N-Particle Dynamics of the Euler Equations for Planar Diffeomorphisms

Total Page:16

File Type:pdf, Size:1020Kb

N-Particle Dynamics of the Euler Equations for Planar Diffeomorphisms N-Particle dynamics of the Euler equations for planar diffeomorphisms Robert I McLachlan1 and Stephen Marsland2 1 IFS, Massey University, Palmerston North, New Zealand 2 IIS&T, Massey University, Palmerston North, New Zealand Email: r.mclachlan,s.r.marsland @massey.ac.nz { } Abstract The Euler equations associated with diffeomorphism groups have received much recent study because of their links with fluid dynamics, computer vision, and mechanics. In this paper, we consider the dynamics of N point particles or ‘blobs’ moving under the action of the Euler equations associated with the group of diffeomorphisms of the plane in a variety of different metrics. The 2 body problem is always integrable, and we analyze its phase portrait under different metrics. In particular, we show that 2-body capturing orbits (in which the distances between the particles tend to 0 as t ) can occur when the kernel is sufficiently smooth and the relative initial velocity of the→ particles ∞ is sufficiently large. We compute the dynamics of these ‘dipoles’ with respect to other test particles, and supplement the calculations with simulations for larger N that illustrate the different regimes. 1 Introduction The Euler equations for planar diffeomorphisms are m˙ + u m + uT m + m(div u)=0, (1) · ∇ ∇ · wherem ˙ denotes differentiation with respect to time, u(x, t) (u, x Rn, t R) is a velocity field, and m(x, t) its associated momentum. The velocity u and momentum∈ m∈ are related by m = u (2) A arXiv:nlin/0512030v1 [nlin.CD] 13 Dec 2005 where is an elliptic operator (e.g. = (1 2)k) called the inertia operator. ThereA has been much recent interestA in the− ∇ Euler equations (1) because they arise in several different fields, including computer vision and fluid dynamics. In computer vision they appear in two and three dimensions in the field of image registration, such as in the averaged template matching equations [13, 15] and the geodesic interpolating clamped-plate spline [12], while in fluid dynamics they are the limiting case of the shallow water wave Camassa-Holm equations in one and two dimensions [7], and the motion of an ideal incompressible fluid corresponds to geodesics on the group of volume-preserving diffeomorphisms [1, 5] Euler equations such as Eq. (1) have a natural geometric origin, which we sketch here although these details are not needed in the paper. Let G be a Lie or diffeomorphism group with Lie algebra g. Let G be equipped with a left- or right-invariant metric that restricts to a metric , on g. Typically, this metric is defined by a linear inertia operator : g g∗ via hh ii A → u, v := u, v . (3) hh ii h A i 1 The geodesic equation on T G can be reduced to give a non-canonical Hamiltonian evolution equation on g called the Euler–Poincar´e equation, or transferred (via the Legendre transform, g g∗, which in this case is u m := u) to a Lie-Poisson system on g∗ called the Euler equations→ → A ∗ m˙ = ad −1 m, (4) ± A m where the sign is + for left- and for right-invariant metrics. The variable m g∗ is called the momentum and u g the velocity−. ∈ The most famous∈ Euler equation on a Lie group is the equation of motion of a free rigid body (G = SO(3), m = body angular momentum). An infinite-dimensional example is the Landau-Lifshitz equation on the loop group G = C∞(R, SO(3)). Examples on diffeomorphism n groups include the Euler fluid equations on the group G = Diff vol(R ) of volume-preserving diffeomorphisms with respect to the L2 metric (m = vorticity) [5], the Camassa-Holm equation 1 1 n 1 (G = Diff(S ), H metric) [7], and the second-grade fluid equations (G = Diffvol(R ), H metric) [16]. There has been recent interest in the use of diffeomorphic deformations (‘warps’) to align groups of medical images. This alignment allows the range of variation in the appearance of biological structures to be measured, providing an approach to automated disease diagnosis. One approach to this problem, known as Computational Anatomy, is to introduce group actions as deformable templates that are warped via the actions of a group onto other images [6]. This work has been fundamental to a large amount of research on aligning images through landmark matching, where corresponding points are defined on a set of images, and diffeomorphic warps used to align them. The corresponding group for image analysis is the full diffeomorphism group, not the volume-preserving subgroup. Under a right-invariant Riemannian metric, it can be shown that the geodesics of the motion of a set of landmarks can be computed as an optimisation problem. See [12, 13] for an overview. For G = Diff(Rn) the Euler equations are given by Eqs. (1,2) (see [8, 15] for further details). The inverse of the inertia operator is given by convolution with the Green’s function G of , i.e., u = G m, where denotes convolutionA and G(x, x′)= δ(x x′) for x, x′ Rn. We shallA only consider∗ rotationally∗ invariant and diagonalA ; in this case −G(x, x′) = G(∈x x′ ) for a scalar function G, which we call the kernel of G.A Examples in the literature includek − Gaussiank [9] and Bessel function kernels [16] associated with the H1 metric. In this paper, we consider a family of kernels associated with Hk metrics for various k, which includes the Gaussian kernel in the limit as k . A striking feature→ ∞ of Euler equations on diffeomorphism groups is that they admit (formally, at least) exact solutions in which the momentum is concentrated at a finite set of points that we call particles. For fluid equations these are point vortices, which are widely studied both in their own right and as a means of approximating the evolution of smooth or other vorticities. At first sight it is remarkable that a PDE should have such a finite-dimensional reduction, unrelated to integrability. (Such a reduction, however, is not unique to Euler equations. On the other hand, there are many particle-based numerical methods, collectively known as Smoothed Particle Hydrodynamics [14], which are not exact solutions of the PDE they approximate.) For the 2D and 3D Euler fluid equations, convergence of the point vortex solutions to solu- tions for smooth initial data has been established [2]. The speed of convergence can be improved by smoothing out the point vortices to vortex blobs [4], even though the (e.g., Gaussian) blobs are no longer an exact solution of the Euler equations. Instead, their evolution can be regarded as that of delta-functions under a slightly different inertia operator. Altering the shape of the blob (which corresponds to the kernel) is equivalent to altering the metric. In this way we are lead to consider a wide class of metrics. For an introduction to many-body problems, particu- larly arising in Newtonian and relativistic mechanics, see [3]. Point vortices defined over Dirac delta-functions, and the regularised version, vortex blob methods, are introduced in [4]; see [10] for a review of their use. The methods used for image registration and template matching of images in [13, 12], and references therein, correspond to computing the motion of particles in Diff(R2). Various metrics 2 have been used, including Gaussians, H1, and Hk. Diffeomorphic image registration can be considered as a boundary value problem, since the start and end points of the particles are defined by the images under consideration. However, it can equivalently be treated as an initial value problem under the definition of the starting point and initial velocity of the particles [17, 12]. This paper provides an initial study of the dynamics of particles for the group Diff(R2) of all diffeomorphisms of the plane, as are used in the image registration framework. Following the approach taken in fluