(3snags/ac)>61cm(24in)and>6m(20ft)tall; • >6snags/ha(2.5snag/ac)>91cm(30in)and>6m(20ft)tall; • >4snags/ha(1.6snag/ac)>91cm(30in)and>6m(20ft)tall. 10. Invertivoreswereassociatedwithlocalvegetationstructure,specificallyhighsnag volume,highcanopycover,andsomewhatparadoxically,lowertreedensity. o ManagingthesefeaturesofTahoe’sforestsinconjunctioncouldbeagood firststepinimprovingconditionsforinvertivorousbirds.

211 o Invertivoresweremostabundantatsiteswith200400trees/harepresentinga rangeofdiameters. 11. Theretentionandrestorationofaspenandriparianvegetationinurbanforestparcels couldhelpmitigatethepotentialimpactsofdevelopmentongroundnestingand shrubnestingbirds. 12. Managementscenarioshadstrongeffectsonbirdcommunitymeasures. o Increasingintensityofdevelopmentincreasedtheproportionofthelandscape withlowrichnessanddecreasedtheproportionwithmoderateandhigh richness. • Mapsofmodeloutputsshowdistinctchangesinrichness:highrichness areasinthevicinityofSouthLakeTahoe,Stateline,SpoonerLake,and RubiconBayreduceinsizeordisappearcompletely. • Reductionsinsizeofhighrichnessareaswereaccompaniedbyincreases insizeandextentoflowrichnessareasinmostcases. o Distinctchangeswerealsoobservedfordominance,butnotasstronglyas richness. • AreasofhighdominanceexpandedwithincreasingdevelopmentinSouth LakeTahoe,RoundHill/ZephyrCove,alongtheeastshorefromStateline toSpoonerLake,InclineVillage,andtheUpperTruckeewatershed. • Changesinhighdominanceareaswereaccompaniedmainlybyincreases inmoderatedominanceareas. FutureDirectionsforResearch Ourresultshavehighlightedadditionalresearchthatwouldbebeneficialin expandingourknowledgeofavianbiodiversityinthefaceofurbanizationinthebasin. Theimportanceofhumandisturbanceinstructuringthelandbirdcommunityindicatesa needforadeeperunderstandingofthemechanismsunderlyingitseffects.Researchinto thebehavioralresponsestodifferenttypesofactivities,theirduration,andtheirtiming, wouldgreatlybenefitmanagerslookingtocontroleffectsofsuchdisturbanceonbirds. Additionalinvestigationsintobirdbehaviorandresponsestothenoveltyofurban environmentswouldincreaseunderstandingofinterspeciesdifferencesinresponsesto urbanizationandyieldinformationonappropriatemitigationstrategiesthatmight increaseuseofurbanareasbysomespecies.Managementexperimentsthattesttheuse of(andreproductivesuccessin)artificialnestingstructuresforcavitynesterscouldhelp generatestrategiesforincreasinguseofurbanareasbythiskeyspeciesgroup.Whether urbanizationfacilitatesnestparasitismbyBrownheadedCowbirdsisanimportant managementquestionbestaddressedbynestmonitoringofcowbirdsensitivespecieslike vireosandwarblersalongtheurbangradient,whichwerenottargetspeciesinthisstudy. Finally,useofhumanstructuresfornestingbybirdsinurbanareasisaninteresting ecologicalphenomenonandmanagementconcernunderwhatconditionswillbirdsnest inhumanstructures?Doestheirwillingnesstonestinhumanstructuresaffecttheir abilitytosurviveinurbanareas?Howdonestingecologyandreproductivesuccess differinnaturalversusartificialnestsubstrates?Canartificialneststructuresbeusedto effectivelyenhancehabitatconditionsforbirdsinmoreurbanizedenvironments?How candamagetohumanstructuresbereducedorprevented?

212

Small Mammals General o Nineteenspeciesofsmallmammalsweresampled,rangingfrom2to9speciesper site. o Squirrelsandchipmunkswerethedominanttaxa(approximately95%ofall individuals)asopposedtomice,voles,woodrats,orshrews.Sciuridsaccountedfor mostofthespeciesobservedatasinglesite,withanaverageof4sciuridspeciesper site.Ofallthesmallmammals,longearedchipmunkswerethemostevenly distributedacrossthebasin,followedbyCaliforniagroundsquirrels,deermiceand Douglassquirrels. o Byfartherarestspeciesobservedinthebasinatforestedsitesbelow7000ftelevation werelodgepolechipmunks,westernjumpingmice,bushytailedwoodrats,andpinon mice. o Relationshipsbetweenprimarymeasuresofthesmallmammalcommunityand environmentalconditions,includinghumandevelopmentandactivity,aredepicted graphicallyinAppendix9.1anddiscussedindetailbelow. Development 1. Wefoundlimitedimpactofdevelopmentonsmallmammalspeciesrichnessor abundance;however,patternsofcommunitycompositiondidvarysignificantlywith development. o Therangeofvaluesobservedinspeciesrichnessdecreasedwithdevelopment: therangeofrichnessvaluesspanned2to10speciesatsiteswith<40% development,andreducedtorangingfrom4to7atsiteswith>40% development. • Thisindicatesthatsensitivespeciesdropoutandspeciesbenefitingfrom developmentoccurmoreregularly. • Speciesoccurringlessfrequentlywithdevelopmentwereshadow chipmunk,deermouse,longearedchipmunk,andnorthernflyingsquirrel. • Speciesoccurringmorefrequentlywithdevelopmentwerevoles,Douglas squirrel,andtoalesserdegreegoldenmantledgroundsquirrel o Speciesrichnesswaspositively,linearlyassociatedwithdevelopmentat1000m inthefullregressionmodels,howeversurvivorshipdeclinedwithdevelopmentat 1000and/or300mformostspecies.  Theseresultsindicatethathigherlevelsofdevelopmentinthelarger landscapemayresultinspeciespackingintheremainingundeveloped nativeforests.

213  Lowersurvivalratesinforestswithgreatersurroundingdevelopment suggestthatathigherlevelsoflandscapedevelopmentnativeforestsare likelytobecomepopulationsinks,whichmeansthepersistenceofspecies atthesesitesisdependentuponimmigrationfromothersites. 2. PredictivemodelforspeciesrichnessusingGISdataonlyshowedthatfactorsrelated tohumandevelopment,vegetation,andhabitattypehadgreatestpredictivepower. o NDVIexhibitedthestrongestrelationshipintheGISbasedmodelforsmall mammalabundance,followedby canopycoverandtreedensity. 3. Humandisturbancehadapositiveeffectonsmallmammalspeciesrichness. o Frequencyofusebypeoplewasfoundtohaveaslightpositiveassociationwith speciesrichness.Thisislikelytothemorefrequentoccurrenceofsynanthropic species,suchasCaliforniagroundsquirrelandgraysquirrel,thatcanbenefitfrom lowerpredationandgreaterfoodresourcesthatcommonlycorrespondwith increasedhuman(anddog)use.Inthisstudywefoundthatcarnivoreseitherhad anaversiontodevelopedareas,ortheychangedtheirbehaviorpatternstobemore nocturnalindevelopedareas. 4. Therewasnopatternedrelationshipbetweentotalrelativeabundanceand development,buttherewasanegativerelationshipwithhumanuse. o Sincethespeciesdetectedinthehighestnumbersatallsitesweregroundsquirrels andchipmunksthatarebothprimarilyterrestrialanddiurnal,thispatternislikely areflectionofadirectinteractionbetweenhumanuseandactivitiesofthese species. 5. Thefrequencyofdominanceofmanyindividualspeciesshiftedwithdevelopment o Yellowpinechipmunkwasmorefrequentlynumericallydominantas developmentincreased,whilelongearedchipmunkwaslessfrequentlydominant. o Asimilar,butlesspronouncedpatternwasobservedwithCaliforniaground squirrelbeingmorefrequentlydominantandshadowchipmunkbeingless frequentlydominant. 6. Therelativeabundanceofarborealsquirrels(composedprimarilyofDouglas squirrels)wastheonlyfunctionalgroupassociatedwithhumanstressors:itwas positivelyrelatedtodevelopmentatthe1000mscaleandtothepresenceofdomestic dogs(seeabovediscussionofthesefactors). 7. Threespecieswereconsistentlymorefrequentlyoccurringatsiteswithhigher surroundingdevelopment:Douglassquirrel,yellowpinechipmunk,andvoles. 8. Longearedchipmunk,shadowchipmunk,northernflyingsquirrel,anddeermouse wereconsistentlylessfrequentlyoccurringwithhighersurroundingdevelopment. 9. Forallspeciesanalyzed,survivalratesdecreasedandemigrationratesincreasedas developmentintensityincreased. o Specieswhosevitalratesweremostnegativelyaffectedbydevelopmentwere shadowchipmunk,lodgepolechipmunk,Douglassquirrel,Californiaground squirrel,andgoldenmantledgroundsquirrel. o Thecombinationofhighfrequencyofoccurrence,higherabundance,andlower vitalratesfortheDouglassquirrelandCaliforniagroundsquirrelatsiteswith

214 higherdevelopmentsuggeststhathigherdevelopmentsitesmayfunctionas ecologicaltrapsforthesespecies.Thus,thesetwospeciesmaybeatsomeriskof populationdecline,perhapsquickly,ifdevelopmentexceedssomethresholdof extentforthisspeciesinthebasin. o Specieswhosevitalrateswerenotgreatlyaffectedbydevelopmentorhuman disturbancewerelongearedchipmunkandyellowpinechipmunk.Yellowpine chipmunkhadlowestimatedsurvivalrates(<0.15underanycircumstance),soor alloursamplesiteswerepoorqualityhabitatforthisspecies. o Asdevelopmentpressureanddisturbanceincrease,habitatconditionsmaydecline toapointwherepopulationsofthesmallmammalspeciesvulnerableto developmenteffectsmaybereducedoreliminatedinremnantforestvegetation. Theprecipitousdeclineinsnagsandlogswithdevelopmentcouldbeafactor affectingvitalratesofsquirrelsandchipmunks. Assessment 10. Wefoundthatforestedsitesinurbanareasgenerallyexhibitsimilarsmallmammal speciesdiversityvalues(richnessandabundance)comparabletotheundeveloped areas,sospeciesrichnessandtotalabundancearenotstrongindicatorsof developmentandhumanuse. 11. Theoccurrenceandabundanceofanumberofindividualspecieswouldbegood candidateindicators,includinglongearedchipmunk,shadowchipmunk,and. o Specieswhosefrequencyofoccurrencewasnegativelyaffectedbydevelopment werelongearedchipmunkandshadowchipmunk.Theshadowchipmunkisa particularlystrongcandidatebecauseitsvitalrateswerealsoaffected;however, wedonosuggestmeasuringvitalratesgiventhehighexpenseandcomplexityof obtainingthesemeasurements. o Specieswhosedominanceabundanceandvitalrateswerenegativelyaffectedby developmentwerelodgepolechipmunk,andgoldenmantledgroundsquirrel. o Yellowpinechipmunkabundanceisaconsistentandreliableresponseto development,atleastwithinundevelopedforests.Ifthelandscapecontinuestobe developed,yellowpinechipmunkpopulationsmayalsobegintodecline. o AbundanceofDouglassquirrelappearstobegreatlyaffectedbydevelopment,but itisnotlikelytocontinuetoincreasewithdevelopmentifitprogressedinthe basin.Itismorelikelythatitspopulationwouldstarttodeclineathigherlevels ofdevelopmentatvariousscales,soitwouldnotbeagoodindicatorforassessing conditions.However,itisprobablyanimportantspeciesformanagementto monitor(seemanagementsection).

215 Management 12. Oneoftheimportanthabitatfeaturespositivelyrelatedtosmallmammalspecies richnessandrelativeabundancewasthepercentcoverofbaregroundatasite. o Disturbancethatcreatesbaregroundatasitecanfacilitateearlysuccessional vegetationcommunitiesandincreasevariationinmicrohabitatconditions,and naturalvariabilityinforestconditionsacrossthelandscapehasproducedasuiteof forestdwellingspeciesareuniquelyadaptedtoexploitthesetypesofconditions. o Fuelsmanagementactivitiesarethemostextensiveactivitiesoccurringinnative forestsinthebasin.Theremovalofsomeoverstoryvegetationislikelytobenefit mostsmallmammalspecies,howeverwidespacingofoverstorytreescanimpact theabilityofarborealspeciestomovethroughtheforest,potentiallyincreasing theirriskofinjuryandpredation.Also,postharvesttreatmentssuchaschipping andmasticationhavethepotentialtoeliminatebaregroundacrosslargeareasof theforestfloor,whichislikelytohaveadetrimentaleffectonsmallmammal communityrichnessandabundance,includingtheabundanceofmanyindividual species. 13. Dominantvegetationcommunitiesinfluencedbothspeciesrichnessandtotalrelative abundance. o Heterogeneityofvegetationtypessurroundingsiteswaspositivelyassociated withoverallspeciesrichnessandabundance. o Arborealsquirrel(primarilyDouglassquirrel)relativeabundancewaspositively relatedhabitatheterogeneityaroundasite(withina100mradius). o Terrestrialgranivore(groundsquirrelandchipmunk)relativeabundancewas influencedmostlybygroundlevelhabitatcomponents.Inparticular,thepercent coverofbaregroundandherbaceousvegetationwereidentifiedasthemost importantfactorsrelatedtoabundanceinthesespecies. o Herbivorousvolesrespondedpositivelytodevelopmentatthe300mscalewhere suitablehabitatconditionsexist,andvoleabundancewasgreatestatsiteswith >50%development.Sincethereweremoreperennialherbsandgrasses,native andexotic,inurbanareas,voleswerelikelyrespondingpositivelytothese specificvegetationcomponentsasopposedtodevelopment. o Shrewrelativeabundancewaspositivelyassociatedwiththeamountofmontane riparianandconifer(RFR,SCN,SMC,WFR).TheamountofSierranmixed coniferandwhitefirhabitatwaspositivelyrelatedtoabundanceatboththesite andthesurroundingarea. 14. Ourresultsalsoindicatethathabitatmanagementcanaccomplishmuchtoretainthe diversityofsmallmammalsandmaintainrobustpopulations. o Overallhabitatheterogeneityatthesiteandlandscapescalesisimportantfor smallmammalspecies.Agreateravailabilityofdifferenthabitattypesmay facilitatethecoexistenceofagreaternumberofindividualsaswellasindividual species.Therefore,managingforadiversityofvegetationtypesatboththelocal andlandscapelevelshouldbeapartofmanagementobjectivesaimedat maintainingsmallmammalspeciesdiversity.

216 o Maintainingnativeforestvegetationwithintheurbanmatrixwilllikelybe importantforfacilitatinggreatersurvivalratesandsuccessfulsmallmammal dispersalandmovementamongforesthabitatpatches,thussustaining populations. o Maintainingorcreatingsomebaregroundinundevelopedforestswillpromote higherspeciesrichnesswithoutappearingtodegradehabitatforanysmall mammalspecies.Withinsitessurroundedbyhighdevelopment,baregroundis frequentlycreatedthroughvarioushumanuses;itisinlessdevelopedsitesthatit maybelessprevalent. 15. Thisresearchhasidentifiedatleastonegroupofhabitatspecialists,shrews. o Shrewabundancewaspositivelyassociatedwithmontaneriparianhabitatand coniferhabitat,andthepercentcoverofSierranmixedconiferandwhitefirwere byfarthemostimportantspecifichabitattypesatlocalandlandscapescales. o Managementofriparianandconiferforesthabitatsacrosstheurbanizing landscapewilllikelybeveryimportantinmaintainingshrewpopulationsinthe lowermontanezone. 16. Speciesthatmaybesensitivetodevelopmentononeormultiplewaysbutdonot makegoodindicators,orwhicharesimplyvulnerabletohabitatalterationbecause theyarehabitatspecialists,areimportanttoconsideras“finefilter”focalspeciesto monitorashabitatconditionschangeoverthelandscapeandovertimeinthebasin. Thespecieswiththesecharacteristicsthatwereidentifiedinthisstudyinclude shrews,yellowpinechipmunk,andDouglassquirrel. FutureDirectionsforResearch Thecurrentresearchhasbeensuccessfulinidentifyingimportantfactorsandthe natureoftheirinfluenceonsmallmammalcommunitiesandpopulationswithintheLake Tahoebasin;however,thereareseveralareasofinquirythatshouldbeconsideredin ordertocompleteourunderstandingofhowsmallmammalsarerespondingto anthropogenicstressors.Improvingourknowledgebasewillstrengthenourabilityto makepredictionsabouttheramificationsofincreasinghumanpressures.Someadditional researchneedsevidentfromtheresultsofourresearchinclude:samplingatelevations above7000ft,samplingandcomparingdifferenthabitattypes,characterizationoflong termpopulationtrends,andcharacterizationofpopulationconnectivityandmovement patternswithinthebasin. Forourresearch,smallmammalsamplingoccurredovera3yearperiodduring whichconsiderablevariationinpopulationsizewasnoted.Whilewehavebegunto understandhowsmallmammalsarerespondingtodevelopment,thereisstillconsiderable uncertainty.Inparticular,whilewefoundthatrelativeabundancedidnotappeartobe negativelyimpactedbydevelopment,wedidfindcompellingevidencethatkey populationprocessesofsurvivalandemigrationarebeingnegativelyaffected.Whatare theimplicationsoftheseresultsonpopulationpersistence?Itisimportanttomonitor thesespopulationsovertimetoassesslongtermtrendsandtrajectoriesintermsofsmall mammalpopulationviability. Thesamplingframeforthisresearchwaslimitedtoforestedhabitatbelow7000ft elevation.Thiswasanexcellentstartingpointforassessingtheroleofurbanizationon

217 smallmammals,butweneedtounderstandmoreaboutcommunitiesandpopulations throughoutthebasin.Forexample,wefoundthatlodgepolechipmunkswerepatchily distributedandrareamongthesiteswesampled.However,thisspeciesisthedominant chipmunksouthofthebasininYosemiteValley(J.Patton pers. com .).Arelodgepole chipmunksrareintheLakeTahoebasin,ordidwesamplebelowthelowerelevational extentforthisspeciesinthisregion?Samplingpopulationsatallelevationsand orientationswouldsignificantlyimproveourknowledgebaseintermsofTahoebasin smallmammalspecies’distributionsandhabitataffiliations.Inaddition,byonly samplingforestedsites,wemissedsamplingspeciesassociatedwithotherhabitattypes, suchasriparianareasandmeadows.Notably,wecaughtnoBelding’sgroundsquirrels (Spermophilus beldingi )andveryfewmontanevoles( Microtus montanus )inour sampling;however,thesespeciesareverylikelytobecapturedinmeadowhabitats.Itis importanttounderstandthestatusofallbasinspeciesandhowtheyarerespondingto humanactivitybecauseresponsescan(andlikelywill)varybyspecies. Anotherareaforadditionalresearchisrelatedtopopulationconnectivityandhow urbanizationimpactspopulationstructure.Atthelandscapescale,population connectivityaffectsaspecies’abilitytorespondtoenvironmentalchange(Pease et al 1989).Connectivityisimpactedbyanthropogenichabitatmodificationthataltersthe degreeofhabitatfragmentationaswellastheinterveningmatrixamongsuitablehabitat patches(Lawlor2003).Reducedgeneflowcanhavelongtermgeneticandevolutionary consequencesbyincreasingtheinfluenceofgeneticdriftandreducinggeneticvariation (Gilpin1991;Lande1994;Mills&Smouse1994;Frankham1995).Whilemostforest associatedspeciesintheLakeTahoebasindonotappeartohavereachedadistribution thresholdwithrespecttourbandevelopment,maintaininglandscapelinkagesmaybe crucialforpreventingthelossofspecies.Naturalhabitatsinthebasinarecurrently maintainingrepresentativesamplesofspeciesandhabitats;however,theymaynotbe sufficienttomaintainecologicallyfunctionallandscapes.Ifpopulationprocessesare beingnegativelyimpactedbydevelopment,aswefoundhere,thenremnanthabitat patchesmaynotbeabletosustainpopulationsinthelongterm.Furthermore,ifthe matrixsurroundinghabitatpatchesbecomesincreasinglyinhospitabletoalevelthatit presentsadispersalbarrier,thenpopulationscanbecomeeffectivelyisolatedandspecies maybelost.Therefore,maintainingstablepopulationdynamicsinadditionto interconnectedpopulationsofforestassociatedspecieswillbeimportantinpreserving basinbiodiversityandwillsetthecoursefortheforestcommunitythatwillberealizedin thefuture. Genetictechniquescouldbeusedtodetermineconnectivityandgenetic distinctivenessamongsitesaroundthebasin.Populationgeneticdatacouldbeusedto assesshierarchicalpopulationstructureandexplorehistoricalandcontemporarygene flowamongpopulations.Combiningdemographicinformationfrommarkrecapturedata withgeneticsurveydatawouldpermitinferencesabouttheimpactofhuman developmentonconnectivityofTahoebasinspeciesatmultiplespatialandtemporal scales.Furthermore,additionalknowledgeaboutpopulationconnectivitycanalso influencemanagementstrategies,becausepopulationsthataresufficientlydifferentiated maybemanagedasdistinctunitsinordertomaintainpopulationpersistence. Finally,thereweremanysmallmammalspeciesandspeciesgroupsthatwedid notcaptureorsamplethatarelikelytoberespondingtodevelopmentanddisturbance,

218 andwhichplayimportantrolesinforestecosystems.Bats,forexample,werenot sampledduetofundingconstraints,buttheyareknowntobeaffectedbyurbanization andforestmanagement.Largetreesandsnagsprovideimportantroostinghabitatfor thesespecies,andtheeffectsofchangesinverticalhorizontalcanopystructurearenot wellunderstood.Otherspeciesofecologicalimportancearesmallbodiedweasels(long tailedweaselandermine)andflyingsquirrels.Thesespecieswerenotwellsampled usingtrapgrids,andyettheyplayuniqueandimportantrolesinforestecosystemsas carnivoresandfungispecialists,respectively.

Large Mammals

General o Eightysixsamplesitesalongthedevelopmentgradientweresurveyedusingtrack platesandremotecameras:75ofthemhadfullarrays(4trackplates,2cameras,and 16pelletplots),and11hadreducedarraysatthecenteronly(1trackplate,1camera, 4pelletplots). o Composition,richness,andoccurrenceresultswerebasedonreducedarraysfrom all86sites. o Eightnativecarnivoresweredetected,aswellasthedomesticdogandcat. Carnivorespeciesrichnessrangedfrom1–6speciespersampleunit. o Leporids(rabbitsandhares)andblacktaileddeerwerealsodetectedviapellet groupplots. o Relationshipsbetweenprimarymeasuresofthelargemammalcommunityand environmentalconditions,includinghumandevelopmentandactivity,aredepicted graphicallyinAppendix9.1anddiscussedindetailbelow. Development 1. Carnivorespeciesrichnesswasnotassensitivetoincreasesindevelopmentaswas communitycomposition.Changesinspeciescompositionandtheassociationofboth carnivoreandherbivorespeciesrichnesswithlocalforestconditionssuggeststhat undevelopedparcelswithindevelopedareasmaybeimportanttotheoccurrenceof thesespecies. o Carnivorespeciescompositiondifferedalongthedevelopmentgradient.  Compositionatsitesatthelowerendofthedevelopmentgradient differedfromsiteswithmoderateorhighdevelopmentlevels, indicatingthattheprimarychangesoccurringinresponseto developmentoccuratlowlevelsofdevelopment(<30%).  Occurrenceoftheraremartenwasthegreatestcontributorto differencesincompositionalongthedevelopmentgradient(basedon MRPP),whereasoccurrenceofthebroadlydistributedblackbear tendedtohomogenizecompositionalongthegradient

219 o Carnivorespeciesrichnessdidnotvarysignificantlywithincreased development.  Carnivorespeciesrichnesswasbestdescribedbymicrohabitat structure,abioticconditionsandlocalhabitatcomposition.Volumeof coarsewoodydebris,largetreesandproportionofforestedareawithin 300mwereallpositivelyassociatedwithcarnivorerichnessand suggesttheimportanceoflocalvegetationcharacteristicsfor maintainingcarnivoresindevelopinglandscapes. o Herbivorespeciesrichnesswasmostcloselyassociatedwithlocaland landscapevegetationcomposition  Rabbitsandhares(leporids)weremorestronglyassociatedwithlocal andlandscapelevelvegetationcompositionandstructurethanwith humanactivityordevelopment.  Deer,incontrast,werestronglyassociatedwithvegetation characteristics(e.g.,shrubsandcoarsewoodydebris),with developmentatlocalandlandscapescales,andwithhumanactivity.  Bothleporidsanddeerwerenegativelyaffectedbythepresenceof dogsandtendedtobenegativelyaffectedbythepresenceofvehicles. Bothgroupsdisplayedascaledependentresponsetodevelopment showingnegativeassociationswithdevelopmentatthefinestscales (e.g.,within100m)andpositiveassociationsatcoarserscales(e.g., 300m,500mor1000m)suggestingtheimportanceofremnantnative habitatswithindevelopedareas. 2. Speciesvariedintheirassociationswithvegetativecharacteristics,developmentand humanuse. o Speciespredictedtoeithertolerateorbenefitfromassociationwith anthropogenicresources(e.g.,domesticdogandcat,coyote,andraccoon) weremorestronglyassociatedwithanthropogenicvariablesthanwith vegetationstructure,compositionorabioticinfluences. o Snagswereidentifiedasakeyfactorpositivelyassociatedwiththeoccurrence ofmartenandblackbear. 3. IntheGISbasedmodelaveraginganalysis,coyoteswerepositivelyassociatedwith openhabitats(e.g.shrubsandmeadows)anddevelopmentwithin500or1000mbut werenegativelyassociatedwithdevelopmentwithin300morless. o Coyotesmaybebestabletoexploitdevelopedareasgiventhatnativehabitats areavailablewithin1000m. o Giventhisscaledependentresponsetodevelopmentandthenegative associationofcoyoteoccurrencewithincreasednumbersofvehicles,a developmentthresholdmayexistabovewhichcoyotescannotusedeveloping landscapeseffectively.

220 Assessment 5. Severalspeciesandspeciesgroupswerestronglyassociatedwithdevelopmentand humanactivitycouldpotentiallybeusedtodemonstratetheconditionand contributionofnativeforestsindevelopingareas. o Apotentialindicatorofmoredevelopedareaswouldbetheoccurrenceof raccoon o Potentialindicatorsofundevelopedconditionsincludetheoccurrenceof marten,spottedskunk,andbobcat,andmorebroadlydistributedactivity patterns(ratherthanprimarilynocturnal). o Communitylevelsurveysarerecommendedratherthanindividualspecies surveys.Surveydurationmayneedtobeextendedindevelopedareasto achievethesamesurveylevelprobabilityofdetectionasinlessdeveloped areas 6. Forthecarnivorecommunity,themostimportanthabitatcharacteristicsatthesite scaleincludedthevolumeofcoarsewoodydebris,theoccurrenceoflargeandsmall trees,humanactivity,anddevelopmentwithin50m.Atthelandscapescale,the amountsofmeadowandshrubcoverwereimportant. Management 7. Disturbancefromhumanrelatedactivity,particularlydogs,wasanegativeaffector forsomespecies(e.g.,rabbits/hares,deer,andblackbear). o Activitypatternsofnativecarnivoressuggestedashifttominimizeoverlap withtemporalperiodsofgreatestdogactivity(seeFig.5.6,5.7).Human activityandthehandlingofdomesticdogs,particularlyimplementationand enforcementofleashlaws,couldreducepotentialimpactsonnativespecies. o Theretentionofagreaterdensityofsnagsandlogsislikelytoenhancehabitat qualityforspeciesthatcantoleratesomelevelofdevelopment,suchasblack bearandpotentiallymartenandskunks. 8. Coyotesandraccoonswerestronglyassociatedwithdevelopmentandlikelybenefit fromanthropogenicsubsidies. o Coyotesandraccoonsmayreachhighdensitiesinurbanareasleadingto conflictwithlocalresidentsandthepotentialfordiseasetransmissionto domesticpetsandpeople.Reducingaccesstopetfoodandgarbageandother resources(e.g.denninglocations)couldhelpreducedensitiesandthepotential forwildlifehumanconflict. o Coyotepopulationsmaywarrantmonitoring,giventhatincreasedabundance ofthisspeciescouldprecipitatesubstantialecologicalconsequencesand elevatedconflictswithhumans. 9. Blackbearpopulationsarechanginginresponsetochangesinhumanpopulation densitiesandbehaviors. o Bearsareanimportantcomponentoftheecologicalandsocialsystemsinthe basin.

221 o Abearmanagementplanforthebasin,includingmonitoring,wouldbea prudentinvestmenttoensurethehealthandsafetyofbothbearandhuman populations. 10. TheresultsofthelandscapemodelingforthethreespeciesmodeledshowedthatGIS basedmodelscanbeeffectiveinevaluatinglandscapemanagementscenarios o Coyoteswerepositivelyassociatedwithopenhabitats(e.g.shrubsand meadows)anddevelopmentwithin500or1000m,butwerenegatively associatedwithdevelopmentwithin300morless o Theprobabilityofmartenoccurrencewasnegativelyassociatedwith developmentatmultiplespatialscales(300,500,and1000m)andpositively associatedwithbrightnessandtheoccurrenceofmeadowhabitatswithin 1000m.Martenprobabilityofoccurrencedidnotchangesubstantiallyunder thefourdevelopmentscenarios. o Theprobabilityofblackbearoccurrencewasmoststronglyassociatedwith NDVI,andsecondarilybymeadowandwetness.Theresponseofbearto developmentwasnotstrong;however,itislikelythatdevelopmentand humanuseischangingbearpopulations,butthattheprobabilityofoccupancy isaninsensitivemeasureofthesechanges. FutureDirectionsforResearch Remnantforestindevelopingareaslikelyplaysanimportantroleinthemaintenance ofcarnivorespeciesatlowerelevationsinthebasin.Additionalanalysesofthesedata thatwouldbeusefulforunderstandtherelationshipofcarnivorestonativeforestwithan urbanenvironmentwouldbeaspatialevaluationoftheimportanceofareaand configurationtocarnivoreoccurrence. Furtheranalysisofcarnivoreactivitypatternsrelativetohabitat,development,human activity,andtheoccurrenceofotherspecies(e.g.,domesticdogs)wouldrevealaspectsof carnivorebehaviorthatwillinformhowmanagementcanachievemultipleobjectives (e.g.,forestresources,recreation,wildlife).Furtherresearchintobearpopulation demographyandbehaviorinbothwildlandandurbanenvironmentswillbeneededto informabearmanagementplan. Futurestudiesneedtoaddresstheimpactsofothertypesofdevelopment(e.g., recreationaldevelopment)onwildlifeandwildlifehabitat.Recreationaldevelopment maybeofalowerintensitybutcanimpactaslargeorlargerareasthanresidential developmentandoccursbothatlakelevel(e.g.,golfcourses)andathigherelevations (e.g.,skiareas)inthebasin.Uppermontaneenvironmentstendtobelessproductiveand, consequently,maybemoresensitivetodisturbanceandslowertorespondto perturbation.Astudyencompassingrecreationaldevelopmentanduppermontane environmentswillbeparticularlyimportanttounderstandingtheresponseofspeciessuch asthemarten,whosedistributionaloverlapwithlowerelevationresidentialdevelopment ismoderatetolow.

222 Ants General o AntsintheLakeTahoebasinareanumericallydominantepigaeicinvertebratethat havemultifacetedecologicalnichesimportantforecosystemintegrity. o Atotalof32,023individualsfrom46specieswererecordedfromthe101sitesalong theurbandevelopmentgradient.TherichestsubfamilieswereFormicinae(30 species)andMyrmicinae(13species). o Ourdataillustratesignificantspeciesandcommunitylevelresponsesofantstothe urbandevelopmentmodel.Theyarediscussedbymanagementobjectivebelowand summarizedinAppendix9.1. Development 1. Manymeasuresofantcommunityrichnessandabundanceshoweddecreasesor unimodalrelationshipswithdevelopmentintheareasurroundingforestedsites;none showedastrongincreasewithdevelopment. o Speciesrichnessofantspeakedatapproximately30%oftheareawithin100m beingdeveloped,demonstratingaunimodalmodelfit. o Totalsiteabundanceshowedadeclineinthemaximumabundanceby approximatelyonethirdaslandscapedevelopment(300,500,and1000m) increased. o Accordingtospeciesrankabundanceplots,dominanceincreasedwith development,butwithnoapparentthreshold,indicatingagradualdeclinein biologicaldiversitywithdevelopment.Inotherwords,althoughhighdevelopment sitessupportnativefauna,ourdataindicatethatthesesiteshaveagreater dominanceofafewspecies,suggestingtrendstowardbiologicalhomogenization. o Theabundanceoflognestingspecialistsshowedasimilarpatternastotal abundance,wheremaximumabundancedeclinedsubstantially(nearlytwothirds) withdevelopmentat100m,withthedeclineappearingtodropataround30% development.Althoughnodirectrelationshipwasobservedwithlogdensity,itis likelythatlogavailabilitywasalimitingfactor. o Theabundanceofrarespeciesshowedanegativerelationshipwithdevelopment at100m,withrarespeciesessentiallydroppingoutabove20%developed(allbut onespecies). 2. Individualspeciesresponsestodevelopmentsurroundingforestedsitesincludeda mixofpositiveandnegativerelationships. o Eightof46speciesdetectedandanalyzedhadstrongresponsestothe developmentgradient. o Formica cf. sibylla abundancewasnegativelyaffectedbydevelopmentatall scales(60mto1000m).Thisspeciesislikelytobeagoodindicatorof developmentandassociateddisturbance. o Formica ravida abundancewasconsistentlypositivelyaffectedbydevelopment acrossmultiplescales.Developmentexplainedover70%ofthevarianceinthe abundanceof Formica ravida atthe60and100mscalesofdevelopment.

223 o Inhighdevelopmentsites,dominanceby Formica sibylla was67.0%to99.9% greaterthananyotherspecies,whereasthemostdominantspeciesexceededany otherspecies’abundancebyonly6.1%inmoderatesitesand1.4%inlow developmentsites. o Theexoticspecies, Tetramorium caespitum ,wasonlyobservedinhigh developmentareasabove60%development. 3. Atthesitescale,antcommunitymetricsshowedamarkednegativeresponseto disturbance. o Antspeciesrichnessappearedtodeclineasthetotalareaofcompactedsurface increasedfrom0to2000m 2withina30mradiusarea. o Antspeciesrichnesspeakedatmoderatelevelsofsitedisturbance,consistentwith itsrelationshipwithdevelopmentat100m. Assessment

4. Afewstrongcandidateindicatorsofsiteconditionswereidentifiedinthecourseof thisstudy. o Formica cf. sibylla abundanceislikelytobeagoodindicatorofdevelopmentand associateddisturbance,givenitsconsistentnegativerelationshipwith development. o Formica ravida abundanceislikelytobeagoodindicatorofdevelopmentand associateddisturbance,givenitsconsistentpositiverelationshipwithdevelopment o Totalabundanceandlognesterabundancebothdecreasedinrelationto developmentwithindistancesof100m(andgreater).Sitesnotdevelopmentare thuspredictedtomimicthedistributionofabundancesobservedatundeveloped sitesfromthisstudy. o Communitydominanceisagoodmeasureofdevelopmentattheneighborhood scale(within300m). o Antspeciesrichnessappearstobeagoodindicatorofsiteconditions,decliningas siteshaveincreasedareasofcompactedsurface.

Management 5. Minimizingthenumberandextentofareaswheredevelopmentexceeds30%atthe neighborhoodscale(25to75ha,correspondingto300mand500mradiusareas, respectively)wouldgreatlyhelpretainnativeantpopulationsandcommunities. o Antspeciesrichnesswashighestinforestsofmoderatelevelsofurban developmentandlowdevelopmentsitescontainedmanyuniquespecies.This indicatesthatrarespeciesarethefirsttobelostwithprogressivedevelopment, followedbythemostsensitivespecies,whicharereplacedbymoretolerant speciesatmoderatelevelsofdevelopment.Lossesappearedtoaccelerateabove 20to30%development.Specialistabundancesalsoappearedtodropoffat30% development. o Giventhatonaveragesinglefamilydevelopmentsoccupyapproximately50%of aparcel,theretentionofnativevegetationtotheextentpossibleindeveloped

224 parcelswillhelpkeepthetotalpercentoftheareadevelopedclosertothetarget of<30%developed. o Theretentionofundevelopedparcelsoccupiedbynativevegetationinurbanizing areaswillgreatlycontributethekeepingthedensityofdevelopmentlower,thus reducingthefrequencyandintensityofimpactsoccurringwhendevelopment exceeds30%ofanarea. 6. Antspeciesofconcernwereidentifiedthatshouldbemonitoredasdevelopment and/orhumanactivityprogressesinthelowermontanezone. o Rarespeciesareclearlyatriskfromdevelopment,andmonitoringprograms targetingassessmentcanalsobeusedtomonitorthestatusofrarespecies.Given thefewnumbersofrarespeciesinurbanforestsatthepresenttime(i.e.,potential problemsofinsufficientpowertodetecttrends),therichnessorabundanceofrare antspecieswasnotconsideredastrongstandaloneindicator. o Exoticspecies,likerarespecies,wouldbegoodtomonitorintermsoftheir occurrenceandabundanceinthecourseofassessingconditionsinurbanizing areas;however,theiroccurrencesaretoolowtomakethemastrongstandalone indicator. o Communitywidemonitoringapproaches,potentiallycombinedwithspecies specificsamplingmethodsfortargetedspecies,couldbeaneffectiveapproachto monitoringantspeciesandcommunitiestoinformevaluationsofbiological diversityandforestintegrity. FutureDirectionsforResearch Theresearchdesignofthisstudywasaimedatidentifyingtheimpactsof urbanizationonbiologicaldiversity,andwehavebeensuccessfulindescribingpatterns ofcommunitystructureandpopulationdynamicswithrespecttohumandevelopment. Wehavealsoidentifiedspeciesthatarepotentiallyvulnerabletodevelopmentandhabitat modificationbasedontheirpatchydistribution,lowobservedabundance,and/orspecific habitatrequirements.However,researchisstillneededtodeterminehowbiodiversityis beingaffectedbyspecificlandmanagementpracticesaswellashowbiodiversity changeswithelevation;bothfactorsarelikelytosignificantlyaffectbiologicaldiversity inthebasin,particularlyatlowerelevations.

225 Literature Cited Adams,L.1939.Sierrachickareeeatsyoungbluefrontedjays.YosemiteNatureNotes 18:93. Agosti,D.,J.D.Majer,L.E.Alonso,andT.R.Schultz,eds.2000.Ants:standard methodsformeasuringandmonitoringbiodiversity.SmithsonianInstitution Press,Washington,D.C. Agosti,D.,M.Maryati,andC.Y.C.Arthur.1994.Hasthediversityoftropicalantfauna beenunderestimated?AnindicationfromleaflitterstudiesinWestMalaysian lowlandrainforest.TropicalBiodiversity2:270275. Alonso,L.E.2000.Antsasindicatorsofdiversity.Pages8088 in D.Agosti,J.D. Majer,L.E.Alonso,andT.R.Schultz,eds.Ants:standardmethodsfor measuringandmonitoringbiodiversity.SmithsonianInstitutionPress, Washington,D.C. AndersonD.R.,BurnhamK.P.,ThompsonW.L.2000.Nullhypothesistesting: problems,prevalence,andanalternative.JournalofWildlifeManagement. 64:912–923. Anderson,A.1997.FunctionalgroupsandpatternsoforganizationinNorthAmerican antcommunities:acomparisonwithAustralia.JournalofBiogeography24:433 60. Anderson,A.2000.Aglobalecologyofrainforestants:functionalgroupsinrelationto environmentalstressanddisturbance.Pages2534 in D.Agosti,J.D.Majer,L.E. Alonso,andT.R.Schultz,eds.Ants:standardmethodsformeasuringand monitoringbiodiversity.SmithsonianInstitutionPress,Washington,D.C. Anderson.A.1990.TheuseofantcommunitiestoevaluatechangeinAustralian terrestrialecosystems:areviewandarecipe.Proc.Ecol.Soc.Aust.16:347357. Austen,M.J.W.,C.M.Francis,D.M.Burke,andM.S.W.Bradstreet.2001. LandscapecontextandfragmentationeffectsonforestbirdsinsouthernOntario. Condor103:701714. Baicich,P.J.,andC.J.O.Harrison.1997.Aguidetothenests,eggs,andnestlingsor NorthAmericanbirds,2nded.AcademicPress,SanDiego,CA. Barbour,M.,E.Kelley,P.Maloney,D.Rizzo,E.Royce,andJ.FitesKaufmann.2002. PresentandpastoldgrowthforestsoftheLakeTahoeBasin,Sierra,Nevada,US. JournalofVegetationScience13:461472. Barbour,M.,R.Fernau,J.ReyBenayas,N.Jurjavicic,andE.Royce.1998.Tree regenerationfollowingclearcutlogginginredfirforestsofCalifornia.Forest EcologyandManagement104:101111. Barrett,R.H.1983.Smokedaluminumtrackplotsfordeterminingfurbearerdistribution andrelativeabundance.CaliforniaFishandGame69:188190. Bart,J.,andD.S.Robson.1982.Estimatingsurvivorshipwhenthesubjectsarevisited periodically.Ecology63:10781090. Bartels,M.A.,andD.P.Thompson.1993. Spermophilus lateralis .MammalianSpecies. 440:18. Battin,J.2004.Whengoodanimalslovebadhabitats:Ecologicaltrapsandthe conservationofanimalpopulations.ConservationBiology18:14821491.

226 Bazzaz,F.1975.Plantspeciesdiversityinoldfieldsuccessionalecosystemsinsouthern Illinois.Ecology56:485488. Beckmann,J.P.andJ.Berger.2003a.Rapidecologicalandbehaviouralchangesin carnivores:theresponsesofblackbears( Ursus americanus )toalteredfood.Journal oftheZoologicalSocietyofLondon261:207212. Beckmann,J.P.andJ.Berger.2003b.Usingblackbearstotestidealfreedistribution modelsexperimentally.JournalofMammalogy84:594603. Beers,T.,P.Dress,andL.Wensel.1966.Aspecttransformationinsiteproductivity research.JournalofForestry64:691692. Bemis,C.,andJ.D.Rising.1999.WesternWoodPewee(Contopussordidulus).inA. Poole,andF.Gill,editors.TheBirdsofNorthAmerica,No.451.TheBirdsof NorthAmerica,Inc.,Philadelphia,PA. Best,T.L.,R.G.Clawson,andJ.A.Clawson.1994. Tamias speciosus .Mammalian Species.478:19. Bestelmeyer,B.T.,D.Agosti,L.E.Alonso,C.Roberto,R.Brandau,W.L.BrownJr., J.H.C.Delabie,R.Silvestre.2000.Fieldtechniquesforthestudyofground dwellingants.Pages122144 in D.Agosti,J.D.Majer,L.E.Alonso,andT.R. Schultz,eds.Ants:standardmethodsformeasuringandmonitoringbiodiversity. SmithsonianInstitutionPress,Washington,D.C. Birks,H.1996.StatisticalapproachestointerpretingdiversitypatternsintheNorwegian mountainflora.Ecography19:332340. BlairR.B.andA.E.Launer.1997.Butterflydiversityandhumanlanduse:Species assemblagesalonganurbangradient.BiologicalConservation.80:113–125. Blair,R.B.1996.Landuseandavianspeciesdiversityalonganurbangradient. EcologicalApplications6:506519. Blair,R.B.2004.Theeffectsofurbansprawlonbirdsatmultiplelevelsofbiological organization.EcologyandSociety9:2. Blair,R.B.2001.BirdsandbutterfliesalongurbangradientsintwoecoregionsoftheUS. Pages3356inLockwood,J.L.andM.I.McKinney,eds.BioticHomogenization. Norwell,MA.Kluwer. Blight,L.K.,J.L.Ryder,andD.F.Bertram.1999.PredationonRhinocerosAukleteggs byanativepopulationof Peromyscus .Condor101:871876. Bock,C.E.,andZ.F.Jones.2004.Avianhabitatevaluation:shouldcountingbirds count?FrontiersinEcologyandtheEnvironment2:403410. Borcard,D.,P.Legendre,andP.Drapeau.1992.Partiallingoutthespatialcomponentof ecologicalvariation.Ecology73:10451055. Boyle,S.A.,andF.B.Samson.1985.Effectsofnonconsumptiverecreationonwildlife: areview.WildlifeSocietyBulletin13:110116 Bright,P.W.1993.Habitatfragmentation:problemsandpredictionsforBritish mammals.MammalReview23:101111. Brown,K.S.1991.Conservationofneotropicalenvironments:insectsasindicators. Pages349404 in N.M.CollinsandJ.A.Thomas,eds.Theconservationof insectsandtheirhabitats.AcademicPress,London,England. Brown,V.1985.Insectherbivoresandplantsuccession.Oikos44:1722.

227 Brown,W.2000.Diversityofants.Pages4579 in D.Agosti,J.D.Majer,L.E.Alonso, andT.R.Schultz,eds.Ants:standardmethodsformeasuringandmonitoring biodiversity.SmithsonianInstitutionPress,Washington,D.C. Brunner,A.,andJ.Kimmins.2003.Nitrogenfixationincoarsewoodydebrisof Thuja plicata and Tsuga heterophylla forestsonnorthernVancouverIsland.Canadian JournalofForestResearch33:16701682. Brunner,A.,andJ.Kimmins.2003.Nitrogenfixationincoarsewoodydebrisof Thuja plicata and Tsuga heterophylla forestsonnorthernVancouverIsland.Canadian JournalofForestResearch33:16701682. Buchanan,J.B.,R.W.Lundquist,andK.B.Aubry.1990.WinterpopulationsofDouglas’ squirrelsindifferentagedDouglasfirforests.JournalofWildlifeManagement 54:577581. Buckland,S.T.,D.R.Anderson,K.P.Burnham,J.L.Laake,D.L.Borchers,andL. Thomas.2001.Introductiontodistancesampling.OxfordUniversityPress, Oxford,UK. Bull,E.2002.ThevalueofcoarsewoodydebristovertebratesinthePacificNorthwest. Pages171178 in W.Laudenslayer,P.Shea,B.Valentine,P.Weatherspoonand T.Lisle,tech.coordinators.Proceedingsofthesymposiumontheecologyand managementofdeadwoodinwesternforests.USFSPSWGTR181. Bull,E.2002.ThevalueofcoarsewoodydebristovertebratesinthePacificNorthwest. Pages171178inW.Laudenslayer,P.Shea,B.Valentine,P.Weatherspoonand T.Lisle,tech.coordinators.Proceedingsofthesymposiumontheecologyand managementofdeadwoodinwesternforests.USFSPSWGTR181. Burke,D.M.,andE.Nol.2000.Landscapeandfragmentsizeeffectsonreproductive successofforestbreedingbirdsinOntario.EcologicalApplications10:1749 1761. Burnham,K.P.,andD.R.Anderson2002.Modelselectionandmultimodelinference:a practicalinformationtheoreticapproach.Springer,NewYork. Burnham,K.P.,andD.R.Anderson.1998.ModelSelectionandInference:Apractical InformationTheoreticApproach.SpringerScience+Business,Inc.,NewYork. Burnham,K.P.,andD.R.Anderson.2002.Modelselectionandmultimodelinference:a practicalinformationtheoreticapproach,secondedition.Springer Science+Business,Inc.,NewYork. Carey,A.B.1995.SciuridsinPacificnorthwestmanagedandoldgrowthforests. EcologicalApplications5:648661. Casey,K.,C.Neill,andS.Miller.1995.Phase2measurementprotocols.Pages74121 inC.Johnson,ed.ForestInventoryandAnalysisUser’sGuide.USDAForest Service,PacificSouthwestRegion. Cheng,D.,andT.Igarashi.1987.Fungiassociatedwithnaturalregenerationof Picea jezoensis Carr.inseedstage–theirdistributiononforestfloorsandpathogenicity totheseeds.Res.Bull.For.HokkaidoUniversity44:175188. Christy,E.J.,andR.N.Mack.1984.VariationindemographyofTsugaheterophylla acrossthesubstratummosaic.JournalofEcology72:7591. Clawson,R.G.,J.A.Clawson,andT.L.Best.1994. Tamias quadrimaculatus .Mammalian Species.469:16.

228 Clawson,R.G.,J.A.Clawson,andT.L.Best.1994. Tamias quadrimaculatus .Mammalian Species.469:16. Collinge,S.K.,andR.T.TForman.1998.Aconceptualmodeloflandconversion processes:predictionsandevidencefromafieldexperimentwithgrassland insects.Oikos82:6684. Connell,J.H.1975.Somemechanismsproducingstructureinnaturalcommunities:a modelandevidencefromfieldexperiments.Pp.460490inM.L.CodyandJ. Diamond,editors.EcologyandEvolutionofCommunities.HarvardUniversity Press,Cambridge,Mass. Connell,J.H.1978.Diversityintropicalrainforestsandcoralreefs.Science199:1302 1310. Connell,J.H.1978.Diversityintropicalrainforestsandcoralreefs.Science199:1302 1310. Crandall,K.A.,O.R.P.BinindaEmonds,G.M.Mace,andR.K.Wayne.2000. Consideringevolutionaryprocessesinconservationbiology.TrendsinEcology andEvolution15:290295. Crooks,K.R.2002.Relativesensitivitiesofmammaliancarnivorestohabitat fragmentation.ConservationBiology16:488502. Dalquest,W.W.1948.MammalsofWashington,volume2.MonographoftheMuseum ofNaturalHistory,UniversityofKansas. Daly,C.,W.P.Gibson,G.H.Taylor,G.L.JohnsonandP.A.Pasteris,2002:A knowledgebasedapproachtothestatisticalmappingofclimate.Climate Research,22,99113. Debinski,D.M.andR.D.Holt.1998.Asurveyandoverviewofhabitatfragmentation experiments.ConservationBiology14:342355. Denys,C.andH.Schmidt.1998.Insectcommunitiesonexperimentalmugwort (Artemisia vulgaris L.)plotsalonganurbangradient.Oecologia113:269277. Ditchkoff,S.S.,S.T.Saalfield,andC.J.Gibson.2006.Animalbehaviorinurban ecosystems:modificationsduetohumaninducedstress.UrbanEcosystems9:5 12. Dingemanse,N.J.,C.Both,P.J.Drent,andJ.M.Tinbergen.2004.Fitnessconsequences ofavianpersonalitiesinafluctuatingenvironment.ProceedingsoftheRoyal SocietyofLondonSeriesB:BiologicalSciences271:847852. Dingemanse,N.J.,C.Both,P.J.Drent,K.VanOers,andA.J.vanNoordwijk.2002. Repeatabilityandheritabilityofexploratorybehaviouringreattitsfromthewild. AnimalBehaviour64:929938. Dobrowski,S.Z.,J.A.Greenberg,andS.L.Ustin.2005.TahoeBasinExisting VegetationMapv.4.1,http://casil.ucdavis.edu/projects/tbevm(accessed 03/07/2005). Duchesneau,R.,andH.Morin.1999.Earlyseedlingdemographyinbalsamfirseedling banks.CanadianJournalofForestResearch29:15021509. Ehrlich,P.R.,D.S.Dobkin,andD.Wheye.1988.Thebirder'shandbook:afieldguideto thenaturalhistoryofNorthAmericanbirds.SimonandSchuster,Inc.,NewYork, NewYork.

229 ElliottFisk,D.L.,T.A.Cahill,O.K.Davis,L.Duan,C.R.Goldman,G.Gruell,R. Harris,R.Kattelmann,R.Lacey,D.Leisz,S.Lindström,D.Machida,R.A. Rowntree,P.Rucks,D.A.Sharkey,S.L.Stephens,andD.SZiegler.1997. LakeTahoecasestudy.Pages217276 in SierraNevadaEcosystemProject,Final ReporttoCongress,Addendum.CenterforWaterandWildlandResources, ReportNo.40,UniversityofCalifornia,Davis,CA. FenskeCrawford,T.J.,andG.J.Niemi.1997.Predationofartificialgroundnestsattwo typesofedgesinaforestdominatedlandscape.Condor99:1424. FernandezJuricic,E.2000a.Birdcommunitycompositionpatternsinurbanparksof Madrid:theroleofage,sizeandisolation.EcologicalResearch15:373383. FernandezJuricic,E.2000b.Localandregionaleffectsofpedestriansonforestbirdsin afragmentedlandscape.Condor102:247255. Ferrell,G.1996.TheinfluenceofinsectpestsandpathogensintheSierraforests.Pages 11721192inStatusoftheSierraNevada,SierraNevadaEcosystemsProject, FinalReporttoCongress.WildlandResourcesCenterReportNo.40.University ofCalifornia,Davis,California,USA. Fleishman,E.andD.D.Murphy.1999.PatternsandprocessesofnestednessinaGreat Basinbutterflycommunity.Oecologia119:133139. Fowler,CatherineH.1995.FisherandmartensurveytechniquesontheTahoeNational Forest.MastersThesis.HumboldtStateUniversity. Frid,A.andL.Dill.2002.Humancauseddisturbancestimuliasaformofpredationrisk. ConservationEcology6:1126. Friesen,L.,M.D.Cadman,andR.J.Mackay.1999.NestingsuccessofNeotropical migrantsongbirdsinahighlyfragmentedlandscape.ConservationBiology 13:338346. Fuller,T.K.1991.Dopelletcountsindexwhitetaileddeernumbersandpopulation change?JournalofWildlifeManagement55:393396. Gannon,W.L.andR.B.Forbes.1999. Tamias senex .MammalianSpecies.502:16. Garrett,K.L.,M.G.Raphael,andR.D.Dixon.1996.WhiteheadedWoodpecker (Picoidesalbolarvatus).inA.Poole,andF.Gill,editors.TheBirdsofNorth America,No.252.TheAcademyofNaturalSciences,Philadelphia,PA,andThe AmericanOrnithologists’Union,Washington,D.C. Gehring,T.M.andR.K.Swihart.2003.Bodysize,nichebreadth,andecologicallyscaled responsestohabitatfragmentation:mammalianpredatorsinanagricultural landscape.BiologicalConservation109:283295. George,S.B.1988.Systematics,historicalbiogeography,andevolutionofthegenus Sorex .JournalofMammalogy69:443461. George,S.L.andK.R.Crooks.2006.Recreationandlargemammalactivityinanurban naturereserve.BiologicalConservation133:107117. Gill,J.A.,K.Norris,andW.J.Sutherland.2001.Whybehaviouralresponsesmaynot reflectthepopulationconsequencesofhumandisturbance.Biological Conservation97:265268. Gordon,K.1943.Thenaturalhistoryandbehaviorofthewesternchipmunkandthe mantledgroundsquirrel.OregonStateCollegeinZoology5:1104. Grant,T.A.,T.L.Shaffer,E.M.Madden,andP.J.Pietz.2005.Timespecificvariation inpasserinenestsurvival:Newinsightsintooldquestions.Auk122:661672.

230 Gray,A.,andT.Spies.1997.Micrositecontrolsontreeseedlingestablishmentinconifer forestcanopygaps.Ecology78:24582473. Gray,J.1989.Effectsofstressonspeciesrichassemblages.BiologicalJournalofthe LinneanSociety37:1932. Greenberg,R.1989.Neophobia:aversiontoopenspaceandecologicalplasticityinSong andSwampSparrows.CanadianJournalofZoology67:11941199. Greene,D.,J.Zasada,L.Sirois,D.Kneeshw,H.Morin,I.Charron,andM.Simard. 1999.AreviewoftheregenerationdynamicsofNorthAmericanborealforest treespecies.CanadianJournalofForestResearch29:834839. Greene,E.,W.Davison,andV.R.Muehter.1998.Steller’sJay(Cyanocittastelleri).in A.Poole,andF.Gill,editors.TheBirdsofNorthAmericaNo.343.TheBirdsof NorthAmerica,Inc.,Philadelphia,PA. Grinnell,J.,andJ.Dixon.1918.NaturalhistoryofthegroundsquirrelsofCalifornia. MonthlyBulletinoftheStateCommissionofHorticulture(California)7:597708. Gutzwiller,K.J.,S.K.Riffell,andS.H.Anderson.2002.Repeatedhumanintrusion andthepotentialfornestpredationbygrayjays.JournalofWildlifeManagement 66:372380. Hacnar,S.J.andR.T.M’Closky.1997.Patternsofnestednessandspeciesassociationin aponddwellingamphibianfauna.Oikos80:371381. Hallett,J.G.,andM.A.O’Connell.1997.Habitatoccupancyandpopulationpatternsof smallmammalsinmanagedforests.Pages2.12.16inJ.G.HallettandM.A. O’Connell,editors.EastsideStudies:ResearchResults.Volume3ofWildlifeuse ofmanagedforests:alandscapeperspective.FinalreporttotheTimber,Fish,and WildlifeCooperativeMonitoring,Evaluation,andResearchCommittee.TFW WL498003,WashingtonDepartmentofNaturalResources,Olympia, Washington,USA. Hallett,J.G.,M.A.O’Connell,andC.C.Maguire.2003.Ecologyandconservationof arborealrodentsofwesternconiferousforests.Pages157206inC.J.Zabeland R.G.Anthony,editors.MammalCommunityDynamics.Managementand ConservationintheConiferousForestsofWesternNorthAmerica.Cambridge UniversityPress,Cambridge,UK. Hannon,S.J.,andS.E.Cotterill.1998.Nestpredationinaspenwoodlotsinanagricultural areainAlberta:theenemyfromwithin.Auk115:1625. Hansen,A.J.,R.L.Knight,J.M.Marzluff,S.Powell,K.Brown,P.H.Gude,andK. Jones.2005.Effectsofexurbandevelopmentonbiodiversity:Patterns, mechanisms,andresearchneeds.EcologicalApplications15:18931905. Harmon,M.,J.Franklin,F.Swanson,P.Sollins,S.Gregory,J.Lattin,N.Anderson,S. Cline,N.Aumen,J.Sedell,G.Leinkaemper,K,CrompakJr.,andK.Cummins. 1986.Ecologyofcoarsewoodydebrisintemperateecosystems.Adv.Ecol.Res. 15:133302. Harmon,M.,K.CromakJr.,andB.Smith.1987.Coarsewoodydebrisinmixedconifer forests,SequoiaNationalPark,California.CanadianJournalofForestResearch 17:12651272. Harmon,M.,K.CromakJr.,andB.Smith.1987.Coarsewoodydebrisinmixedconifer forests,SequoiaNationalPark,California.CanadianJournalofForestResearch 17:12651272.

231 Hensler,G.L.,andJ.D.Nichols.1981.Mayfieldmethodofestimatingnestingsuccess: modelestimatorsandsimulationresults.WilsonBulletin93:4253. Hines,J.E.,andJ.R.Sauer.1989.ProgramCONTRASTageneralprogramforthe analysisofseveralsurvivalorrecoveryrateestimates.FishandWildlife TechnicalReport24:17. Hobbs,R.,andL.Huenekke.1992.Disturbance,diversity,andinvasion:implications forconservation.ConservationBiology6(3):324337. Hoffmeister,D.F1986.MammalsofArizona.TheUniversityofArizonaPressandthe ArizonaGameandFishDepartment,Tucson,Arizona. Hölldobler,K.andE.O.Wilson.1990.Theants.BelknapPress,Cambridge. Hopkins,P.J.andN.R.Webb.1984.Thecompositionofthebeetleandspiderfaunason fragmentedheathlands.JournalofAppliedEcology21:935946. Inouye,R.S.,N.J.Huntly,D.Tilman,J.R.Tester,M.Stillwell,andK.C.Zinnel.1987. OldfieldsuccessiononaMinnesotasandplain.Ecology68:12–26. Jean,M.,andA.Bouchard.1993.Riverinewetlandvegetation:importanceofsmall scaleandlargescaleenvironmentalvariation.Journalofvegetationscience4: 609620. Johnson,D.H.1979.Estimatingnestsuccess:theMayfieldmethodandanalternative. Auk96:651661. Johnson,E.A.,andM.W.Klemens.2005.Theimpactsofsprawlonbiodiversity.Pages 1853inE.A.JohnsonandM.W.Klemens,editors.NatureinFragments:The LegacyofSprawl.ColumbiaUniversityPress,NewYork. Johnston,R.F.2001.SynanthropicbirdsofNorthAmerica.Pages4967inJ.M. Marzluff,R.Bowman,andR.Donnelly,editors.Avianecologyandconservation inanurbanizingworld.KluwerAcademicPublishers,Boston. Kaspari,M.2000.Aprimeronantecology.Pages924 in Agostietal.2000. Kaspari,M.andJ.Majer.2000.Usingantstomonitorenvironmentalchange.Pages89 98 in Agostietal.2000. Kendall,W.L.,J.D.Nichols,andJ.E.Hines.1997.Estimatingtemporaryemigration usingcapturerecapturedatawithPollock’srobustdesign.Ecology78:563578. Kendall,W.L.,K.H.Pollock,andC.Brownie.1995.Alikelihoodbasedapproachto capturerecaptureestimationofdemographicparametersundertherobustdesign. Biometrics51:293308. Kingery,H.E.,andC.K.Ghalambor.2001.PygmyNuthatch(Sittapygmaea).inA. Poole,andF.Gill,editors.TheBirdsofNorthAmerica,No.567.TheBirdsof NorthAmerica,Inc.,Philadelphia,PA. Klein,G.C.1989.Effectsofforestfragmentationondungandcarrionbeetle communitiesincentralAmazonia.Ecology70:17151725. Knight,R.L.,andK.J.Gutzwiller,eds.1995.Wildlifeandrecreationists:coexistence throughmanagementandresearch.IslandPress,Washington,D.C.372pp. Koh,L.P.andN.S.Sodhi.2004.Importanceofreserves,fragments,andparksfor butterflyconservationinatropicalurbanlandscape.EcologicalApplications 14(6):16951708. Kokko,H.,andW.J.Sutherland.2001.Ecologicaltrapsinchangingenvironments: EcologicalandevolutionaryconsequencesofabehaviourallymediatedAllee effect.EvolutionaryEcologyResearch3:537551.

232 Krebs,C.J.,B.S.Gilbert,S.Boutin,andR.Boonstra.1987.Estimationofsnowshoehare populationdensityfromturdtransects.CanadianJournalofZoology65:565567. Kremen,C.1992.Assessingtheindicatorpropertiesofspeciesassemblagesfornatural areasmonitoring.EcologicalApplications2(2):203217. Kremen,C.,R.K.Colwell,T.L.Erwin,D.D.Murphy,R.F.Noss,M.A.Sanjayan.1993. Terrestrialassemblages:theiruseinconservationplanning. ConservationBiology7(4):796808. Lambeck,R.J.1997.Focalspecies:amultispeciesumbrellafornatureconservation. ConservationBiology11:849856. Laurance,W.F.,T.E.Lovejoy,H.L.Vasconcelos,E.M.Bruna,R.K.Didham,P.C. Stouffer,C.Gascon,R.Bierregaard,S.Laurance,andE.Sampaio.2002. EcosystemdecayofAmazonianfragments:a22yearinvestigation.Conservation Biology16:605618. Lawlor,T.E.2003.Faunalcompositionanddistributionofmammalsinwestern coniferousforests.Pages4180inC.J.ZabelandR.G.Anthony,editors.Mammal CommunityDynamics:ManagementandConservationintheConiferousForests ofWesternNorthAmerica,CambridgeUniversityPress,Cambridge,UK. Lefebvre,L.2001.Innovationsinbirds:Neurobiology,evolution,ecologyand psychology.AdvancesinEthology.(36):36. Lenth,B.,M.Brennan,andR.L.Knight.2006.Theeffectsofdogsonwildlife communities.FinalResearchReport.BoulderCountyOpenSpaceandMountain Parks,Boulder,CO.29pp. Levin,S.A.andR.T.Paine.1974.Disturbance,patchformation,andcommunity structure.ProceedingsoftheNationalAcademyofSciences(USA)71:2744 2747. Lindenmayer,D.,andR.Peakall.2000.TheTumutexperiment–intergrating demographicandgeneticstudiestounravelfundamentaleffects:acasestudyof thenativebushrat.Pages1722001inA.G.YoungandG.M.Clarke,editors. Genetics,DemographyandViabilityofFragmentedPopulations.Cambridge UniversityPress,Cambridge,UK. Lindgren,B.andA.MacIssac.2002.Apreliminarystudyofantdiversityandofant dependenceondeadwoodincentralinteriorBritishColombia.Pages111119in W.Laudenslayer,P.Shea,B.Valentine,P.WeatherspoonandT.Lisle,tech. coordinators.Proceedingsofthesymposiumontheecologyandmanagementof deadwoodinwesternforests.USFSPSWGTR181. Lomolino,M.V,andD.R.Perault.2000.Assemblyanddisassemblyofmammal communitiesinafragmentedtemperaterainforest.Ecology81:15171532. Luoma,D.L.,J.M.Trappe,A.W.Claridge,K.M.Jacobs,andE.Cazares.2003. Relationshipsamongfungiandsmallmammalsinforestedecosystems.Pages 343373inC.J.ZabelandR.G.Anthony,editors.MammalCommunity Dynamics.ManagementandConservationintheConiferousForestsofWestern NorthAmerica.CambridgeUniversityPress,Cambridge,UK. Lyons,A.J.2005.ActivitypatternsofurbanAmericanblackbearsintheSanGabriel MountainsofsouthernCalifornia.Ursus16:255262.

233 MacArthur,R.A.,V.Geist,andR.H.Johnston.1982.Cardiacandbehavioralresponses ofmountainsheeptohumandisturbance.JournalofWildlifeManagement46:351 358. Machmer,M.2002.Effectsofecosystemrestorationtreatmentsoncavitynestingbirds, theirhabitat,andtheirinsectivorouspreyinfiremaintainedforestsof SoutheasternBritishColombia.Pages121133inW.Laudenslayer,P.Shea,B. Valentine,P.WeatherspoonandT.Lisle,tech.coordinators.Proceedingsofthe symposiumontheecologyandmanagementofdeadwoodinwesternforests. USFSPSWGTR181. Machmer,M.2002.Effectsofecosystemrestorationtreatmentsoncavitynestingbirds, theirhabitat,andtheirinsectivorouspreyinfiremaintainedforestsof SoutheasternBritishColombia.Pages121133inW.Laudenslayer,P.Shea,B. Valentine,P.WeatherspoonandT.Lisle,tech.coordinators.Proceedingsofthe symposiumontheecologyandmanagementofdeadwoodinwesternforests. USFSPSWGTR181. Mackenzie,D.I,J.D.Nichols,G.B.Lachman,S.Droege,J.A.Royle,andC.A. Langtimm.2002.Estimatingsiteoccupancyrateswhendetectionprobabilitiesare lessthanone.Ecology83:22482255. Magurran,A.E.1988.Ecologicaldiversityanditsmeasurement.PrincetonUniversity Press,Princeton,NJ,USA. Mainini,B.,P.Neuhaus,andP.Ingold.1993.Behaviorofmarmots(Marmotamarmota) undertheinfluenceofdifferenthikingactivities.BiologicalConservation64:161 164. Maloney,P.2000.TopicsinforestpathologyandecologyintheSierraNevadaandthe SierraSanPedroMartir,Baja.Ph.D.diss.UniversityofCalifornia,Davis, California,USA. Maloney,P.2000.TopicsinforestpathologyandecologyintheSierraNevadaandthe SierraSanPedroMartir,Baja.Ph.D.dissertation.UniversityofCalifornia,Davis, California,USA. Maloney,P.andD.Rizzo.2002.Pathogensandinsectsinapristineforestecosystem: theSierraSanPedroMartir,Baja,Mexico.CanadianJournalofForestResearch 32:448457. Manley,P.andD.D.Murphy.2002.PatternsandthresholdsoffragmentationinTahoe’s UrbanizingLandscape.PacificSouthwestResearchStation,Davis,California. Manley,P.N.2000.Biologicaldiversityanditsmeasure:anassessmentofloticriparian ecosystemsintheLakeTahoeBasin.Ph.D.Dissertation.Universityof California,Berkeley,CA.399pp. Manley,P.N.,andM.DSchlesinger.2001.RiparianbiologicaldiversityintheLake Tahoebasin.Unpubl.rept.FinalreportfortheCaliforniaTahoeConservance, Grant#CTA3024.CaliforniaTahoeConservancy,SouthLakeTahoe,CA. Manley,P.,J.FitesKauffman,M.Barbour,M.Schlesinger,andD.Rizzo.2000. BiologicalIntegrity.Pages403433inD.D.MurphyandC.M.Knopp,editors. LakeTahoeWatershedAssessment,volume1,USDAForestService,General TechnicalReportPSWGTR175,Albany,California,USA. Martin,K.J.,andW.C.McComb.2002.Smallmammalhabitatassociationsatpatch andlandscapescalesinOregon.ForestScience48:255264.

234 Martin,T.E.,andG.R.Geupel.1993.Nestmonitoringplots:Methodsforlocatingnests andmonitoringsuccess.JournalofFieldOrnithology64:507519. Martin,T.E.,C.R.Paine,C.J.Conway,W.M.Hochachka,P.Allen,andW.Jenkins. 1997.BBIRDFieldProtocol.MontanaCooperativeWildlifeResearchUnit, UniversityofMontana,Missoula,Montana,USA. Martin,T.E.1988a.Ontheadvantageofbeingdifferent:nestpredationandthe coexistenceofbirdspecies.ProceedingoftheNationalAcademyofSciences USA85:21962199. Martin,T.E.1988b.Processingorganizingopennestingbirdassemblages:competitionor nestpredation?EvolutionaryEcology2:3750. Marzluff,J.M.,R.Bowman,andR.Donnelly.2001.Ahistoricalperspectiveonurban birdresearch:trends,terms,andapproaches.Pages117 in J.M.Marzluff,R. Bowman,andR.Donnelly,eds.Avianecologyandconservationinanurbanizing world.KluwerAcademicPublishers,Boston,MA. Maser,C.,J.M.Trappe,andR.A.Nussbaum.1978.Fungalsmallmammal interrelationshipswithemphasisonOregonconiferousforests.Ecology59:799 809. May,B.,Gavin,T.A.,Sherman,P.W.&Korves,T.M.1997.Characterizationof microsatellitelociintheNorthernIdahogroundsquirrel Spermophilus brunneus brunneus .MolecularEcology6(4):399400. May,R.1975.Patternsofspeciesabundanceanddiversity.Ecologyandevolutionof communities.M.CodyandJ.Diamond(eds).HarvardUniversityPress, Massechusetts. Mayfield,H.F.1975.Suggestionsforcalculatingnestsuccess.WilsonBulletin87:456 466. McCallum,D.A.,R.Grundel,andD.L.Dahlsten.1999.MountainChickadee(Poecile gambeli).inA.Poole,andF.Gill,editors.TheBirdsofNorthAmerica,No.453. TheBirdsofNorthAmerica,Inc.,Philadelphia,PA. McCune,B.,andJ.Grace.2002.Analysisofecologicalcommunities.MjMSoftware Design,GlenedenBeach,Oregon,USA. McCune,B.,andM.Mefford.1999.PCORD.Multivariateanalysisofecologicaldata, version4.MjMSoftwareDesign,GlenedenBeach,Oregon,USA. McKelvey,K.S.,G.W.McDaniel,L.S.Mills,andP.C.Griffin.2002.Effectsofplotsize andshapeonpelletdensityestimatesforsnowshoehares.WildlifeSociety Bulletin30:751755. McKinney,M.L.2002.Urbanization,biodiversity,andconservation.BioScience. 52:883–890. McShea.W.J.2000.Theinfluenceofacorncropsonannualvariationinrodentandbird populations.Ecology81:228238. Miller,J.R.,J.A.Wiens,N.T.Hobbs,andD.M.Theobald.2003.Effectsofhuman settlementonbirdcommunitiesinlowlandriparianareasofColorado(USA). EcologicalApplications13:10411059. Miller,S.G.,R.L.Knight,andC.K.Miller.2001.Wildliferesponsetopedestriansand dogs.WildlifeSocietyBulletin29:124132.

235 Mills,L.S.,M.K.Schwartz,D.A.Tallmon,andK.P.Lair.2003.Measuringand interpretingconnectivityformammalsinconiferousforests.Pages587613in C.J.ZabelandR.G.Anthony,editors.MammalCommunityDynamics. ManagementandConservationintheConiferousForestsofWesternNorth America.CambridgeUniversityPress,Cambridge,UK. Mori,A.,E.Mizumachi,T.Osono,andY.Doi.2004.Substrateassociatedseedling recruitmentandestablishmentofmajorconiferspeciesinanoldgrowthsubalpine forestincentralJapan.ForestEcologyandManagement196:287297. Motomura,I.1932.Onthestatisticaltreatmentofcommunities.Zool.Mag.,Tokyo44: 379383. Naeem,S.,L.Thompson,S.Lawler,J.Lawton,R.Woodfin.1994.Declining biodiversitycanaltertheperformanceofecosystems.Nature368:734736. Nechodom,M.,R.Rowntree,N.Dennis,H.Robison,andJ.Goldstein.2000.Social, economic,andinstitutionalassessment.Pages601610inD.D.MurphyandC.M. Knopp,editors.LakeTahoeWatershedAssessment,volume1,USDAForest Service,GeneralTechnicalReportPSWGTR175,Albany,California,USA. Newton,I.1998.Populationlimitationinbirds.AcademicPress,SanDiego,CA. Niemela,J.1999.Ecologyandurbanplanning.BiodiversityandConservation8:119131. Nolan,V.,Jr.,E.D.Ketterson,D.A.Cristol,C.M.Rogers,E.D.Clotfelter,R.C.Titus, S.J.Schoech,andE.Snajdr.2002.DarkeyedJunco(Juncohyemalis).inA. Poole,andF.Gill,editors.TheBirdsofNorthAmerica,No.716.TheBirdsof NorthAmerica,Inc.,Philadelphia,PA. Noss,R.F.1990.Indicatorsformonitoringbiodiversity:ahierarchicalapproach. ConservationBiology4(4):355364. Nuhn,T.P.andC.G.Wright.1979.Anecologicalsurveyofantsinalandscaped suburbanhabitat.AmericanMidlandNaturalist102:353362. Ohmann,J.,andT.Spies.1998.Regionalgradientanalysisandspatialpatternofwoody plantcommunitiesofOregonforests.EcologicalMonographs68(2):151182. Ojima,D.S.,T.G.Kittel,T.Rosswall,andB.H.Walker.1991.Criticalissuesfor understandingglobalchangeeffectsonterrestrialecosystems.Ecological Applications1:316325. Okland,R.andO.Eilertsen.1994.Canonicalanalysiswithvariationpartitioning:some commentsandanapplication.JournalofVegetationScience5:117126. Orrock,J.L.,J.F.Pagels,W.J.McShea,andE.K.Harper.2000.Predictingpresenceand abundanceofasmallmammalspecies:theeffectofscaleandresolution. EcologicalApplications10:13561366. Otis,D.L.,K.P.Burnham,G.C.White,andD.R.Anderson.1978.Statisticalinference fromcapturerecapturedataonclosedanimalpopulations.WildlifeMonographs 62:1135. Palmer,M.2005.VarianceexplainedandvariancepartitioninginCCA.Website: Ordinationmethodsforecologists. www.ordination.okstate.edu . Pawlikowski,T.andJ.Pokorniecka.1990.Observationsonthestructureofbumblebee communitiesofthetownforestareasinTorunBasin,NorthPoland.Acta UniversitatisNicolaiCoperniciBiologia37:322.

236 Peacock,M.M.1997.DeterminingnataldispersalpatternsinapopulationofNorth Americanpikas(Ochotonaprinces)usingdirectmarkresightandindirectgenetic methods.BehavioralEcology3:340350. Peacock,M.M.,andA.T.Smith.1997.Theeffectofhabitatfragmentationondispersal patterns,matingbehavior,andgeneticvariationinapika( Ochotona princeps ) metapopulation.Oecologia112:524533. Pimm,S.L.1991.Thebalanceofnature?UniversityofChicagoPress,Chicago. Pollock,K.H.1982.Acapturerecapturedesignrobusttounequalprobabilityofcapture. JournalofWildlifeManagement46:757760. Prange,S.S.D.Gehrt,andE.P.Wiggers.2004.Influencesofanthropogenicresourceson raccoon( Procyon lotor )movementsandspatialdistribution.Journalof Mammalogy85:483490. Purcell,K.L.2006.AbundanceandproductivityofWarblingVireosacrossan elevationalgradientintheSierraNevada.Condor108:315325. RDevelopmentCoreTeam(2005).R:Alanguageandenvironmentforstatistical computing.RFoundationforStatisticalComputing,Vienna,Austria.ISBN3 900051070,URL http://www.Rproject.org . Ralph,C.J.,G.R.Geupel,P.Pyle,T.E.Martin,andD.F.DeSante.1993.Handbookof fieldmethodsformonitoringlandbirds.PacificSouthwestResearchStation, Albany,CA. Raphael,M.G.1990.UseofMarkovchainsinanalysesofforagingbehavior.Studiesin AvianBiology13:288294. Raphael,M.G.,andM.White.1984.UseofsnagsbycavitynestingbirdsintheSierra NevadaCaliforniaUSA.WildlifeMonographs:166. Raphael,M.,andM.Morrison.1987.DecayanddynamicsintheSierraNevada, California.ForestScience33:774783. Raphel,M.G.1991.Vertebratespeciesrichnesswithinandamongseralstagesof Douglasfir/hardwoodforestinnorthwesternCalifornia.Pages415423inL.F. Ruggieroetal.,technicalcoordinators.Wildlifeandvegetationofunmanaged Douglasfirforests.USDAForestServiceTechnicalReport. Ray,J.A.2005.Sprawlandhighlymobileorwiderangingspecies.Pages181205in E.A.JohnsonandM.W.Klemens,editors.NatureinFragments:TheLegacyof Sprawl.ColumbiaUniversityPress,NewYork. Reice,S.R.2005.Ecosystems,disturbance,andtheimpactofsprawl.Pages90108in E.A.JohnsonandM.W.Klemens,editors.NatureinFragments:TheLegacyof Sprawl.ColumbiaUniversityPress,NewYork. Ricklefs,R.E.1969.Ananalysisofnestingmortalityinbirds.SmithsonianContributions inZoology9:148. Ricklefs,R.E.1979.Ecology,2 nd Edition.ChironPress,NewYork,NewYork. Riffell,S.K.,K.J.Gutzwiller,andS.H.Anderson.1996.Doesrepeatedhuman intrusioncausecumulativedeclinesinavianrichnessandabundance.Ecological Applications6:492505Sharples,F.E.1983.Habitatusebysympatricspeciesof Eutamias .JournalofMammalogy64:572579. Riley,S.P.D.,R.M.Sauvajot,T.K.Fuller,E.C.York,D.A.Kamradt,C.Bromley,and R.K.Wayne.2003.Effectsofurbanizationandhabitatfragmentationonbobcats andcoyotesinsouthernCalifornia.ConservationBiology17:566576.

237 Rosenzweig.M.L.,andZ.Abramsky.1993.Howarediversityandproductivityrelated? Pages5265InR.E.RicklefsandD.Schluter,editors.SpeciesDiversityin EcologicalCommunities:HistoricalandGeographicalPerspectives.Universityof ChicagoPress,Chicago,Illinois. Roth,J.K.,P.N.Manley,M.M.McKenzie,andM.D.Schlesinger.2004.Multiple SpeciesInventoryandMonitoring2002MonitoringReport.U.S.Departmentof Agriculture,ForestService,LakeTahoeBasinManagementUnit,SouthLake Tahoe,California,USA. Royce,E.1997.XericeffectsonthedistributionofconiferspeciesinasouthernSierra Nevadaecotone.Ph.D.dissertation.UniversityofCalifornia,Davis,California, USA. SASInstituteInc.2003.SAS/STATsoftware,Version9.1oftheSASSystemfor Windows.Copyright©2003.SASandallotherSASInstituteInc.productor servicenamesareregisteredtrademarksortrademarksofSASInstituteInc.,Cary, NC,USA. Sauer,J.R.,andB.K.Williams.1989.Generalizedproceduresfortestinghypotheses aboutsurvivalorrecoveryrates.JournalofWildlifeManagement53:137142. Saunders,D.A.,R.J.Hobbs,andC.R.Margules.1991.Biologicalconsequencesof ecosystemfragmentation:areview.ConservationBiology5:1832. Schlesinger,M.D.,andJ.S.Romsos.2000.VertebratespeciesoftheLakeTahoebasin. PagesG1toG15inD.D.MurphyandC.M.Knopp,editors.LakeTahoe watershedassessment,vol.II.Gen.Tech.Rep.PSWGTR176.PacificSouthwest ResearchStation,ForestService,U.S.DepartmentofAgriculture,Albany,CA. SchulteHostedde,A.I.,H.L.Gibbs,andJ.S.Millar.2001.Microgeographicgenetic structureintheyellowpinechipmunk( Tamias amoenus ).MolecularEcology10: 1625–1631. Schultz,T.R.andT.P.McGlynn.2000.Theinteractionsofantswithotherorganisms. Pages3544 in D.Agosti,J.D.Majer,L.E.Alonso,andT.R.Schultz,eds.Ants: standardmethodsformeasuringandmonitoringbiodiversity.Smithsonian InstitutionPress,Washington,D.C. Seber,G.A.F.1982.TheEstimationofAnimalAbundanceandRelatedParameters. MacMillanPress,NewYork. Sedgwick,J.A.1993.DuskyFlycatcher(Empidonaxoberholseri).inA.Poole,andF. Gill,editors.TheBirdsofNorthAmerica,No.78.TheAcademyofNatural Sciences;Washington,D.C.:TheAmericanOrnithologists’Union,Philadelphia, PA. Seton,E.T.1929.Livesofgameanimals.Doubleday,DoranCo.,NewYork,4:367384. Shaffer,T.L.2004.Aunifiedapproachtoanalyzingnestsuccess.Auk121:526540. Sharples,F.E.1983.Habitatusebysympatricspeciesof Eutamias .Journalof Mammalogy64:572579. Sirotnak,J.M.,andN.J.Huntly.2000.Directandindirecteffectsofherbivoreson nitrogendynamics:volesinriparianareas.Ecology81:7887. Smith,C.C.1970.Thecoevolutionofpinesquirrels(Tamiasciurus)andconifers. EcologicalMonographs40:349371. Smith,C.F.1943.Relationshipofforestwildlifetopinereproduction.TheJournalof WildlifeManagement7:124125.

238 Sokal,R.R.,andF.J.Rohlf1995.Biometry.W.H.FreemanandCompany,NewYork. Sol,D.,S.Timmermans,andL.Lefebvre.2002.Behaviouralflexibilityandinvasion successinbirds.AnimalBehaviour63:495502. Southwood,T.R.E.,V.Brown,P.Reader.1979.Therelationshipsofplantandinsect diversitiesinsuccession.BiolJ.Linn.Soc.12:327348. Spellerberg.I.F.1991.Monitoringecologicalchange.CambridgeUniversityPress, Cambridge. Steele,M.A.1999. Tamiasciurus douglasii .MammalianSpecies.630:18. SteffanDewenter,I.andTTscharntke.1997.Earlysuccessionofbutterflyandplant communitiesonsetasidefields.Oecologia109:294302. Stephens,F.1906.CaliforniaMammals.TheWestCoastPublishingCo.,SanDiego, California. Stevens,S.,Coffin,J.&Strobeck,C.1997.MicrosatellitelociinColumbianground squirrels Spermophilus columbianus .MolecularEcology6(5):493495. Sullivan,T.P.1979.Repopulationofclearcuthabitatandconiferseedpredationbydeer mice.JournalofWildlifeManagement43:861871. Sullivan,T.P.H.Coates,L.A.Jozsa,andP.K.Diggle1993.Influenceoffeedingdamage bysmallmammalsonthegrowthandwoodqualityinyounglodgepolepine. CanadianJournalofForestresearch23:799809. Sullivan,T.P.,andD.S.Sullivan.1982.Theuseofalternativefoodstoreducelodgepole pineseedpredationbysmallmammals.JournalofAppliedEcology19:3345. Sullivan,T.P.,D.S.Sullivan,andC.J.Krebs.1983.Demographicresponsesofa chipmunk( Eutamias townsendii )populationwithsupplementalfood.Journalof AnimalEcology52:743755. Sumner,L.,andJ.S.Dixon.1953.BirdsandmammalsoftheSierraNevadawithrecords fromSequoiaandKingsCanyonnationalparks.UniversityofCaliforniaPress, Berkeley. Sutton,D.A.1992. Tamias amoenus .MammalianSpecies.390:18. TahoeRegionalPlanningAgency.2004.Chapter4,Conservationelement.Regional PlanfortheLakeTahoeBasin:goalsandpolicies,pp.IV3toIV9. terBraak,C.J.F.,andP.Smilauer.2002.CANOCOReferenceManualandCanoDrawfor WindowsUser'sGuide:SoftwareforCanonicalCommunityOrdination,version 4.5.Ithaca,NY,USA:MicrocomputerPower(www.canoco.com),500pp. Tevis,L.,Jr.1952.Autumnfoodsofchipmunksandgoldenmantledgroundsquirrelsin northernSierraNevada.JournalofMammalogy33:198205. Tevis,L.,Jr.1953.Stomachcontentsofchipmunksandmantledsquirrelsinnortheastern California.JournalofMammalogy34:316324. Thomas,L.,J.L.Laake,S.Strindberg,F.F.C.Marques,S.T.Buckland,D.L.Borchers, D.R.Anderson,K.P.Burnham,S.L.Hedley,andJ.H.Pollard.2004.Distance 4.1.Release2.ResearchUnitforWildlifePopulationAssessment,Universityof St.Andrews,UK.http://www.ruwpa.stand.ac.uk/distance/. Tokeshi,M.1993.Speciesabundancepatternsandcommunitystructure.Advancesin EcologicalResearch24:111186.

239 Turin,H.,anddenBoer.1988.Changesinthedistributionofcarabidbeetlesinthe Netherlandssince1880.II.Isolationofhabitatsandlongtermtimetrendsinthe occurrenceofcarabidspecieswithdifferentpowersofdispersal(Coleoptera, Carabidae).BiologicalConservation44:179200. Udvardy,M.D.F.1969.Dynamiczoogeography,withspecialreferencetolandanimals. NewYork,NY:VanNostrandReinholdCo. VanBuskirk,J.2005.Localandlandscapeinfluenceonamphibianoccurrenceand abundance.Ecology86:19361947. VanDersal,W.R.1938.NativewoodyplantsoftheUnitedStates:theirerosioncontrol andwildlifevalues.UnitedStatesDepartmentofAgriculture,Miscellaneous Publication303:1362. VanHorne,B.1983.Densityasamisleadingindicatorofhabitatquality.Journalof WildlifeManagement47:893901. VanderWall,S.B.2000.Theinfluenceofenvironmentalconditionsoncacherecovery andcachepilferagebyyellowpinechipmunks( Tamias amoenus )anddeermice (Peromyscus maniculatus ).BehavioralEcology11:544549. Verner,J.,andA.S.Boss.1980.Californiawildlifeandtheirhabitats:westernSierra Nevada.UnitedStatesDepartmentofAgriculture,ForestServiceGeneral TechnicalReport,PSW37:1439. Verts,B.J.,andL.N.Carraway.1998.LandmammalsofOregon.Universityof CaliforniaPress,Berkeley,California. Vigallon,S.M.,andJ.M.Marzluff.2005.IsnestpredationbySteller'sJays(Cyanocitta stelleri)incidentalortheresultofaspecializedsearchstrategy?Auk122:3649. Vitousek,P.1986.Biologicalinvasionsandecosystemproperties:canspeciesmakea difference?Pages163176inH.A.MooneyandJ.A.Drake,editors.Ecologyof biologicalinvasionsofNorthAmericaandHawaii.Springer,NewYork,USA. Waples,R.S.1995.Evolutionarysignificantunitsandconservationofbiologicaldiversity undertheendangeredspeciesact.Pages827inJ.L.Nielson,editor.Evolutionof theAquaticEcosystem:DefiningUniqueUnitsinPopulationConservation. AmericanFisheriesSociety,Bethesda,Maryland. Warren,E.R.1942.ThemammalsofColorado:theirhabitsanddistribution.University ofOklahomaPress,Norman,OK. Wheeler,G.C.andJ.N.Wheeler.1986.TheantsofNevada.LosAngeles,California: NaturalHistoryMuseumofLosAngelesCounty. WhiteG.C.,D.R.Anderson,K.P.Burnham,andD.L.Otis.1982.Capture–recaptureand removalmethodsforsamplingclosedpopulations.LosAlamosNational Laboratory,LosAlamos,NewMexico,USA. White,G.C.,andK.P.Burnham.1999.ProgramMARK:Survivalrateestimationfrom bothliveanddeadencounters.BirdStudy46(supplement),S120S139. Whittaker,R.H.1965.Dominanceanddiversityinlandplantcommunities.Science147: 250260. Wiens,J.A.1989.Spatialscalinginecology.FunctionalEcology3:385397. Zielinski,W.J.andT.E.Kucera.1995.Americanmarten,fisher,lynxandwolverine: surveymethodsfortheirdetection.GeneralTechnicalReportPSWGTR157. Albany,CA:PacificSouthwestResearchStation,ForestService,U.S. DepartmentofAgriculture.163pp.

240 Zielonka,T.,andG.Piatek.2004.Theherbanddwarfshrubscolonizationofdecaying logsinsubalpineforestinthePolishTatraMountains.PlantEcology172:6372. Zollner,P.A.2000.Comparinglandscapelevelperceptualabilitiesofforestsciuridsin fragmentedagriculturallandscapes.LandscapeEcology15:523533.

241 AppAppendicesendices

242 Appendix 2.1 Richnessandabundanceoflandbirdguildsandtheirresponsestodevelopmentwithin300mofsampleunits.Datawere collectedat75sampleunitsintheLakeTahoebasin,20032004.Thedirectionoftheeffectisnegativeunlessthe PvalueandAdjustedR 2arein italics.Abundanceistheaveragenumberofbirdsdetectedperpointcount. Richness Abundance Total# Speciesgroup species Range Mean±s.e. P Adj.R 2 Range Mean±s.e. P Adj.R 2 Nesting groups Allcavity 15 410 8.11±0.17 <0.0001 0.21 1.938.54 5.33±0.17 0.0053 0.09 Allopen 51 1026 17.67±0.41 <0.0001 0.23 5.4327.93 12.70±0.43 0.0033 0.10 Primarycavityexc. 8 16 3.53±0.13 0.0009 0.13 0.072.13 0.85±0.05 0.0260 0.05 Weakcavityexc. 3 23 2.75±0.05 0.1318 0.02 1.436.87 3.83±0.13 0.3279 0.00 Secondarycavity 4 03 1.83±0.06 0.0035 0.10 0.002.00 0.65±0.05 <0.0001 0.36 Ground 13 08 3.77±0.22 <0.0001 0.41 0.007.87 2.17±0.18 <0.0001 0.36 Shrub 5 03 1.31±0.10 0.0001 0.20 0.002.47 0.48±0.07 <0.0001 0.31 Tree(overstory) 17 011 7.04±0.21 0.0002 0.17 0.008.53 3.15±0.20 0.0017 0.11 Tree(understory) 12 38 5.04±0.12 0.9928 0.01 1.4019.27 6.13±0.37 <0.0001 0.47 Foraging groups Air 8 06 2.73±0.17 0.0096 0.08 0.0016.80 1.67±0.25 0.2078 0.01 Bark 11 28 5.97±0.17 <0.0001 0.28 0.535.80 2.62±0.12 0.0005 0.14 Foliage 19 214 7.81±0.28 <0.0001 0.21 1.278.07 4.93±0.19 <0.0001 0.27 Ground 27 714 10.43±0.17 0.3455 0.00 4.0725.73 10.05±0.44 <0.0001 0.32 Diet groups Granivore 9 15 2.79±0.12 0.3452 0.00 0.204.07 1.33±0.11 0.9393 0.00 Invertivore 35 824 15.63±0.45 <0.0001 0.39 3.0019.93 9.87±0.32 0.0075 0.08 Nectarivore 2 02 0.12±0.04 0.0088 0.08 0.000.27 0.01±0.01 0.0174 0.06 Omnivore 20 411 7.87±0.16 0.6391 0.01 2.8720.67 7.80±0.37 <0.0001 0.36 Alllandbirds 68 1637 27.07±0.51 <0.0001 0.33 7.5734.47 19.32±0.50 0.0159 0.06

243 Appendix 2.2 Richnessandabundanceoflandbirdfamiliesandtheirresponsestodevelopmentwithin300mofsampleunits.Data werecollectedat75sampleunitsintheLakeTahoebasin,20032004.Thedirectionoftheeffectisnegativeunlessthe Pvalueand AdjustedR 2areinitalics. Richness Abundance Total# Adj. Adj. Birdfamily species Range Mean±s.e. P R2 Range Mean±s.e. P R2 Columbidae(pigeonsanddoves) 2 02 1.56±0.06 0.0017 0.11 0.004.13 0.65±0.08 0.0003 0.15 Corvidae(jaysandcrows) 5 13 1.84±0.08 0.4743 0.01 0.606.33 3.18±0.18 <0.0001 0.50 Embezeridae(sparrows) 8 06 2.59±0.11 0.0001 0.17 0.005.40 1.79±0.12 <0.0001 0.26 Fringillidae(finches) 8 05 2.51±0.13 0.5861 0.01 0.005.33 1.12±0.12 0.4245 0.00 Hirundinidae(swallows) 3 03 0.68±0.09 <0.0001 0.28 0.0016.80 0.70±0.25 0.0001 0.18 Icteridae(blackbirds) 4 04 1.79±0.09 <0.0001 0.37 0.0013.40 2.43±0.29 <0.0001 0.29 Parulidae(woodwarblers) 6 05 2.17±0.15 <0.0001 0.21 0.004.07 1.04±0.10 <0.0001 0.35 Picidae(woodpeckers) 8 16 3.53±0.13 0.0009 0.13 0.072.13 0.85±0.05 0.0260 0.05 Sittidae(nuthatches) 3 13 2.47±0.08 0.0013 0.12 0.133.93 1.77±0.09 0.1216 0.02 Trochilidae(hummingbirds) 2 01 0.11±0.04 0.0074 0.08 0.000.27 0.01±0.01 0.0174 0.06 Turdidae(thrushes) 3 13 1.57±0.09 <0.0001 0.30 0.133.33 1.21±0.07 0.0082 0.08 Tyrannidae(tyrantflycatchers) 3 03 1.60±0.12 <0.0001 0.31 0.004.73 0.89±0.11 <0.0001 0.35 Vireonidae(vireos) 2 02 0.75±0.09 <0.0001 0.26 0.001.53 0.22±0.04 <0.0001 0.20 Alllandbirds 68 1637 27.07±0.51 <0.0001 0.33 7.5734.47 19.32±0.50 0.0159 0.06

244 Appendix 2.3 Abundanceofselectedlandbirdspeciesandtheirresponsestodevelopmentwithin300mofsampleunits.Datawerecollected at75sampleunitsintheLakeTahoebasin,20032004. Commonname Scientificname Range Mean±s.e. Relationship 1 P Adj.R 2 Open nesters AmericanRobin Turdus migratorius 0.003.33 1.04±0.08 + <0.0001 0.28 HermitThrush 0.001.53 0.09±0.03 0.0004 0.15 Steller’sJay Cyanocitta stelleri 0.606.33 2.98±0.18 + <0.0001 0.45 DuskyFlycatcher Empidonax oberholseri 0.002.13 0.30±0.06 <0.0001 0.35 WesternWoodpewee 0.003.53 0.46±0.07 0.0331 0.05 DarkeyedJunco Junco hyemalis 0.002.27 0.92±0.06 0.0005 0.14 OlivesidedFlycatcher 0.001.20 0.13±0.03 0.0026 0.11 Brewer’sBlackbird 0.007.93 1.07±0.20 + <0.0001 0.28 CliffSwallow 0.0016.40 0.61±0.24 + 0.0002 0.16 HermitWarbler 0.000.87 0.03±0.01 0.0079 0.08 Townsend’sSolitaire 0.000.73 0.08±0.02 <0.0001 0.22 WesternTanager 0.001.67 0.57±0.05 <0.0001 0.27 YellowrumpedWarbler 0.001.87 0.69±0.06 <0.0001 0.23 Cavity nesters WhiteheadedWoodpecker Picoides albolarvatus 0.000.87 0.19±0.02 0 0.3902 0.00 HairyWoodpecker Picoides villosus 0.000.73 0.18±0.02 <0.0001 0.31 PileatedWoodpecker 0.000.20 0.01±0.00 0.0050 0.09 NorthernFlicker Colaptes auratus 0.001.00 0.33±0.03 0 0.8182 0.00 PygmyNuthatch Sitta pygmaea 0.003.33 0.85±0.09 + 0.0002 0.17 RedbreastedNuthatch Sitta canadensis 0.002.73 0.69±0.08 <0.0001 0.31 WhitebreastedNuthatch Sitta 0.001.13 0.23±0.03 0.0001 0.17 BrownCreeper Certhia americana 0.001.13 0.37±0.03 <0.0001 0.34 MountainChickadee Poecile gambeli 0.474.07 2.29±0.08 0 0.2616 0.00 Other BrownheadedCowbird Molothrus ater 0.003.60 1.29±0.09 + <0.0001 0.25 1“+”=positive;““=negative;“0”=norelationship

245

Appendix 2.4 -Dailysurvivalratesofnests,usingtheMayfieldmethod(Mayfield1975),as amended(HenslerandNichols1981,BartandRobson1982). Daily Trans. Speciesorspeciesgroup Development No. survival s.e. survival s.e. category nests 1 rate rate 2 Comparisons among species groups Cavitynesters All 239 0.9934 0.0014 0.1448 0.0156 Groundopennesters All 33 0.9418 0.0151 0.3816 0.0471 Treeandshrubopennesters All 144 0.9788 0.0034 0.2527 0.0198 Allopennesters All 177 0.9745 0.0035 0.2742 0.0183 Primarycavityexcavators All 68 0.9961 0.0019 0.1132 0.0281 Weakandsecondarycavity All 171 0.9921 0.0019 0.1571 0.0188 excavators Within-group comparisons between development categories High 154 0.9889 0.0023 0.1820 0.0191 Allspecies Low 262 0.9841 0.0022 0.2226 0.0152 High 84 0.9965 0.0018 0.1045 0.0259 Cavitynesters Low 155 0.9916 0.0020 0.1636 0.0196 High 70 0.9788 0.0049 0.2457 0.0281 Allopennesters Low 107 0.9714 0.0048 0.2938 0.0240 High 24 0.9942 0.0040 0.1344 0.0469 Primarycavityexcavators Low 44 0.9970 0.0021 0.0997 0.0351 High 60 0.9975 0.0018 0.0885 0.0311 Weakexc.andsecondarycavitynest. Low 111 0.9889 0.0029 0.1859 0.0236 High 37 0.9824 0.0058 0.2257 0.0368 AmericanRobin Low 27 0.9863 0.0068 0.2012 0.0491 High 26 0.9963 0.0037 0.1022 0.0508 MountainChickadee Low 49 0.9818 0.0057 0.2269 0.0348 High 22 1.0000 0.0000 PygmyNuthatch Low 32 0.9915 0.0042 0.1650 0.0406 Within-group comparisons by development and use categories High,high 3 88 0.9915 0.0027 0.1583 0.0247 High,low 66 0.9851 0.0043 0.2127 0.0300 Allspecies Low,high 101 0.9918 0.0025 0.1596 0.0238 Low,low 161 0.9787 0.0033 0.2586 0.0197 High,high 50 0.9969 0.0022 0.0961 0.0338 High,low 34 0.9958 0.0029 0.1156 0.0405 Cavitynesters Low,high 67 0.9958 0.0021 0.1167 0.0290 Low,low 88 0.9880 0.0033 0.1952 0.0266 High,high 38 0.9848 0.0053 0.2092 0.0363 High,low 32 0.9690 0.0096 0.2945 0.0445 Allopennesters Low,high 34 0.9822 0.0067 0.2255 0.0415 Low,low 73 0.9660 0.0064 0.3244 0.0294 1Thenumberofnestsinthesample.Ofthistotal,onlynestswithatleasttwovisitsareincluded;nests withasinglevisithavenointervalsandthusadailysurvivalratecannotbecalculated. 2Thetransformedsurvivalrateisthedailysurvivalratetransformedtobenormallydistributed.Thisisthe valueusedbyprogramCONTRAST(HinesandSauer1989)tocomparesurvivalrates. 3Thefirstcategoryisdevelopment;thesecond,use.

247 248 249

Appendix3.1.Fullmodelsofsmallmammalspeciesrichnessforeachexplanatoryfactorsgroup.Individualfactorsarelistedforeachgroup,with thedirectionoftherelationshipwithspeciesrichnessindicatedaspositive‘+’ornegative‘’basedontheparameterestimates.AIC Cvaluesthat adjustforsmallsamplesizeswereusedtorankmodelsforcomparison,andthemodelsarelistedfromlowesttohighestAIC C.Alsopresentedare thenumberofmodelparameters( k),modellikelihood,modelweight( Wi ),R 2,adjustedR 2( AdjR2),andthemodelpvalue. Model Adj p Explanatoryfactorsgroup:Parameters k AIC AICc AICc likelihood Wi R2 R2 value Developmentat1000m: 3 69.02 69.95 0 1 0.27 18.57% 12.30% 0.0180 +Year0304,Julian,+Development Developmentat300m: 3 69.28 70.21 0.26 0.88 0.24 18.27% 11.98% 0.0198 +Year0304,Julian,+Development Disturbance: 4 69.41 70.72 0.77 0.68 0.18 21.62% 14.28% 0.0134 +Year0304,Julian,Spatiallocation,+People/hr,+dogs/hr Developmentat100m: 3 70.42 71.34 1.40 0.50 0.13 16.95% 10.56% 0.0304 +Year0304,Julian,Development Predators: +Year0304,+Domesticdogs,Domesticcats,Native 5 70.53 72.31 2.36 0.31 0.08 23.80% 15.33% 0.0130 predatorspeciesrichness Vegetationground: +Year0304,Julian,Grasses,+Herbs,+Shrubs, 9 73.20 77.67 7.72 0.02 0.01 33.80% 21.46% 0.0063 +Bareground,Rock,Litter,+CWD Abiotic: +Year0304,Year0305,Julian,Spatiallocation,Elevation, 5 75.99 77.77 7.82 0.02 0.01 17.71% 8.56% 0.0784 +Slope,Precipitation Habitattypes100m: +Year0304,Year0305,Julian,+Habitatheterog,+Aspen,+ 9 74.59 78.25 8.31 0.02 0.00 29.39% 17.62% 0.0141 Coniferousforest,Grassland,+Montaneriparian,+Shrubland Vegetationcanopy: +Year0304,Julian,%Covertrees,+Trees1227,+Trees 7 75.80 78.75 8.80 0.01 0.00 24.88% 13.80% 0.0306 2860,+Trees60,+Snags Habitattypes300m: +Year0304,Julian,+Habitatheterog.,+Aspen,Barren, 9 80.20 84.68 14.73 0.00 0.00 26.93% 13.31% 0.0472 +Coniferforest,+Grassland,+Montaneriparian,Shrubland Habitattypes500m: +Year0304,Julian,+Habitatheterogeneity, 9 81.97 86.44 16.49 0.00 0.00 25.10% 11.13% 0.0749 +Aspen,+Barren,+Coniferousforest,+Grassland,Montane riparian,+Shrubland

251 Appendix3.2.Modelequationsforthetoprankedreducedmodelsofsmallmammalspeciesrichnessforeachexplanatoryfactorsgroup.AIC C valuesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison.Alsopresentedarethenumbermodelparameters( k),model likelihood,R 2andadjustedR 2( AdjR2)valuesandthepvalueofthemodel.Akeytotheparameterabbreviationsisatthebottomofthepage. Model ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 AdjR 2 pvalue Vegetationground: 1 58.99 59.05 0 1 0.5232 15.99% 14.77% 0.0005 5.15+0.647 BR CWHRHabitattypes300m: 3 60.35 60.71 1.65 0.4373 0.2288 21.23% 17.70% 0.0001 4.75+1.01 Y34–0.354 JUL +0.453 HH300 Developmentat1000m: 3 63.29 63.65 4.60 0.1005 0.0526 14.43% 10.60% 0.0146 4.75+1.01 Y34–0.371 JUL +0.155 D1000 Disturbance: 3 63.43 63.79 4.73 0.0937 0.0490 17.93% 14.25% 0.004 4.74+1.04 Y34–0.360 JUL +0.341 P/H CWHRHabitattypes100m: 1 63.91 63.97 4.92 0.0855 0.0447 9.97% 8.66% 0.0073 5.15+0.511 HH100 Predators: 4 63.53 64.14 5.09 0.0786 0.0411 21.28% 16.51% 0.003 4.82+0.947 Y34–0.306 JUL –0.236 LOC +0.402 CAFA CWHRHabitattypes500m: 2 64.70 64.88 5.82 0.0544 0.0285 12.78% 10.21% 0.0096 4.77+0.967 Y34+0.358 HH500 Vegetationcanopy: 4.77+0.997 Y34–0.36 JUL –0.439 %TR +0.374 CT1227 + 5 65.54 66.46 7.41 0.0246 0.0129 22.47% 16.51% 0.0047 0.299 CT60 Developmentat300m: 3 66.61 66.97 7.92 0.0191 0.0100 14.16% 10.32% 0.0161 4.76+0.993 Y34–0.384 JUL +0.129 D300 Developmentat100m: 3 67.12 67.48 8.43 0.0148 0.0077 13.54% 9.64% 0.0202 4.75+1.01 Y34–0.383 JUL +0.024 D300 Abiotic: 4.96+0.769 Y34–0.578 Y35–0.366 JUL –0.282 LOC – 5 69.79 70.72 11.66 0.0029 0.0015 17.68% 11.35% 0.024 1.78 PRE Keytomodelparameters ASP#:%coverofaspenhabitatwithin‘#’meters; BR :%coverbareground; CF#:%coverofconiferousforestwithin ‘#’meters; D#:%developedwithin‘#’meters; GR#:%coverofgrasslandwithin‘#’meters; HH#:habitatheterogeneitywithin‘#’meters; JUL : Juliansamplingdate; LOC :spatiallocation; MR#:%coverofmontaneriparianwithin‘#’meters; P/H :people/hr; SH#:%coverofshrubland within‘#’meters; Y34:year2004relativeto2003; Y35:year2005relativeto2003.

252 Appendix3.3.Fullmodelsofthetotalrelativeabundanceofallsmallmammalspeciesforeachexplanatoryfactorsgroup.Individualfactorsare listedforeachgroup,withthedirectionoftherelationshipwithabundanceindicatedaspositive‘+’ornegative‘’basedontheparameter estimates.AIC Cvaluesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison,andthemodelsarelistedfromlowestto 2 2 2 highestAIC C.Alsopresentedarethenumberofmodelparameters( k),modellikelihood,modelweight( Wi ),R ,adjustedR ( AdjR ),andthe modelpvalue. Model Adj p ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 R2 value Vegetationground: +Year0304,Julian,Grasses,Herbs,Shrubs, 0.721 52.13 +Bareground,Rock,Litter,+CWD 9 344.30 341.34 0 1 6 % 45.07% <0.0001 Developmentat300m: 0.184 32.93 +Year0304,Julian,+Development 3 338.97 338.61 2.73 0.2554 3 % 29.92% <0.0001 Developmentat1000m: 0.081 31.37 +Year0304,Julian,+Development 3 337.34 336.99 4.36 0.1132 7 % 28.29% <0.0001 Developmentat100m: 0.007 26.19 +Year0304,Julian,Development 3 332.51 332.15 9.20 0.0101 3 % 23.19% 0.0001 Habitattypes500m: +Year0304,Julian,Habitatheterog.,Aspen,+Barren, 0.003 44.17 Coniferforest,Grassland,Montaneriparian,Shrubland 9 333.38 330.43 10.91 0.0043 1 % 35.94% <0.0001 Habitattypes300m: +Year0304,Julian,+Habitatheterogeneity,Aspen, +Barren,Coniferousforest,Grassland,Montaneriparian, 0.000 41.98 Shrubland 9 330.63 327.68 13.66 0.0011 8 % 33.42% <0.0001 Abiotic: 0.000 27.71 +Year0304,Julian,Elevation,+Slope,Precipitation 5 327.51 326.59 14.76 0.0006 5 % 22.14% 0.0006 Predators: +Year0304,Julian,+Domesticdogs,+Domesticcats, 0.000 27.65 Nativepredatorspeciesrichness 5 327.51 326.59 14.76 0.0006 5 % 22.09% 0.0001 Habitattypes100m: +Year0304,Julian,+Habitatheterogeneity,Aspen, Coniferousforest,Grassland,Montaneriparian, 0.000 36.87 Shrubland 8 327.88 325.56 15.78 0.0004 3 % 28.75% 0.0002 Vegetationcanopy: +Year0304,Julian,%Covertrees,+Trees1227, 0.000 30.55 +Trees2860,Trees60,Snags 7 324.17 322.39 18.95 0.0001 1 % 22.83% 0.0012 Disturbance: 0.000 19.07 +Year0304,Julian,+People/hr,+Dogs/hr 4 322.61 322.00 19.34 0.0001 0 % 14.17% 0.0068

253 Appendix3.4.Modelequationsforthetoprankedreducedmodelsofsmallmammalrelativeabundanceforeachexplanatoryfactorsgroup.AIC C valuesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison.Alsopresentedarethenumbermodelparameters( k),model likelihood,R 2andadjustedR 2( AdjR2)valuesandthepvalueofthemodel.Akeytotheparameterabbreviationsisatthebottomofthepage. Model ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 AdjR 2 pvalue Vegetationground: 0.179+0.057 BR –0.020 HB –0.014 RK –0.016 LR 5 351.83 350.91 0 1 0.9901 48.67% 44.72% <0.0001 –0.017 CWD CWHRHabitattypes500m: 0.162+0.044 Y34–0.020 JUL –0.094 CF500 –0.040 SH500 6 340.70 339.39 11.52 0.0031 0.0031 42.53% 37.14% <0.0001 –0.036 GR500 –0.025 ASP500 Habitattypes300m: 0.159+0.051 Y34–0.018 JUL –0.065 CF300 –0.024 GR300 5 340.09 339.17 11.74 0.0028 0.0028 39.38% 34.73% <0.40001 –0.024 ASP300 Developmentat300m: 3 338.97 338.61 12.29 0.0021 0.0021 32.93% 29.92% <0.0001 0.161–0.047 Y34–0.031 JUL +0.047 D300 Developmentat1000m: 3 337.34 336.99 13.92 0.0009 0.0009 31.37% 28.29% <0.0001 0.159+0.053 Y34–0.027 JUL +0.045 D1000 CWHRHabitattypes100m: 4 336.88 336.28 14.63 0.0007 0.0007 33.77% 29.76% <0.0001 0.164+0.038 Y34–0.023 JUL +0.022 HH100 –0.037 CF100 Vegetationcanopy: 3 333.69 333.33 17.58 0.0002 0.0002 27.70% 24.47% <0.0001 0.157–0.058 Y34–0.029 JUL –0.041 SN Developmentat100m: 3 332.51 332.15 18.76 0.0001 0.0001 26.19% 23.19% 0.0001 0.161+0.048 Y34–0.036 JUL +0.039 D100 Predators: 4 330.59 329.98 20.92 0.0000 0.0000 27.65% 23.27% 0.0002 0.159+0.049 Y34+0.035 CAFA –0.035 NSP Abiotic: 3 328.84 328.49 22.42 0.0000 0.0000 22.58% 19.11% 0.0006 0.161+0.047 Y34 –0.031 JUL –0.032 PRE Disturbance: 3 325.44 325.08 25.83 0.0000 0.0000 18.75% 15.11% 0.0029 0.158+0.055 Y34–0.029 JUL +0.025 P/H Keytomodelparameters ASP#:%coverofaspenhabitatwithin‘#’meters; BR :%coverbareground; CAFA :domesticdogpresence; CF#:% coverofconiferousforestwithin‘#’meters; CWD ;est.volumeofcoarsewoodydebris; D#:%developedwithin‘#’meters; GR#:%coverof grasslandwithin‘#’meters; HB :%coverofherbs; HH#:habitatheterogeneitywithin‘#’meters; JUL :Juliansamplingdate; LOC :spatial location; LR ;%coveroflitter; MR#:%coverofmontaneriparianhabitatwithin‘#’meters; NSP :nativepredatorspeciesrichness; P/H : people/hr; PRE :precipitation; RK ;%coverofrocks; SH#:%coverofshrublandwithin‘#’meters; SN :%coverofsnags; Y34:year2004 relativeto2003.

254 Appendix3.5.Fullmodelsofthetotalrelativeabundanceofarborealsquirrelsforeachexplanatoryfactorsgroup.Individualfactorsarelistedfor eachgroup,withthedirectionoftherelationshipwithsquirrelabundanceindicatedaspositive‘+’ornegative‘’basedontheparameter estimates.AIC Cvaluesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison,andthemodelsarelistedfromlowestto 2 2 2 highestAIC C.Alsopresentedarethenumberofmodelparameters( k),modellikelihood,modelweight( Wi ),R ,adjustedR ( AdjR ),andthe modelpvalue. Model Adj ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 R2 p Developmentat1000m: +Year0304,Spatiallocation,+Development 3 588.86 588.50 0 1 0.8416 16.26 12.51 0.0075 Developmentat300m: +Year0304,Spatiallocation,+Development 3 584.30 583.95 4.56 0.1025 0.0862 10.47 6.46 0.0585 Predators: +Year0304,Spatiallocation,+Domesticdogs,+Domesticcats, Nativepredatorspeciesrichness 5 583.77 582.85 5.65 0.0592 0.0498 17.28 10.92 0.0273 Developmentat100m: +Year0304,Spatiallocation,+Development 3 580.91 580.55 7.95 0.0187 0.0158 6.08 1.87 0.2374 Abiotic: +Year0304,Spatiallocation,Elevation,Slope,Precipitation 5 578.68 577.76 10.74 0.0047 0.0039 11.14 4.30 0.1648 Disturbance: +Year0304,Spatiallocation,+People/hr,+Dogs/hr 4 577.50 576.89 11.61 0.0030 0.0025 5.63 0.09 0.4226 Vegetationground: +Year0304,Spatiallocation,Grasses,+Herbs,Shrubs,+Bare ground,Rock,Litter,+CWD 9 572.62 569.67 18.83 0.0001 0.0001 18.85 6.88 0.1434 Vegetationcanopy: +Year0304,Spatiallocation,+%Covertrees,+Trees1227,+Trees 2860,+Trees60,Snags 7 570.39 568.62 19.89 0.0000 0.0000 8.50 1.66 0.5614 Habitattypes100m: +Year0304,Spatiallocation,+Habitatheterogeneity,+(Habitat heterogeneity 2),+Aspen,Montanechaparral,+Montaneriparian,+ Perennialgrassland,Redfir/Subalpineconifer,Sierranmixed conifer/Whitefir 10 570.91 567.24 21.26 0.0000 0.0000 20.50 7.26 0.1452 Habitattypes500m: +Year0304,Spatiallocation,+Habitatheterogeneity,(Habitat heterogeneity 2),+Aspen,Barren,+Lodegpolepine,Montane chaparral/Sagebrush,+Montaneriparian/Wetmeadow, +Perennialgrassland,Redfir/Subalpineconifer,Sierranmixed conifer/Whitefir 12 560.06 554.68 33.82 0.0000 0.0000 15.37 2.14 0.5734 Habitattypes300m: 12 559.18 553.80 34.70 0.0000 0.0000 14.31 3.42 0.6419

255 Model Adj ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 R2 p +Year0304,Spatiallocation,+Habitatheterogeneity,(Habitat heterogeneity 2),Aspen,Barren,+Lodegpolepine,+Montane chaparral/Sagebrush,+Montaneriparian/Wetmeadow, +Perennialgrassland,Redfir/Subalpineconifer,Sierranmixed conifer/Whitefir Appendix3.6.Modelequationsforthetoprankedreducedmodelsoftotalrelativeabundanceofarborealsquirrelsforeachexplanatoryfactors group.AIC Cvaluesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison.Alsopresentedarethenumbermodelparameters (k),modellikelihood,R 2andadjustedR 2( AdjR2)valuesandthepvalueofthemodel.Akeytotheparameterabbreviationsisatthebottomof thepage. Model ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 AdjR 2 pvalue Predators: 1 591.71 591.66 0 1 0.3946 12.12% 10.84% 9.51 0.014+0.006 CAFA CWHRHabitattypes100m:0.013+0.005 HH100 1 591.66 591.60 0.06 0.9715 0.3834 12.05% 10.77% 9.45 Developmentat1000m:0.013+0.005 D1000 1 588.65 588.59 3.07 0.2158 0.0851 8.24% 6.91% 6.19 Vegetationground:0.013–0.004 RK 1 587.63 587.58 4.08 0.1301 0.0513 6.92% 5.57% 5.13 Abiotic:0.011+0.006 Y34–0.004 EL 2 586.58 586.40 5.26 0.0722 0.0285 9.48% 6.82% 3.55 CWHRHabitattypes500m: 0.131+0.003 MCP_SGB500 1 585.93 585.87 5.78 0.0556 0.0219 4.61% 3.23% 3.33 Development300m: 0.0131–0.003 D300 1 585.39 585.33 6.33 0.0423 0.0167 3.93% 2.53% 2.82 CWHRHabitattypes300m:0.011+0.006 Y34+ 2 584.03 583.85 7.80 0.0202 0.0080 6.18% 3.42% 2.24 0.003 HH300 Developmentat100m:0.0131+0.001 D100 1 582.89 582.83 8.83 0.0121 0.0048 0.49% 0.96% 0.34 Vegetationcanopy: 0.011+0.006 Y34–0.002 SN 2 582.80 582.62 9.04 0.0109 0.0043 4.53% 1.72% 1.61 Disturbance: 0.011+0.006 Y34–0.002 LOC +0.001 P/H 3 580.54 580.19 11.47 0.0032 0.0013 5.60% 1.37% 1.32 Keytomodelparameters CAFA :domesticdogpresence; D#:%developedwithin‘#’meters; EL :elevation HH#:habitatheterogeneitywithin‘#’ meters; LOC :spatiallocation; MCP_SGB#:%coverofmontanechaparral/sagebrushhabitatwithin‘#’meters; P/H :people/hr; RK ;%coverof rocks; SN :%coverofsnags; Y34:year2004relativeto2003.

256 Appendix3.7.Fullmodelsofthetotalrelativeabundanceofterrestrialgranivores(groundsquirrelsandchipmunks)foreachexplanatoryfactors group.Individualfactorsarelistedforeachgroup,withthedirectionoftherelationshipwithterrestrialgranivoreabundanceindicatedaspositive ‘+’ornegative‘’basedontheparameterestimates.AIC Cvaluesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison,and themodelsarelistedfromlowesttohighestAIC C.Alsopresentedarethenumberofmodelparameters( k),modellikelihood,modelweight( Wi ), R2,adjustedR 2( AdjR2),andthemodelpvalue. Model Adj ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 R2 pvalue Vegetationground: +Year0304,Julian,Grasses,+Herbs,Shrubs,+Bareground, Rock,Litter,CWD 9 357.05 354.10 0 1 0.9947 53.69% 46.85% <0.0001 Developmentat1000m: +Year0304,Julian,+Development,+(Development2) 4 342.89 342.28 11.82 0.0027 0.0027 29.54% 25.27% 0.00010 Developmentat300m: +Year0304,Julian,+Development,(Development2) 4 342.19 341.59 12.52 0.0019 0.0019 28.83% 24.52% 0.00010 Developmentat100m: +Year0304,Julian,+Development 3 338.82 338.46 15.64 0.0004 0.0004 22.16% 18.68% 0.00070 Abiotic: +Year0304,Julian,Elevation,+Slope,Precipitation 5 338.63 337.71 16.39 0.0003 0.0003 28.32% 22.81% 0.00050 Predators: +Year0304,Julian,+Domesticdogs,+Domesticcats, Nativepredatorspeciesrichness 5 333.88 332.96 21.14 0.0000 0.0000 23.41% 17.52% 0.00330 Disturbance: +Year0304,Julian,+People/hr,+Dogs/hr 4 333.14 332.54 21.57 0.0000 0.0000 19.10% 14.19% 0.00670 Vegetationcanopy: +Year0304,Julian,%Covertrees,+Trees1227, +Trees2860,Trees60,Snags 7 333.87 332.09 22.01 0.0000 0.0000 29.79% 21.99% 0.00160 Habitattypes100m: +Year0304,Julian,+Habitatheterogeneity, (Habitatheterogeneity 2),Aspen,+Montanechaparral, Montaneriparian,Perennialgrassland,Redfir/Subalpine conifer,Sierranmixedconifer/Whitefir 10 328.06 324.39 29.71 0.0000 0.0000 33.30% 22.18% 0.00400 Habitattypes300m: +Year0304,Julian,+Habitatheterogeneity, (Habitatheterogeneity 2),Aspen,+Barren,Lodegpolepine, +Montanechaparral/Sagebrush,+Montaneriparian/Wetmeadow, Perennialgrassland,Redfir/Subalpineconifer,Sierranmixed conifer/Whitefir 12 321.89 316.51 37.59 0.0000 0.0000 33.50% 19.74% 0.01220

257 Model Adj ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 R2 pvalue Habitattypes500m: +Year0304,Julian,+Habitatheterogeneity, (Habitatheterogeneity 2),Aspen,+Barren,Lodegpolepine, +Montanechaparral/Sagebrush,Montaneriparian/Wetmeadow, +Perennialgrassland,Redfir/Subalpineconifer,Sierranmixed conifer/Whitefir 12 315.60 310.22 43.88 0.0000 0.0000 27.39% 12.37% 0.06540

258 Appendix3.8.Modelequationsforthetoprankedreducedmodelsoftotalrelativeabundanceofterrestrialgranivoresforeachexplanatoryfactors group.AIC Cvaluesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison.Alsopresentedarethenumbermodelparameters (k),modellikelihood,R 2andadjustedR 2( AdjR2)valuesandthepvalueofthemodel.Akeytotheparameterabbreviationsisatthebottomof thepage. Model ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 AdjR 2 pvalue Vegetationground: 2 371.76 371.58 0 1 1.0000 48.79% 47.28% <0.0001 0.1580.026 HB +0.066 BR Developmentat300m: 3 342.25 341.89 29.69 0.0000 0.0000 25.68% 22.36% 0.00020 0.142+0.039 Y34–0.032 JUL –0.034 D300 Developmentat1000m: 3 341.20 340.85 30.73 0.0000 0.0000 24.61% 21.23% 0.00030 0.141+0.043 Y34–0.029 JUL +0.032 D1000 CWHRHabitattypes100m: 2 339.88 339.71 31.87 0.0000 0.0000 19.80% 17.44% 0.00060 0.158–0.028 JUL +0.032 MCP_SGB100 Abiotic: 3 339.89 339.54 32.04 0.0000 0.0000 23.20% 19.76% 0.00050 0.1430.038 Y340.032 JUL –0.029 PRE Vegetationcanopy: 3 343.21 342.86 28.72 0.0000 0.0000 26.69% 23.41% 0.00010 0.1390.048 Y34–0.026 JUL –0.036 SN Developmentat100m: 3 338.82 338.46 33.12 0.0000 0.0000 22.16% 18.68% 0.00070 0.142+0.039 Y34–0.035 JUL +0.028 D100 Predators: 4 337.06 336.46 35.12 0.0000 0.0000 23.40% 18.76% 0.00130 0.141+0.040 Y34–0.031 JUL +0.022 CAFA –0.029 NSP CWHRHabitattypes500m: 3 336.02 335.66 35.92 0.0000 0.0000 18.88% 15.25% 0.00270 0.141+0.042 Y34–0.033 JUL –0.022 SMC_WFR500 Disturbance: 3 335.93 335.57 36.01 0.0000 0.0000 18.78% 15.14% 0.00290 0.140+0.045 Y34–0.031 JUL +0.022 P/H CWHRHabitattypes300m: 2 335.60 335.42 36.16 0.0000 0.0000 14.90% 12.39% 0.00420 0.158–0.026 JUL +0.023 MCP_SGB300 Keytomodelparameters BR :%coverbareground; CAFA :domesticdogpresence; D#:%developedwithin‘#’meters; HB :%coverofherbs; JUL :Juliansamplingdate; MCP_SGB#:%coverofmontanechaparral/Ssgebrushhabitatwithin‘#’meters; NSP :nativepredatorspecies richness; P/H :people/hr; SMC_WFR#:%coverofSierranmixedconifer/whitefirhabitatwithin‘#’meters; SN :%coverofsnags; Y34:year 2004relativeto2003.

259 Appendix3.9.Fullmodelsofthetotalrelativeabundanceofterrestrialherbivores(volesandjumpingmice).Individualfactorsarelistedforeach group,withthedirectionoftherelationshipwithterrestrialherbivoreabundanceindicatedaspositive‘+’ornegative‘’basedontheparameter estimates.AIC Cvalueswereusedtorankmodelsforcomparison.Alsopresentedarethenumberofmodelparameters( k),modellikelihood, modelweight( Wi ),R 2,adjustedR 2( AdjR2),andthemodelpvalue. Model Adj ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 R2 pvalue Developmentat300m: +Year0304,+Year0305,+Julian,+Spatiallocation,+Dev,+(Dev 2) 6 582.37 581.05 0 1 0.9915 41.79% 36.33% <0.0001 Developmentat100m: +Year0304,+Year0305,+Julian,+Spatiallocation,+Development 5 571.65 570.72 10.33 0.0057 0.0057 29.64% 24.23% 0.0003 Developmentat1000m: +Year0304,+Year0305,+Julian,+Spatiallocation,+Dev,+(Dev 2) 6 570.61 569.30 11.76 0.0028 0.0028 31.52% 25.10% 0.0003 Predators: +Year0304,+Year0305,+Julian,+Spatiallocation,+Domesticdogs, Domesticcats,Nativepredatorspeciesrichness 7 561.18 559.40 21.65 0.0000 0.0000 25.16% 16.84% 0.0083 Abiotic: +Year0304,+Year0305,+Julian,+Spatialloc,Elev,Slope,+Precip 7 560.77 558.99 22.06 0.0000 0.0000 24.72% 16.35% 0.0096 Disturbance: +Year0304,+Year0305,+Julian,+Spatiallocation,+People/hr,Dogs/hr 6 554.63 553.32 27.74 0.0000 0.0000 14.24% 6.20% 0.0620 Vegetationcanopy: +Year0304,+Year0305,+Julian,+Spatiallocation,%Covertrees, Trees1227,Trees2860,+Trees60,Snags 9 554.12 551.17 29.89 0.0000 0.0000 24.33% 13.17% 0.0358 Vegetationground: +Year0304,+Year0305,+Julian,+Spatiallocation,Grasses, +Herbs,+Shrubs,Bareground,Rock,Litter,CWD 11 550.61 546.14 34.92 0.0000 0.0000 27.32% 13.77% 0.0426 Habitattypes100m: +Year0304,+Year0305,+Julian,+Spatiallocation,+Habitatheterog., +(Habitatheterog.2),+Aspen,+Montanechaparral,+Montaneriparian, +Per.grassland,Redfir/Subalpineconifer,+Sierranmixcon/Whitefir 12 543.15 537.77 43.29 0.0000 0.0000 22.84% 6.88% 0.1785 Habitattypes300m: +Year0304,+Year0305,+Julian,+Spatiallocation,+Habitatheterog, (Habitatheterog. 2),+Aspen,Barren,+Lodegpolepine,Montane chaparral/Sagebrush,+Montaneriparian/Wetmeadow,+Per.grassland, Redfir/Subalpineconifer,+Sierranmixedconifer/Whitefir 14 541.37 533.87 47.19 0.0000 0.0000 27.79% 9.74% 0.1272 Habitattypes500m: [sameas300mexceptAspen,+Barren,+Montanechaparral/Sagebrush, Montaneriparian/Wetmeadow] 14 538.31 530.81 50.24 0.0000 0.0000 24.62% 5.78% 0.2330

260 Appendix3.10.Modelequationsforthetoprankedreducedmodelsoftotalrelativeabundanceofterrestrialherbivoresforeachexplanatory factorsgroup.AIC Cvaluesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison.Alsopresentedarethenumbermodel parameters( k),modellikelihood,R 2andadjustedR 2( AdjR2)valuesandthepvalueofthemodel.Akeytotheparameterabbreviationsisatthe bottomofthepage. Model ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 AdjR 2 pvalue Developmentat300m: 2 591.95 591.78 0 1 0.9935 39.71% 37.93% <0.0001 0.008+0.006 D300 +0.007 D300 2 Developmentat100m: 1 581.20 581.14 10.63 0.0049 0.0049 25.17% 24.08% <0.0001 0.008+0.010 D100 Developmentat1000m: 2 579.08 578.90 12.87 0.0016 0.0016 27.72% 25.59% <0.0001 0.008+0.005 D1000 +0.007 D1000 2 Predators: 3 568.69 568.33 23.44 0.0000 0.0000 19.85% 16.26% 0.0019 0.008+0.005 LOC +0.006 CAFA –0.005 NSP Vegetationcanopy: 2 567.37 567.20 24.58 0.0000 0.0000 14.76% 12.26% 0.0044 0.007+0.006 LOC +0.005 CT60 CWHRHabitattypes300m: 3 566.04 565.68 26.09 0.0000 0.0000 16.97% 13.25% 0.0057 0.008+0.007 LOC +0.005 PGS300 +0.002 SMC_WFR300 Vegetationground: 4 565.66 565.05 26.72 0.0000 0.0000 19.89% 15.04% 0.005 0.007+0.005 LOC +0.004 HB –0.004 RK –0.004 LR Abiotic: 0.002+0.010 Y34+0.010 Y35+0.011 LOC –0.007 EL + 5 564.96 564.04 27.74 0.0000 0.0000 22.54% 16.58% 0.0046 0.007 PRE Disturbance: 2 563.20 563.03 28.75 0.0000 0.0000 9.61% 6.95% 0.0322 0.0080.006 LOC +0.002 P/H CWHRHabitattypes500m: 0.005+0.005 Y34+0.0006 LOC –0.004 RFR_SCN500 4 562.31 561.70 30.08 0.0000 0.0000 16.02% 10.93% 0.0198 +0.003 HH500 CWHRHabitattypes100m: 4 561.41 560.80 30.97 0.0000 0.0000 14.95% 9.79% 0.0284 0.003+0.008 Y34+0.008 Y35+0.005 LOC +0.004 ASP100 Keytomodelparameters ASP#:%coverofaspenhabitatwithin‘#’meters; CAFA :domesticdogpresence; CT60 :countoftrees>60cmdbh; D#:%developedwithin‘#’meters;( D#)2:%developedwithin‘#’meterssquared; EL :elevation; HB :%coverofherbs; HH#:habitat heterogeneitywithin‘#’meters; LOC :spatiallocation; LR :%coveroflitter; NSP :nativepredatorspeciesrichness; PGS#:%coverofperennial grasslandhabitatwithin‘#’meters; P/H :people/hr; PRE :precipitation; RK :%coverofrock; RFRSCN#:%coverofredfir/subalpineconifer habitatwithin‘#’meters; SMC_WFR#:%coverofSierranmixedconifer/whitefirhabitatwithin‘#’meters; Y34:year2004relativeto2003; Y35:year2005relativeto2003.

261 Appendix3.11 .Fullmodelsofthetotalrelativeabundanceofinsectivoresforeachexplanatoryfactorsgroup.Individualfactorsarelistedfor eachgroup,withthedirectionoftherelationshipwithinsectivoreabundanceindicatedaspositive‘+’ornegative‘’basedontheparameter estimates.AIC Cvaluesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison,andthemodelsarelistedfromlowestto 2 2 2 highestAIC C.Alsopresentedarethenumberofmodelparameters( k),modellikelihood,modelweight( Wi ),R ,adjustedR ( AdjR ),andthe modelpvalue. Model Adj ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 R2 pvalue Predators: Spatiallocation,+Domesticdogs,Domesticcats,+Native predatorspeciesrichness 4 873.59 872.99 0 1 0.3503 13.21% 7.95% 0.0500 Disturbance: Spatiallocation,People/hr,+Dogs/hr 3 872.67 872.31 0.67 0.7148 0.2504 3.63% 0.69% 0.4761 Developmentat100m: Spatiallocation,+Development 2 872.03 871.85 1.13 0.5678 0.1989 3.14% 0.30% 0.3375 Developmentat300m: Spatiallocation,+Development,(Development 2) 3 870.36 870.00 2.99 0.2244 0.0786 4.95% 0.70% 0.2874 Developmentat1000m: Spatiallocation,+Development,(Development 2) 3 869.71 869.35 3.64 0.1623 0.0568 4.22% 0.07% 0.4061 Abiotic: Spatiallocation,+Elevation,Slope,+Precipitation 4 869.67 869.06 3.92 0.1407 0.0493 8.22% 2.66% 0.2191 Vegetationcanopy: Spatiallocation,%Covertrees,+Trees1227,Trees2860, +Trees60,+Snags 6 866.67 865.36 7.63 0.0221 0.0077 12.25% 4.03% 0.1961 Habitattypes100m: Spatiallocation,Habitatheterogeneity,(Habitat heterogeneity 2),+Aspen,+Montanechaparral, +Montaneriparian,+Perennialgrassland,+Redfir/Subalpine conifer,+Sierranmixedconifer/Whitefir 9 868.30 865.35 7.63 0.0220 0.0077 24.88% 13.79% 0.0307 Vegetationground: Spatiallocation,Grasses,Herbs,+Shrubs, +Bareground,Rock,+Litter,+CWD 8 858.59 856.26 16.72 0.0002 0.0001 9.89% 1.73% 0.5623 Habitattypes500m: Spatiallocation,+Habitatheterogeneity, (Habitatheterogeneity 2),Aspen,+Barren, Lodegpolepine,+Montanechaparral/Sagebrush, Montaneriparian/Wetmeadow,+Perennialgrassland,+Red fir/Subalpineconifer,+Sierranmixedconifer/Whitefir 11 858.72 854.25 18.74 0.0001 0.0000 21.39% 6.73% 0.1717

262 Model Adj ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 R2 pvalue Habitattypes300m: Spatiallocation,Habitatheterogeneity, (Habitatheterogeneity 2),Aspen,Barren, Lodegpolepine,Montanechaparral/Sagebrush, +Montaneriparian/Wetmeadow,+Perennialgrassland,+Red fir/Subalpineconifer,+Sierranmixedconifer/Whitefir 11 857.52 853.04 19.94 0.0000 0.0000 20.03% 5.12% 0.2244

263 Appendix3.12.Modelequationsforthetoprankedreducedmodelsoftotalrelativeabundanceofinsectivoresforeachexplanatoryfactorsgroup. AIC Cvaluesthatadjustforsmallsamplesizeswereusedtorankmodelsforcomparison.Alsopresentedarethenumbermodelparameters( k), modellikelihood,R 2andadjustedR 2( AdjR2)valuesandthepvalueofthemodel.Akeytotheparameterabbreviationsisatthebottomofthe page. Model ExplanatoryFactorsGroup:Modelequation k AIC AICc AICc likelihood Wi R2 AdjR 2 pvalue CWHRHabitattypes100m: 0.0009+0.0006 MRI100 +0.0004 RFR_SCN100 3 885.15 884.79 0 1 0.5115 22.89% 19.44% 0.0005 +0.0007 SMC_WFR100 CWHRHabitattypes500m: 1 883.93 883.87 0.92 0.6318 0.3231 14.59% 13.35% 0.001 0.0009+0.0008 SMC_WFR500 CWHRHabitattypes300m: 1 882.27 882.21 2.58 0.2758 0.1411 12.59% 11.32% 0.0024 0.0009+0.0007 SMC_WFR300 Predators: 1 877.18 877.12 7.67 0.0216 0.0111 6.04% 4.68% 0.0389 0.0009+0.0005 CAFA Vegetationground: 2 875.35 875.17 9.62 0.0082 0.0042 7.49% 4.77% 0.0707 0.0009–0.0004 LOC –0.0004 RK Vegetationcanopy: 1 875.01 874.95 9.84 0.0073 0.0037 3.12% 1.71% 0.1409 0.0009+0.0004 CT60 Developmentat1000m: 1 873.06 873.01 11.78 0.0028 0.0014 0.45% 0.99% 0.578 0.0009–0.0001 D1000 Developmentat300m: 1 872.75 872.69 12.10 0.0024 0.0012 0.04% 1.41% 0.8639 0.0009–0.0004 D300 Abiotic: 2 872.68 872.51 12.28 0.0022 0.0011 3.98% 1.16% 0.2514 0.0009+0.0005 EL –0.0004 SL Disturbance: 2 872.19 872.02 12.77 0.0017 0.0009 3.41% 0.57% 0.307 0.0009–0.0004 LOC –0.0001 P/H Developmentat100m: 2 872.03 871.85 12.94 0.0016 0.0008 3.14% 0.30% 0.3375 0.0009–0.0004 LOC –0.0003 D100 Keytomodelparameters CAFA :domesticdogpresence; CT60 :countoftrees>60cmdbh; D#:%developedwithin‘#’meters; EL :elevation; LOC :spatiallocation; MRI#:%coverofmontaneriparianhabitatwithin‘#’meters; P/H :people/hr; RK :%coverofrock; RFRSCN#:%cover ofredfir/subalpineconiferhabitatwithin‘#’meters; SMC_WFR#:%coverofSierranmixedconifer/whitefirhabitatwithin‘#’meters.

264 Appendix3.13.Populationparameterestimatesgeneratedbymodelaveragingforthelongearedchipmunk. ADULTFEMALES ADULTMALES JUVENILEFEMALES JUVENILEMALES Parameter Estimate SE Estimate SE Estimate SE Estimate SE Survival(S)20032004 0.4002 0.0348 0.4002 0.0348 0.4001 0.0351 0.4001 0.0352 Survival(S)20042005 0.1415 0.0207 0.1415 0.0207 0.1414 0.0208 0.1414 0.0208 Emigration(Gamma'')20032004 0.0070 0.0363 0.1625 0.1043 0.6680 0.2188 0.8400 0.1241 Emigration(Gamma'')20042005 0.0070 0.0363 0.1625 0.1043 0.6680 0.2188 0.8400 0.1241 CaptureProbability(p)2003Occasion1 0.2098 0.0136 0.1972 0.0148 0.0620 0.0252 0.1517 0.0328 CaptureProbability(p)2003Occasion2 0.2099 0.0136 0.1972 0.0148 0.0620 0.0252 0.1517 0.0328 CaptureProbability(p)2003Occasion3 0.2099 0.0136 0.1972 0.0149 0.0620 0.0252 0.1517 0.0328 CaptureProbability(p)2003Occasion4 0.2099 0.0136 0.1972 0.0148 0.0620 0.0252 0.1517 0.0328 CaptureProbability(p)2003Occasion5 0.2099 0.0136 0.1972 0.0148 0.0620 0.0252 0.1517 0.0328 CaptureProbability(p)2003Occasion6 0.2099 0.0136 0.1972 0.0148 0.0620 0.0252 0.1517 0.0328 CaptureProbability(p)2003Occasion7 0.2099 0.0136 0.1972 0.0148 0.0620 0.0252 0.1517 0.0328 CaptureProbability(p)2003Occasion8 0.2098 0.0136 0.1972 0.0148 0.0620 0.0252 0.1517 0.0328 CaptureProbability(p)2004Occasion1 0.4067 0.0122 0.3450 0.0135 0.1966 0.0235 0.1915 0.0264 CaptureProbability(p)2004Occasion2 0.4067 0.0122 0.3450 0.0135 0.1966 0.0235 0.1915 0.0264 CaptureProbability(p)2004Occasion3 0.4067 0.0122 0.3450 0.0135 0.1966 0.0235 0.1915 0.0264 CaptureProbability(p)2004Occasion4 0.4067 0.0122 0.3450 0.0135 0.1966 0.0235 0.1915 0.0264 CaptureProbability(p)2004Occasion5 0.4067 0.0122 0.3450 0.0135 0.1966 0.0235 0.1915 0.0264 CaptureProbability(p)2004Occasion6 0.4067 0.0122 0.3450 0.0135 0.1966 0.0235 0.1915 0.0264 CaptureProbability(p)2004Occasion7 0.4067 0.0122 0.3451 0.0135 0.1966 0.0235 0.1916 0.0264 CaptureProbability(p)2004Occasion8 0.4067 0.0122 0.3450 0.0135 0.1966 0.0235 0.1915 0.0264 CaptureProbability(p)2005Occasion1 0.1996 0.0197 0.1856 0.0181 0.0733 0.0216 0.1344 0.0256 CaptureProbability(p)2005Occasion2 0.1996 0.0197 0.1856 0.0181 0.0733 0.0216 0.1344 0.0255 CaptureProbability(p)2005Occasion3 0.1996 0.0197 0.1856 0.0181 0.0733 0.0216 0.1344 0.0255 CaptureProbability(p)2005Occasion4 0.1996 0.0197 0.1856 0.0181 0.0733 0.0216 0.1344 0.0255 CaptureProbability(p)2005Occasion5 0.1996 0.0197 0.1856 0.0181 0.0733 0.0216 0.1344 0.0255 CaptureProbability(p)2005Occasion6 0.1996 0.0197 0.1856 0.0181 0.0733 0.0216 0.1344 0.0255 CaptureProbability(p)2005Occasion7 0.1996 0.0197 0.1856 0.0181 0.0733 0.0216 0.1344 0.0255 CaptureProbability(p)2005Occasion8 0.1996 0.0197 0.1856 0.0182 0.0733 0.0216 0.1344 0.0256 PopulationSize(N)2003 187.0046 7.4167 153.0068 7.3741 57.4130 21.4531 35.2141 5.5609 PopulationSize(N)2004 231.0451 1.9942 182.6987 2.7476 60.0089 4.6478 55.8500 4.8320 PopulationSize(N)2005 84.8897 5.3911 94.9785 6.2831 69.7588 18.4058 56.6192 8.1239

265 Appendix3.14.Populationparameterestimatesgeneratedbymodelaveragingfortheyellowpinechipmunk. ADULTFEMALES ADULTMALES JUVENILEFEMALES JUVENILEMALES Parameter Estimate SE Estimate SE Estimate SE Estimate SE Survival(S)20032004 0.1661 0.0301 0.1219 0.0237 0.0490 0.0355 0.0335 0.0246 Survival(S)20042005 0.1034 0.0206 0.0746 0.0183 0.0288 0.0207 0.0197 0.0146 Emigration(Gamma'')20032004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Emigration(Gamma'')20042005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CaptureProbability(p)2003Occasion1 0.2041 0.0166 0.1748 0.0149 0.1227 0.0362 0.0589 0.0177 CaptureProbability(p)2003Occasion2 0.2074 0.0167 0.1777 0.0150 0.1248 0.0368 0.0600 0.0180 CaptureProbability(p)2003Occasion3 0.2718 0.0194 0.2357 0.0178 0.1690 0.0471 0.0834 0.0243 CaptureProbability(p)2003Occasion4 0.2361 0.0180 0.2034 0.0163 0.1442 0.0414 0.0701 0.0208 CaptureProbability(p)2003Occasion5 0.3095 0.0207 0.2702 0.0193 0.1964 0.0528 0.0986 0.0282 CaptureProbability(p)2003Occasion6 0.2476 0.0185 0.2138 0.0168 0.1521 0.0433 0.0743 0.0219 CaptureProbability(p)2003Occasion7 0.3104 0.0207 0.2710 0.0193 0.1970 0.0530 0.0989 0.0283 CaptureProbability(p)2003Occasion8 0.2559 0.0188 0.2213 0.0172 0.1579 0.0446 0.0774 0.0227 CaptureProbability(p)2004Occasion1 0.3797 0.0199 0.2608 0.0176 0.1721 0.0215 0.1344 0.0179 CaptureProbability(p)2004Occasion2 0.3844 0.0199 0.2647 0.0177 0.1750 0.0217 0.1367 0.0181 CaptureProbability(p)2004Occasion3 0.4712 0.0200 0.3393 0.0194 0.2323 0.0264 0.1843 0.0227 CaptureProbability(p)2004Occasion4 0.4246 0.0201 0.2984 0.0186 0.2004 0.0239 0.1576 0.0202 CaptureProbability(p)2004Occasion5 0.5170 0.0198 0.3816 0.0201 0.2666 0.0287 0.2135 0.0252 CaptureProbability(p)2004Occasion6 0.4401 0.0201 0.3118 0.0189 0.2107 0.0247 0.1662 0.0210 CaptureProbability(p)2004Occasion7 0.5180 0.0198 0.3825 0.0202 0.2674 0.0288 0.2141 0.0253 CaptureProbability(p)2004Occasion8 0.4509 0.0201 0.3213 0.0191 0.2181 0.0253 0.1724 0.0216 CaptureProbability(p)2005Occasion1 0.2582 0.0275 0.1678 0.0193 0.1926 0.0223 0.1486 0.0186 CaptureProbability(p)2005Occasion2 0.2620 0.0276 0.1705 0.0195 0.1957 0.0225 0.1511 0.0188 CaptureProbability(p)2005Occasion3 0.3361 0.0313 0.2267 0.0236 0.2576 0.0268 0.2025 0.0232 CaptureProbability(p)2005Occasion4 0.2954 0.0295 0.1953 0.0214 0.2232 0.0245 0.1737 0.0208 CaptureProbability(p)2005Occasion5 0.3782 0.0328 0.2605 0.0258 0.2942 0.0289 0.2337 0.0255 CaptureProbability(p)2005Occasion6 0.3087 0.0301 0.2055 0.0221 0.2343 0.0253 0.1829 0.0216 CaptureProbability(p)2005Occasion7 0.3791 0.0328 0.2613 0.0258 0.2950 0.0289 0.2344 0.0256 CaptureProbability(p)2005Occasion8 0.3182 0.0306 0.2128 0.0227 0.2423 0.0258 0.1896 0.0221 PopulationSize(N)2003 156.1700 4.7832 185.8224 6.8489 18.2220 3.6302 70.5906 17.5986 PopulationSize(N)2004 196.0804 1.3208 184.6589 3.2236 63.2327 4.0097 86.2958 6.7502 PopulationSize(N)2005 44.6066 1.6691 81.2341 4.6875 63.5210 3.4525 85.5782 6.0596

266 Appendix3.15.Populationparameterestimatesgeneratedbymodelaveragingfortheshadowchipmunk. ADULTFEMALES ADULTMALES JUVENILEFEMALES JUVENILEMALES Parameter Estimate SE Estimate SE Estimate SE Estimate SE Survival(S)20032004 0.3491 0.0748 0.3484 0.0753 0.3458 0.0842 0.3451 0.0847 Survival(S)20042005 0.1428 0.0556 0.1422 0.0538 0.1388 0.0550 0.1388 0.0550 CaptureProbability(p)2003Occasion1 0.1127 0.0475 0.1127 0.0475 0.0398 0.0453 0.0398 0.0453 CaptureProbability(p)2003Occasion2 0.1803 0.0577 0.1803 0.0577 0.0669 0.0720 0.0669 0.0720 CaptureProbability(p)2003Occasion3 0.5169 0.0748 0.5168 0.0748 0.2586 0.2144 0.2585 0.2144 CaptureProbability(p)2003Occasion4 0.2253 0.0627 0.2253 0.0627 0.0866 0.0904 0.0866 0.0904 CaptureProbability(p)2003Occasion5 0.3826 0.0729 0.3825 0.0729 0.1680 0.1572 0.1680 0.1572 CaptureProbability(p)2003Occasion6 0.3377 0.0709 0.3377 0.0709 0.1425 0.1379 0.1425 0.1379 CaptureProbability(p)2003Occasion7 0.2928 0.0683 0.2928 0.0683 0.1189 0.1187 0.1189 0.1187 CaptureProbability(p)2003Occasion8 0.2928 0.0683 0.2928 0.0683 0.1189 0.1187 0.1189 0.1187 CaptureProbability(p)2004Occasion1 0.1883 0.0564 0.1883 0.0564 0.0812 0.0348 0.0812 0.0348 CaptureProbability(p)2004Occasion2 0.2501 0.0623 0.2501 0.0623 0.1127 0.0436 0.1127 0.0436 CaptureProbability(p)2004Occasion3 0.1050 0.0444 0.1050 0.0444 0.0428 0.0227 0.0428 0.0227 CaptureProbability(p)2004Occasion4 0.4321 0.0705 0.4321 0.0705 0.2248 0.0688 0.2248 0.0688 CaptureProbability(p)2004Occasion5 0.5305 0.0705 0.5305 0.0705 0.3009 0.0813 0.3009 0.0813 CaptureProbability(p)2004Occasion6 0.5691 0.0697 0.5691 0.0697 0.3348 0.0857 0.3348 0.0857 CaptureProbability(p)2004Occasion7 0.5498 0.0702 0.5498 0.0702 0.3176 0.0836 0.3176 0.0836 CaptureProbability(p)2004Occasion8 0.6263 0.0676 0.6263 0.0676 0.3896 0.0914 0.3896 0.0914 CaptureProbability(p)2005Occasion1 0.0969 0.0650 0.0969 0.0650 0.0266 0.0275 0.0266 0.0275 CaptureProbability(p)2005Occasion2 0.3365 0.1032 0.3365 0.1032 0.1145 0.0889 0.1145 0.0889 CaptureProbability(p)2005Occasion3 0.3838 0.1060 0.3838 0.1060 0.1371 0.1026 0.1371 0.1026 CaptureProbability(p)2005Occasion4 0.2889 0.0992 0.2889 0.0992 0.0939 0.0757 0.0939 0.0757 CaptureProbability(p)2005Occasion5 0.3838 0.1060 0.3838 0.1060 0.1371 0.1026 0.1371 0.1026 CaptureProbability(p)2005Occasion6 0.6156 0.1046 0.6156 0.1046 0.2900 0.1744 0.2900 0.1744 CaptureProbability(p)2005Occasion7 0.4309 0.1077 0.4309 0.1077 0.1618 0.1166 0.1618 0.1166 CaptureProbability(p)2005Occasion8 0.6156 0.1046 0.6156 0.1046 0.2900 0.1744 0.2900 0.1744

267 Appendix3.16.Populationparameterestimatesgeneratedbymodelaveragingforthelodgepolechipmunk. ADULTFEMALES ADULTMALES JUVENILEFEMALES JUVENILEMALES Parameter Estimate SE Estimate SE Estimate SE Estimate SE SurvivalParameter(S)20032004 0.0498 0.0422 0.0468 0.0397 0.0549 0.0547 0.0520 0.0530 SurvivalParameter(S)20042005 0.0498 0.0422 0.0468 0.0397 0.0549 0.0547 0.0520 0.0530 CaptureProbability(p)2003Occasion1 0.1133 0.0435 0.1133 0.0435 0.1132 0.0436 0.1132 0.0436 CaptureProbability(p)2003Occasion2 0.1888 0.0538 0.1888 0.0538 0.1886 0.0540 0.1886 0.0540 CaptureProbability(p)2003Occasion3 0.3020 0.0631 0.3020 0.0631 0.3018 0.0635 0.3018 0.0635 CaptureProbability(p)2003Occasion4 0.2642 0.0606 0.2642 0.0606 0.2641 0.0609 0.2641 0.0609 CaptureProbability(p)2003Occasion5 0.3209 0.0642 0.3209 0.0642 0.3207 0.0645 0.3207 0.0645 CaptureProbability(p)2003Occasion6 0.3775 0.0666 0.3775 0.0666 0.3773 0.0671 0.3773 0.0671 CaptureProbability(p)2003Occasion7 0.2831 0.0619 0.2831 0.0619 0.2830 0.0622 0.2830 0.0622 CaptureProbability(p)2003Occasion8 0.1888 0.0538 0.1888 0.0538 0.1886 0.0540 0.1886 0.0540 CaptureProbability(p)2004Occasion1 0.1133 0.0435 0.1133 0.0435 0.1132 0.0436 0.1132 0.0436 CaptureProbability(p)2004Occasion2 0.1888 0.0538 0.1888 0.0538 0.1886 0.0540 0.1886 0.0540 CaptureProbability(p)2004Occasion3 0.3020 0.0631 0.3020 0.0631 0.3018 0.0635 0.3018 0.0635 CaptureProbability(p)2004Occasion4 0.2642 0.0606 0.2642 0.0606 0.2641 0.0609 0.2641 0.0609 CaptureProbability(p)2004Occasion5 0.3209 0.0642 0.3209 0.0642 0.3207 0.0645 0.3207 0.0645 CaptureProbability(p)2004Occasion6 0.3775 0.0666 0.3775 0.0666 0.3773 0.0671 0.3773 0.0671 CaptureProbability(p)2004Occasion7 0.2831 0.0619 0.2831 0.0619 0.2830 0.0622 0.2830 0.0622 CaptureProbability(p)2004Occasion8 0.1888 0.0538 0.1888 0.0538 0.1886 0.0540 0.1886 0.0540 CaptureProbability(p)2005Occasion1 0.1133 0.0435 0.1133 0.0435 0.1132 0.0436 0.1132 0.0436 CaptureProbability(p)2005Occasion2 0.1888 0.0538 0.1888 0.0538 0.1886 0.0540 0.1886 0.0540 CaptureProbability(p)2005Occasion3 0.3020 0.0631 0.3020 0.0631 0.3018 0.0635 0.3018 0.0635 CaptureProbability(p)2005Occasion4 0.2642 0.0606 0.2642 0.0606 0.2641 0.0609 0.2641 0.0609 CaptureProbability(p)2005Occasion5 0.3209 0.0642 0.3209 0.0642 0.3207 0.0645 0.3207 0.0645 CaptureProbability(p)2005Occasion6 0.3775 0.0666 0.3775 0.0666 0.3773 0.0671 0.3773 0.0671 CaptureProbability(p)2005Occasion7 0.2831 0.0619 0.2831 0.0619 0.2830 0.0622 0.2830 0.0622 CaptureProbability(p)2005Occasion8 0.1888 0.0538 0.1888 0.0538 0.1886 0.0540 0.1886 0.0540

268 Appendix3.17.PopulationparameterestimatesgeneratedbymodelaveragingfortheCaliforniagroundsquirrel. ADULTFEMALES ADULTMALES JUVENILEFEMALES JUVENILEMALES Parameter Estimate SE Estimate SE Estimate SE Estimate SE SurvivalParameter(S)20032004 0.4486 0.1333 0.1274 0.0622 0.4485 0.1334 0.1274 0.0621 SurvivalParameter(S)20042005 0.4486 0.1333 0.1275 0.0623 0.4486 0.1334 0.1274 0.0623 Emigration(Gamma'')20032004 0.4000 0.1836 0.4000 0.1836 0.9410 0.0472 0.9410 0.0472 Emigration(Gamma'')20042005 0.4000 0.1836 0.4000 0.1836 0.9410 0.0472 0.9410 0.0472 CaptureProbability(p)2003Occasion1 0.0970 0.0166 0.0825 0.0150 0.0772 0.0148 0.0786 0.0154 CaptureProbability(p)2003Occasion2 0.0873 0.0154 0.0741 0.0139 0.0694 0.0137 0.0706 0.0142 CaptureProbability(p)2003Occasion3 0.1712 0.0244 0.1474 0.0228 0.1386 0.0230 0.1409 0.0238 CaptureProbability(p)2003Occasion4 0.1402 0.0213 0.1201 0.0197 0.1127 0.0197 0.1146 0.0204 CaptureProbability(p)2003Occasion5 0.2414 0.0304 0.2104 0.0291 0.1987 0.0297 0.2017 0.0308 CaptureProbability(p)2003Occasion6 0.1677 0.0240 0.1443 0.0224 0.1357 0.0226 0.1379 0.0234 CaptureProbability(p)2003Occasion7 0.2489 0.0309 0.2172 0.0297 0.2052 0.0304 0.2083 0.0315 CaptureProbability(p)2003Occasion8 0.1504 0.0224 0.1291 0.0207 0.1212 0.0208 0.1233 0.0216 CaptureProbability(p)2004Occasion1 0.2043 0.0270 0.1769 0.0256 0.1667 0.0245 0.1693 0.0250 CaptureProbability(p)2004Occasion2 0.1860 0.0259 0.1606 0.0243 0.1512 0.0232 0.1536 0.0237 CaptureProbability(p)2004Occasion3 0.3304 0.0327 0.2924 0.0327 0.2777 0.0318 0.2815 0.0324 CaptureProbability(p)2004Occasion4 0.2803 0.0309 0.2459 0.0302 0.2328 0.0292 0.2363 0.0298 CaptureProbability(p)2004Occasion5 0.4320 0.0348 0.3890 0.0362 0.3721 0.0356 0.3765 0.0362 CaptureProbability(p)2004Occasion6 0.3249 0.0325 0.2873 0.0325 0.2728 0.0315 0.2766 0.0321 CaptureProbability(p)2004Occasion7 0.4419 0.0349 0.3986 0.0364 0.3815 0.0359 0.3860 0.0365 CaptureProbability(p)2004Occasion8 0.2973 0.0315 0.2615 0.0311 0.2479 0.0301 0.2515 0.0307 CaptureProbability(p)2005Occasion1 0.1492 0.0214 0.1280 0.0205 0.1202 0.0190 0.1222 0.0196 CaptureProbability(p)2005Occasion2 0.1351 0.0203 0.1156 0.0192 0.1085 0.0178 0.1103 0.0184 CaptureProbability(p)2005Occasion3 0.2521 0.0283 0.2201 0.0285 0.2080 0.0267 0.2112 0.0275 CaptureProbability(p)2005Occasion4 0.2102 0.0258 0.1822 0.0255 0.1717 0.0238 0.1745 0.0246 CaptureProbability(p)2005Occasion5 0.3419 0.0323 0.3031 0.0339 0.2882 0.0320 0.2921 0.0329 CaptureProbability(p)2005Occasion6 0.2475 0.0280 0.2159 0.0282 0.2040 0.0264 0.2071 0.0272 CaptureProbability(p)2005Occasion7 0.3510 0.0326 0.3117 0.0343 0.2965 0.0324 0.3005 0.0334 CaptureProbability(p)2005Occasion8 0.2242 0.0267 0.1948 0.0266 0.1838 0.0248 0.1867 0.0256 PopulationSize(N)2003 54.5179 5.1409 50.4560 5.8129 25.8682 4.0911 18.3625 3.3022 PopulationSize(N)2004 41.4485 1.5466 36.0933 1.8409 37.6647 2.0634 37.5276 2.0182 PopulationSize(N)2005 49.9619 2.7892 32.3905 2.7114 48.7384 3.7074 42.4737 3.3674

269 Appendix3.18.Populationparameterestimatesgeneratedbymodelaveragingforthegoldenmantledgroundsquirrel. ADULTFEMALES ADULTMALES JUVENILEFEMALES JUVENILEMALES Parameter Estimate SE Estimate SE Estimate SE Estimate SE SurvivalParameter(S)20032004 0.4199 0.1632 0.4199 0.1632 0.0354 0.0386 0.0354 0.0386 SurvivalParameter(S)20042005 0.4199 0.1632 0.4199 0.1632 0.0354 0.0386 0.0354 0.0386 Emigration(Gamma'')20032004 0.4364 0.2309 0.4364 0.2309 0.4364 0.2309 0.4364 0.2309 Emigration(Gamma'')20042005 0.5396 0.2549 0.5396 0.2549 0.5396 0.2549 0.5396 0.2549 CaptureProbability(p)2003Occasion1 0.2185 0.0292 0.2740 0.0346 0.1503 0.0264 0.1370 0.0239 CaptureProbability(p)2003Occasion2 0.1799 0.0272 0.2286 0.0332 0.1220 0.0235 0.1109 0.0211 CaptureProbability(p)2003Occasion3 0.3434 0.0347 0.4138 0.0387 0.2486 0.0361 0.2290 0.0330 CaptureProbability(p)2003Occasion4 0.1880 0.0272 0.2382 0.0327 0.1278 0.0237 0.1162 0.0214 CaptureProbability(p)2003Occasion5 0.2908 0.0328 0.3563 0.0372 0.2060 0.0320 0.1889 0.0293 CaptureProbability(p)2003Occasion6 0.2564 0.0314 0.3176 0.0367 0.1791 0.0298 0.1638 0.0270 CaptureProbability(p)2003Occasion7 0.4070 0.0363 0.4809 0.0388 0.3027 0.0399 0.2804 0.0370 CaptureProbability(p)2003Occasion8 0.1847 0.0277 0.2342 0.0326 0.1253 0.0232 0.1140 0.0213 CaptureProbability(p)2004Occasion1 0.2184 0.0291 0.2742 0.0343 0.1506 0.0260 0.1372 0.0236 CaptureProbability(p)2004Occasion2 0.1809 0.0272 0.2298 0.0326 0.1229 0.0232 0.1117 0.0212 CaptureProbability(p)2004Occasion3 0.3435 0.0346 0.4143 0.0380 0.2493 0.0353 0.2295 0.0326 CaptureProbability(p)2004Occasion4 0.1885 0.0276 0.2389 0.0329 0.1284 0.0237 0.1168 0.0217 CaptureProbability(p)2004Occasion5 0.2911 0.0328 0.3569 0.0370 0.2067 0.0317 0.1894 0.0292 CaptureProbability(p)2004Occasion6 0.2572 0.0318 0.3189 0.0365 0.1802 0.0296 0.1647 0.0273 CaptureProbability(p)2004Occasion7 0.4072 0.0363 0.4814 0.0386 0.3035 0.0394 0.2810 0.0368 CaptureProbability(p)2004Occasion8 0.1845 0.0270 0.2342 0.0324 0.1255 0.0232 0.1141 0.0211 CaptureProbability(p)2005Occasion1 0.2191 0.0299 0.2754 0.0363 0.1514 0.0274 0.1375 0.0239 CaptureProbability(p)2005Occasion2 0.1802 0.0268 0.2294 0.0322 0.1225 0.0229 0.1111 0.0207 CaptureProbability(p)2005Occasion3 0.3437 0.0349 0.4149 0.0390 0.2497 0.0360 0.2293 0.0326 CaptureProbability(p)2005Occasion4 0.1875 0.0280 0.2380 0.0331 0.1278 0.0237 0.1160 0.0217 CaptureProbability(p)2005Occasion5 0.2904 0.0331 0.3565 0.0372 0.2063 0.0318 0.1887 0.0293 CaptureProbability(p)2005Occasion6 0.2561 0.0319 0.3179 0.0363 0.1795 0.0293 0.1637 0.0270 CaptureProbability(p)2005Occasion7 0.4065 0.0368 0.4811 0.0388 0.3031 0.0394 0.2801 0.0370 CaptureProbability(p)2005Occasion8 0.1834 0.0286 0.2330 0.0340 0.1248 0.0238 0.1133 0.0218 PopulationSize(N)2003 34.1171 0.6871 21.0866 0.6366 16.7766 1.3744 10.7462 1.4085 PopulationSize(N)2004 32.1171 0.6871 35.0866 0.6366 27.7766 1.3744 29.7462 1.4085 PopulationSize(N)2005 18.1171 0.6871 17.0866 0.6366 16.7766 1.3744 26.7462 1.4085

270 Appendix3.19.PopulationparameterestimatesgeneratedbymodelaveragingfortheDouglassquirrel. ADULTFEMALES ADULTMALES JUVENILEFEMALES JUVENILEMALES Parameter Estimate SE Estimate SE Estimate SE Estimate SE SurvivalParameter(S)20032004 0.0960 0.0315 0.0940 0.0323 0.0960 0.0315 0.0940 0.0323 SurvivalParameter(S)20042005 0.0898 0.0300 0.0898 0.0300 0.0878 0.0304 0.0878 0.0304 CaptureProbability(p)2003Occasion1 0.1176 0.0184 0.1176 0.0184 0.1176 0.0184 0.1176 0.0184 CaptureProbability(p)2003Occasion2 0.2100 0.0248 0.2100 0.0248 0.2100 0.0248 0.2100 0.0248 CaptureProbability(p)2003Occasion3 0.0896 0.0160 0.0896 0.0160 0.0896 0.0160 0.0896 0.0160 CaptureProbability(p)2003Occasion4 0.1736 0.0225 0.1736 0.0225 0.1736 0.0225 0.1736 0.0225 CaptureProbability(p)2003Occasion5 0.1008 0.0170 0.1008 0.0170 0.1008 0.0170 0.1008 0.0170 CaptureProbability(p)2003Occasion6 0.1708 0.0223 0.1708 0.0223 0.1708 0.0223 0.1708 0.0223 CaptureProbability(p)2003Occasion7 0.0812 0.0152 0.0812 0.0152 0.0812 0.0152 0.0812 0.0152 CaptureProbability(p)2003Occasion8 0.0924 0.0162 0.0924 0.0162 0.0924 0.0162 0.0924 0.0162 CaptureProbability(p)2004Occasion1 0.1176 0.0184 0.1176 0.0184 0.1176 0.0184 0.1176 0.0184 CaptureProbability(p)2004Occasion2 0.2100 0.0248 0.2100 0.0248 0.2100 0.0248 0.2100 0.0248 CaptureProbability(p)2004Occasion3 0.0896 0.0160 0.0896 0.0160 0.0896 0.0160 0.0896 0.0160 CaptureProbability(p)2004Occasion4 0.1736 0.0225 0.1736 0.0225 0.1736 0.0225 0.1736 0.0225 CaptureProbability(p)2004Occasion5 0.1008 0.0170 0.1008 0.0170 0.1008 0.0170 0.1008 0.0170 CaptureProbability(p)2004Occasion6 0.1708 0.0223 0.1708 0.0223 0.1708 0.0223 0.1708 0.0223 CaptureProbability(p)2004Occasion7 0.0812 0.0152 0.0812 0.0152 0.0812 0.0152 0.0812 0.0152 CaptureProbability(p)2004Occasion8 0.0924 0.0162 0.0924 0.0162 0.0924 0.0162 0.0924 0.0162 CaptureProbability(p)2005Occasion1 0.1176 0.0184 0.1176 0.0184 0.1176 0.0184 0.1176 0.0184 CaptureProbability(p)2005Occasion2 0.2100 0.0248 0.2100 0.0248 0.2100 0.0248 0.2100 0.0248 CaptureProbability(p)2005Occasion3 0.0896 0.0160 0.0896 0.0160 0.0896 0.0160 0.0896 0.0160 CaptureProbability(p)2005Occasion4 0.1736 0.0225 0.1736 0.0225 0.1736 0.0225 0.1736 0.0225 CaptureProbability(p)2005Occasion5 0.1008 0.0170 0.1008 0.0170 0.1008 0.0170 0.1008 0.0170 CaptureProbability(p)2005Occasion6 0.1708 0.0223 0.1708 0.0223 0.1708 0.0223 0.1708 0.0223 CaptureProbability(p)2005Occasion7 0.0812 0.0152 0.0812 0.0152 0.0812 0.0152 0.0812 0.0152 CaptureProbability(p)2005Occasion8 0.0924 0.0162 0.0924 0.0162 0.0924 0.0162 0.0924 0.0162 PopulationSize(N)2003 42.5304 4.9498 48.4667 5.3342 23.2360 3.5521 14.3285 2.7684 PopulationSize(N)2004 48.4666 5.3342 61.8230 6.1531 6.8973 1.9308 15.8136 2.9118 PopulationSize(N)2005 27.6889 3.9023 44.0145 5.0474 8.3849 2.1190 15.8136 2.9118

271

Appendix 5.1 Antsrecordedinpitfalltrapsat103sitessampledalongandevelopmentgradientinthe LakeTahoeBasin2003to2004.

MeanBody Nesting Nest AntTaxa Length(mm) Strategies Types ContinentalGrouping

Myrmicinae Aphaenogaster occidentalis 3.92 3 stones,logs,ground Opportunist Leptothorax calderona 3.09 1 logs ColdClimateSpecialist Leptothorax muscorum 3.1 1 logs ColdClimateSpecialist Manica bradleyi 5.14 1 ground ColdClimateSpecialist Manica invadia 4.75 1 ground ColdClimateSpecialist Myrmica discontinua 3 1 stones Opportunist Myrmica tahoensis 4 1 stones Opportunist Stenamma smithi UNDET 1 ground ColdClimateSpecialist Temnothorax cf. rugatulus 2.6 1 arboreal ColdClimateSpecialist Temnothorax nitens 2.2 1 stones ColdClimateSpecialist Temnothorax nevadensis 2.5 2 stones,ground ColdClimateSpecialist Temnothorax rugatulus 2.66 1 stones ColdClimateSpecialist Tetrramorium caespitum 2.96 2 stones,ground Opportunist

Dolichoderinae Dolichoderinesp.1 UNDET UNDET UNDET UNDET Liometopum occidentale 3.86 1 arboreal DominantDolichoderinae Tapinoma sessile 2.44 3 stones,logs,ground Opportunist

Formicinae Camponotus essigi 6 1 arboreal Subordinate Camponotus hyatti 4.73 1 ground SubordinateCamponotini Camponotus laevigatus 9.5 1 logs SubordinateCamponotini Camponotus modoc 8 1 logs SubordinateCamponotini Camponotus vicinus 10.9 3 stones,logs,ground SubordinateCamponotini Formica sp.1 UNDET UNDET UNDET ColdClimateSpecialist Formica accreta 5.4 1 logs Opportunists Formica argentea 5.4 2 stones,ground Opportunists Formica aserva 7.27 1 logs ColdClimateSpecialist Formica CA01 5.8 2 stones,ground(somethatch) ColdClimateSpecialist Formica cf. sybilla 5.6 1 ground Opportunists Formica dakotensis 4.75 2 stones,ground(somethatch) ColdClimateSpecialist Formica fusca 3.95 2 stones,ground Opportunists Formica integroides 6.63 1 moundnestw/thatch ColdClimateSpecialist Formica lasiodes 4.25 2 stones,ground Opportunists Formica microphthalma 4.66 2 stones,ground Opportunists Formica neoclara 3.84 1 ground Opportunists Formica neogagates 4.43 2 stones,ground Opportunists Formica neorufibarbus 4.8 3 stones,logs,ground Opportunists Formica nevadensis 4.95 1 stones,ground(somethatch) ColdClimateSpecialist Formica obscruipes 6.64 1 moundnestw/thatch ColdClimateSpecialist Formica propinqua 7 1 moundnestw/thatch ColdClimateSpecialist Formica ravida 5.68 1 moundnestw/thatch ColdClimateSpecialist Formica rufa group sp 1 UNDET UNDET UNDET ColdClimateSpecialist Formica sibylla 5 1 ground Opportunists Formica subpolita 5.48 2 stones,ground ColdClimateSpecialist Lasius flavus 2.7 2 stones,ground ColdClimateSpecialist Lasius pallitarsis 3.73 3 stones,logs,ground ColdClimateSpecialist Myrmecocystus sp.2 UNDET 1 ground HotClimateSpecialists Myrmecocystus testaceus 4.94 1 ground HotClimateSpecialists

273

Appendix5.2UnivariateresponsesofindividualantspeciesabundanceintheLakeTahoebasintomultiplescalesofurban development.Scalesofdevelopmentwerecalculatedwithin60,100,500,and1000mofthecenterofeachsamplesite.Responses indicatethedirectionoftheslopeforunivariateregressions.Specieswithnodataweretoorareforanalysis.

60-m Scale 100-m Scale 300-m Scale 500-m Scale 1000-m Scale

Ant Species Response Adj R 2 P Response Adj R 2 P Response Adj R 2 P Response Adj R 2 P Response Adj R 2 P

Aphaenogaster occidentalis – 0.0724 0.8017 + 0.0452 0.9372 + 0.0271 0.5369 + 0.0081 0.287 6 + 0.0271 0.2135 Camponotus essigi – 0.114 0.5616 – 0.1136 0.5606 – 0.001 0.3619 – 0.0372 0.3175 – 0.0701 0.2821 Camponotus hyatti Camponotus laevigatus – 0.0289 0.222 – 0.0763 0.1199 – 0.1585 0.0418 – 0.195 0.3246 – 0.0357 0.2027 Camponotus modoc – 0.0213 0.1137 – 0.0219 0.1091 – 0.0187 0.1263 – 0.0176 0.133 4 – 0.0178 0.1319 Camponotus vicinus – 0.1057 0.0098 – 0.0438 0.0679 – 0.0226 0.0982 – 0.007 0.2169 – 0.0011 0.2999 Dolichoderinesp.1 Formica accreta – 0.0493 0.0382 – 0.021 0.1235 – 0.0007 0.3325 – 0.0038 0.3904 – 0.003 0.3754 Formica argentea + 0.0014 0.3101 + 0.015 0.5331 – 0.0245 0.8873 – 0.0237 0.8196 – 0.0143 0.5188 Formica aserva – 0.0398 0.6954 – 0.0387 0.7088 + 0.0455 0.9937 – 0.0446 0.895 – 0.0422 0.7969 Formica CA01 Formica cf. sibylla – 0.0912 0.0064 – 0.0911 0.0061 – 0.067 0.016 – 0.0353 0.1082 – 0.058 0.0234 Formica fusca + 0.0245 0.8843 + 0.0243 0.9491 + 0.0239 0.8901 + 0.0242 0.928 8 + 0.0225 0.783 Formica integroides – 0.1671 0.7226 – 0.1682 0.7275 – 0.0891 0.5075 – 0.0772 0.484 4 – 0.0332 0.3221 Formica lasioides – 0.0208 0.9745 + 0.019 0.7676 + 0.011 0.4975 + 0.0197 0.8185 + 0.0159 0.633 Formica microphthalma – 0.0419 0.5815 – 0.0421 0.5833 + 0.0557 0.7527 + 0.0594 0.831 9 + 0.0587 0.8136 Formica neoclara – 0.0246 0.4612 + 0.1708 0.1158 + 0.0878 0.1099 + 0.1358 0.0613 + 0.2178 0.0219 Formica neogagates Formica neorufibarbus – 0.0074 0.2929 – 0.0094 0.385 – 0.0317 0.5933 – 0.025 0.5145 – 0.0415 0.7763 Formica obscuripes + 0.1094 0.5981 + 0.1093 0.5977 + 0.3173 0.166 + 0.049 0.4433 + 0.1577 0.8368 Formica propinqua – 0.2036 0.7145 – 0.1669 0.6219 – 0.1809 0.6537 – 0.2489 0.954 7 – 0.2497 0.9771 Formica ravida + 0.6686 0.0215 + 0.719 0.0133 + 0.5439 0.0141 + 0.0448 0.2673 + 0.0502 0.259 Formica rufa group sp 1 – 0.0072 0.3842 – 0.0225 0.5192 – 0.0122 0.2614 – 0.0305 0.189 7 – 0.0342 0.178 Formica sibylla + 0.0497 0.0525 + 0.0212 0.1423 + 0.0088 0.4783 + 0.0153 0.694 + 0.0073 0.4445 Formica subpolita – 0.1108 0.6025 – 0.1227 0.6451 – 0.1666 0.9914 – 0.1586 0.845 2 – 0.0864 0.5304 Lasius flavus Lasius pallitarsis – 0.0238 0.6872 – 0.0195 0.5923 + 0.0167 0.5357 + 0.0017 0.309 + 0.0214 0.1869 Leptothorax calderona Leptothorax muscorum Liometopum occidentale Manica bradleyi + 0.0964 0.2344 + 0.0413 0.2974 + 0.0969 0.5593 + 0.0538 0.281 8 + 0.1093 0.2217 Manica invidia + 0.4655 0.6541 – 0.9421 0.8912 – 0.8595 0.1708 – 0.8793 0.158 – 0.8462 0.8211 Myrmecocystus sp.2 Myrmecocystus testaceus Myrmica discontinua – 0.3288 0.9254 – 0.3254 0.9021 + 0.1684 0.5616 + 0.0454 0.355 1 – 0.3211 0.8784 Myrmica tahoensis + 0.0139 0.7791 + 0.0147 0.9007 + 0.0145 0.8609 + 0.0144 0.848 5 + 0.0148 0.9202 Tapinoma sessile – 0.008 0.203 – 0.0023 0.3685 – 0.0055 0.4559 – 0.0046 0.4289 – 0.0063 0.4826 Temnothorax cf. rugatulus + 0.3628 0.6976 – 0.4646 0.8464 – 0.1829 0.3253 – 0.0326 0.257 9 – 0.019 0.4337 Temnothorax nevadensis – 0.0307 0.1241 – 0.0196 0.1726 – 0.0168 0.6277 – 0.0176 0.653 – 0.0219 0.9098 Temnothorax nitens – 0.3019 0.0086 + 0.0121 0.4215 + 0.0066 0.3746 + 0.0003 0.3241 + 0.0407 0.1506 Temnothorax rugatulus – 0.0614 0.3324 + 0.0686 0.5643 + 0.0879 0.6713 + 0.0934 0.711 5 + 0.0863 0.6613 Tetramorium caespitum

275

Appendix8.1 –TableofGISpredictivemodelcoefficientsforvariousbiodiversitymeasures. [grayedletteringindicatesincompleteinformation].Taketheantilogofthesumofthesevalues toderivepredictedvalue. Reponse Predictor variable variable Coefficient Standardized Mean s.d.

BIRDS Bird species richness Intercept 2.761917E+00 DEV150 5.233476E03 Y 2.619E+01 2.326E+01 DEV300 1.307186E02 Y 2.665E+01 2.109E+01 DEV500 4.471925E02 Y 2.680E+01 1.948E+01 DEV1000 2.996104E02 Y 2.444E+01 1.577E+01 AS150 3.111376E03 Y 7.386E03 3.497E02 AS300 2.576417E02 Y 8.079E03 2.532E02 HC300 7.145868E15 Y 4.376E02 9.475E02 HC1000 3.709246E02 Y 6.456E02 9.098E02 HC10002 1.578597E02 Y 1.242E02 3.139E02 LC150 5.405713E03 Y 8.102E01 2.345E01 LC300 3.612169E02 Y 7.958E01 1.978E01 LC500 2.030180E03 Y 7.726E01 1.739E01 LC1000 1.315528E03 Y 7.127E01 1.540E01 RM300RT 6.155648E04 Y 7.895E02 1.459E01 RM1000RT 1.063730E02 Y 1.472E01 1.155E01 SH500 5.815063E05 Y 2.954E02 3.646E02 CC100 6.029302E03 Y 3.726E+01 1.340E+01 NDVI 9.005281E02 Y 4.512E01 9.681E02 BRIGHT 6.247615E02 Y 7.412E02 2.924E02 ELEV 4.729651E01 Y 1.972E+03 5.950E+01 ELEV2 3.921218E01 Y 3.891E+06 2.378E+05 SLOPE 7.313019E02 Y 7.459E+00 5.486E+00 SLOPE2 8.764273E02 Y 8.565E+01 1.131E+02 DISTWTR 4.291324E02 Y 4.422E+02 3.515E+02 DISTWTR2 1.373658E02 Y 3.188E+05 5.197E+05 UTM_N 4.410648E+01 Y 4.326E+06 1.625E+04 UTM_N2 4.409725E+01 Y 1.871E+13 1.406E+11 UTM_E 1.055225E39 Y 7.585E+05 6.293E+03 Bird community dominance Intercept 1.519717E+00 Y DEV150 5.468916E04 Y 2.619E+01 2.326E+01 DEV300 2.197335E02 Y 2.665E+01 2.109E+01 DEV500 9.101791E02 Y 2.680E+01 1.948E+01 DEV1000 1.644776E04 Y 2.444E+01 1.577E+01 AS1000 1.612093E02 Y 1.214E02 3.065E02 HC150 5.136887E07 Y 4.401E02 1.351E01 HC300 2.053060E05 Y 4.376E02 9.475E02 HC500 3.802452E15 Y 4.652E02 7.989E02 HC1000 2.672605E15 Y 6.456E02 9.098E02

277 LC150 2.060517E04 Y 8.102E01 2.345E01 LC300 5.261541E03 Y 7.958E01 1.978E01 LC500 4.551952E03 Y 7.726E01 1.739E01 LC1000 1.960062E13 Y 7.127E01 1.540E01 RM150RT 6.365310E09 Y 5.484E02 1.412E01 RM300RT 1.383112E06 Y 7.895E02 1.459E01 RM500RT 5.999844E11 Y 1.012E01 1.400E01 RM1000RT 1.821524E19 Y 1.472E01 1.155E01 SH150RT 5.062754E05 Y 8.404E02 1.369E01 SH300 5.999151E09 Y 2.711E02 4.134E02 SH1000RT 7.594425E18 Y 1.526E01 8.610E02 CC100 1.484841E06 Y 3.726E+01 1.340E+01 NDVI 1.475162E01 Y 4.512E01 9.681E02 BRIGHT 2.540064E10 Y 7.412E02 2.924E02 ELEV 1.208654E02 Y 1.972E+03 5.950E+01 SLOPE 4.265864E03 Y 7.459E+00 5.486E+00 DISTWTR 6.586596E02 Y 4.422E+02 3.515E+02 UTM_N 1.074267E12 Y 4.326E+06 1.625E+04 UTM_E 3.088336E17 Y 7.585E+05 6.293E+03 Ground-nesting bird richness Intercept 6.698941E01 Y DEV150 4.604346E04 Y 2.619E+01 2.326E+01 DEV300 4.100755E05 Y 2.665E+01 2.109E+01 DEV500 1.360290E06 Y 2.680E+01 1.948E+01 DEV1000 2.457877E01 Y 2.444E+01 1.577E+01 AS150 9.099536E02 Y 7.386E03 3.497E02 AS300 3.162181E03 Y 8.079E03 2.532E02 AS500RT 4.849039E03 Y 4.503E02 8.429E02 AS1000 9.348378E02 Y 1.214E02 3.065E02 HC150 5.181354E05 Y 4.401E02 1.351E01 HC300 1.022177E02 Y 4.376E02 9.475E02 HC500 8.792540E02 Y 4.652E02 7.989E02 HC1000 1.016027E02 Y 6.456E02 9.098E02 LC150 6.071216E03 Y 8.102E01 2.345E01 LC300 2.447401E01 Y 7.958E01 1.978E01 LC500 9.950144E05 Y 7.726E01 1.739E01 LC1000 1.366917E05 Y 7.127E01 1.540E01 RM150RT 1.341687E01 Y 5.484E02 1.412E01 RM1000RT 5.695662E03 Y 1.472E01 1.155E01 SH150RT 3.908762E03 Y 8.404E02 1.369E01 SH1000RT 3.213186E02 Y 1.526E01 8.610E02 CC100 2.481357E03 Y 3.726E+01 1.340E+01 NDVI 1.801317E02 Y 4.512E01 9.681E02 BRIGHT 1.807533E03 Y 7.412E02 2.924E02 ELEV 2.581573E+00 Y 1.972E+03 5.950E+01 ELEV2 2.571908E+00 Y 3.891E+06 2.378E+05 SLOPE 1.110673E01 Y 7.459E+00 5.486E+00 SLOPE2 3.276833E03 Y 8.565E+01 1.131E+02 DISTWTR 2.772098E02 Y 4.422E+02 3.515E+02

278 DISTWTR2 1.641844E02 Y 3.188E+05 5.197E+05 UTM_N 1.734806E04 Y 4.326E+06 1.625E+04 UTM_E 5.898716E02 Y 7.585E+05 6.293E+03 Cavity-nesting bird richness Intercept 1.551875E+00 Y DEV150 6.311928E03 Y 2.619E+01 2.326E+01 DEV300 4.985314E02 Y 2.665E+01 2.109E+01 DEV500 2.197793E02 Y 2.680E+01 1.948E+01 DEV1000 1.509933E04 Y 2.444E+01 1.577E+01 AS150 6.857170E03 Y 7.386E03 3.497E02 AS300 9.823199E03 Y 8.079E03 2.532E02 AS500RT 8.956940E04 Y 4.503E02 8.429E02 AS1000 4.626625E03 Y 1.214E02 3.065E02 HC150 3.001697E04 Y 4.401E02 1.351E01 HC300 8.683471E03 Y 4.376E02 9.475E02 HC500 5.758848E05 Y 4.652E02 7.989E02 HC1000 2.961482E04 Y 6.456E02 9.098E02 LC150 5.505186E03 Y 8.102E01 2.345E01 LC300 2.840666E04 Y 7.958E01 1.978E01 LC500 4.125220E04 Y 7.726E01 1.739E01 LC1000 2.913288E03 Y 7.127E01 1.540E01 RM150RT 3.838475E03 Y 5.484E02 1.412E01 RM300RT 9.351961E04 Y 7.895E02 1.459E01 RM500RT 7.696877E06 Y 1.012E01 1.400E01 RM1000RT 3.622334E04 Y 1.472E01 1.155E01 SH300 2.904254E03 Y 2.711E02 4.134E02 SH500 3.143030E02 Y 2.954E02 3.646E02 SH1000RT 5.246323E04 Y 1.526E01 8.610E02 CC100 5.640829E01 Y 3.726E+01 1.340E+01 CC1002 4.477797E01 Y 1.567E+03 1.004E+03 NDVI 3.414135E02 Y 4.512E01 9.681E02 BRIGHT 1.107813E01 Y 7.412E02 2.924E02 ELEV 3.493802E04 Y 1.972E+03 5.950E+01 SLOPE 6.007440E03 Y 7.459E+00 5.486E+00 DISTWTR 4.813085E02 Y 4.422E+02 3.515E+02 UTM_N 2.214199E03 Y 4.326E+06 1.625E+04 UTM_E 9.148561E06 Y 7.585E+05 6.293E+03 LARGE MAMMALS Marten presence Intercept 9.468030E+00 BAR_300 3.000000E05 N BRI_3X3 2.893075E+01 N DEV_1000M 8.780000E03 N DEV_300M 1.525000E02 N DEV_500M 1.065300E01 N DIST_STRM 1.250000E03 N ELEV 1.170000E03 N

279 FOR_1K 6.500000E04 N FOR_300 1.873000E02 N GRE_3X3 9.300000E04 N MDW_1K 2.647300E01 N MDW_300 1.615800E01 N N34MD_1K 4.000000E05 N Coyote presence Intercept 1.336330E+00 DEV_1000M 2.971000E02 N DEV_100M 7.790000E03 N DEV_300M 1.320000E03 N DEV_500M 1.580000E03 N DEV_MAX 4.100000E03 N DIST_STRM 3.530000E03 N ELEV 2.000000E05 N FOR_1K 7.000000E05 N FOR_300 6.900000E04 N GRE_3X3 9.460500E+00 N MDW_1K 2.837830E+00 N N34MD_300 1.300000E04 N N34SP_1K 2.100000E04 N N34SP_300 7.560000E03 N N56MD_1K 2.060100E01 N N56MD_300 2.950000E03 N N56SP_1K 2.481000E02 N NDVI_3X3 1.457180E+00 N PPT_MM 1.100000E04 N SHR_1K 5.151100E01 N SHR_300 4.650000E03 N SLOPE_3X3 3.396000E02 N Black bear presence Intercept 308.7397 NDVI_3X3 3409.0019 N PPT_MM 1.2158 N GRE_3X3 1.9494 N BRI_3X3 13.1787 N WET_3X3 63.2431 N DEV_100M 0.0001 N DEV_300M 9.7735 N DEV_500M 0.8483 N DEV_1000M 13.0367 N BAR_300 -0.0001 N DEV_MAX -0.0003 N FOR_300 13.8438 N MDW_300 -97.619 N

280 N34SP_300 -2.712 N N34MD_300 1.4752 N FOR_1K 0.0007 N N56MD_300 19.5826 N MDW_1K -0.0104 N N56MD_1K -14.0039 N SMALL MAMMALS Small mammal abundance Intercept 1.800676E+00 D100 5.426118E03 Y 9.178E+00 1.361E+01 D500 2.401678E02 Y 2.133E+01 1.666E+01 D1000 1.613741E02 Y 2.175E+01 1.454E+01 D1000SQ 3.635851E03 Y 6.800E+02 8.264E+02 NDVI 1.143232E01 Y 5.004E01 6.178E02 BRI 3.506220E02 Y 6.481E02 2.634E02 CF500 3.014037E02 Y 8.607E01 1.224E01 SH500 1.537414E02 Y 3.641E02 3.717E02 GR500 4.015630E04 Y 1.817E02 6.804E02 MERI_500 9.778020E05 Y 1.132E02 3.167E02 ASP_500 2.085969E03 Y 1.211E02 3.543E02 TR1224 2.740939E03 Y 8.481E01 1.234E01 TR24_500 1.279831E02 Y 3.081E02 9.073E02 CANMD500 8.323905E03 Y 5.549E01 2.348E01 Small mammal richness Intercept 1.637108E+00 D100 8.152534E03 Y 1.266E+01 1.734E+01 D500 2.173864E02 Y 2.347E+01 1.893E+01 D1000 4.045057E02 Y 2.306E+01 1.639E+01 D1000SQ 4.535927E02 Y 7.967E+02 9.856E+02 NDVI 1.718069E03 Y 4.960E01 6.762E02 BRI 3.035414E03 Y 6.479E02 2.545E02 CF500 8.976098E03 Y 8.555E01 1.208E01 SH500 3.037504E02 Y 3.173E02 3.532E02 GR500 2.194369E03 Y 2.041E02 6.044E02 MERI_500 2.169836E04 Y 9.793E03 2.684E02 ASP_500 1.737354E03 Y 9.475E03 2.980E02 TR1224 1.219391E02 Y 8.301E01 1.302E01 TR24_500 1.547607E04 Y 4.058E02 1.049E01 CANMD500 1.846192E03 Y 5.062E01 2.546E01 ANTS Ant species richness (site) Intercept 1.017347E+01 HLI3X3S 1.266265E02 Y 8.975E+03 3.850E+02 PPTMMS 4.533903E01 Y 7.809E+02 1.394E+02 ASP3X3S 4.672606E01 Y 1.841E+02 9.675E+01

281 GRE3X3S 7.722682E02 Y 2.253E02 2.018E02 IMP100MS 3.848212E02 Y 6.398E+00 1.138E+01 DEV3X3S 4.563628E03 Y 1.115E+01 1.912E+01 CC100S 8.122350E01 Y 4.035E+01 1.176E+01 Log-nesting ant abundance Intercept 8.720420E+00 HLI3X3S 9.439528E01 Y 8.975E+03 3.850E+02 PPTMMS 9.772881E02 Y 7.809E+02 1.394E+02 NDVI3X3S 6.094930E+00 Y 4.854E01 7.698E02 GRE3X3S 2.045624E+00 Y 2.253E02 2.018E02 DEV3X3S 6.918628E01 Y 1.115E+01 1.912E+01 DEV1000S 1.183739E+00 Y 2.446E+01 1.676E+01 CC100S 3.676185E+00 Y 4.035E+01 1.176E+01 Thatch-nesting ant abundance Intercept 3.434123E+00 HLI3X3S 1.170364E+00 Y 8.975E+03 3.850E+02 PPTMMS 1.396613E+00 Y 7.809E+02 1.394E+02 NDVI3X3S 7.934596E+00 Y 4.854E01 7.698E02 GRE3X3S 9.108163E+00 Y 2.253E02 2.018E02 DEV3X3S 4.348595E01 Y 1.115E+01 1.912E+01 DEV1000S 2.140186E01 Y 2.446E+01 1.676E+01 JPN100S 5.489477E01 Y 6.473E01 4.331E01

282 Appendix9.1 –Tableofbasicrelationshipsobservedbetweenmeasuresofurbanizationand associatedhabitatchangesandmeasuresofbiologicaldiversity. Birds Percent Human Snag Canopy Tree Herb& Biodiversitymetric development activity volume cover density shrubcover Comment

Totalspeciesrichness Relationshipwithpercentdevelopmentdepends Totalabundance onscale ,300mor1km,respectively

Communitydominance

Groundnesterabundance

Cavitynesterabundance

Invertivoreabundance

Groundforagingomnivoreabundance

Groundnesterrichness

Cavitynesterrichness

Nestsuccessofallcavitynesters

Nestsuccessofallopennesters

Nestsuccessofgroundnesters

Nestsuccessofshrubnesters

Nestsuccessofunderstorynesters

Steller'sJaynestsuccess

MountainChickadeenestsuccess

DarkeyedJunconestsuccess Increaseinnestsuccessto6%development(but DuskyFlycatchernestsuccess smallsamplesize);didnotnestabove6% PygmyNuthatchnestsuccess(2003)

PygmyNuthatchnestsuccess(2004)

WhiteheadedWoodpeckernestsuccess

283 Butnestedlowertogroundinhigher development,andsuccesswaslowerforlower WesternWoodpeweenestsuccess nests

AmericanRobinnestsuccess

NorthernFlickernestsuccess

RedbreastedNuthatchnestsuccess Basedonsimplecorrelations;someunimodal Abundanceof25species relationshipsmightbemasked Basedonsimplecorrelations;someunimodal Abundanceof28species relationshipsmightbemasked Basedonsimplecorrelations; someunimodal Abundanceof14species relationshipsmightbemasked

284 SmallMammals

Developmentandhumandisturbancemetric %developed Human Dog Habitat %cover Biodiversitymetric area activity activity heterogeneity bareground Smallmammalspeciesrichness Totalsmallmammalrelativeabundance Arborealsquirrelabundance Terrestrialgranivoreabundance Terrestrialherbivoreabundance Insectivoreabundance Survivalrateoflongearedchipmunks ------ Survivalrateofyellowpinechipmunks ------ Survivalrateofshadowchipmunks ------ Survivalrateoflodgepolechipmunks ------

Survivalrateofgoldenmantledgroundsquirrels ------ SurvivalrateofCaliforniagroundsquirrels ------ SurvivalrateofDouglassquirrels ------ Emigrationratesoflongearedchipmunks ------ Emigrationrateofgoldenmantledgroundsquirrels ------ EmigrationrateofCaliforniagroundsquirrels ------

285 Carnivores

Biodiversity metric Dev_100 Dev_300 Dev_500 Dev_1000 People Dogs Vehicles Vol_CWD Snags Herbivorerichness Rabbit/hare occurrence Deeroccurrence Carnivorerichness Martenoccurrence Blackbearoccurrence Coyoteoccurrence

286 Plants

Development at 300m Undeveloped Landscape- Plant characteristics forest at-large Snagvolume Snagdecayclass Logvolume n.a. Exoticplantspeciesrichness n.a. Nativeplantspeciesrichness n.a. Smalldiametertreedensity Mediumdiametertreedensity Shrubcover Canopycover Decadencefeatures n.a. Stumps n.a. HumanUse

Use metric Dev_300 HumanUse Numberofdogs Numberofunleasheddogs Numberofvehicles

287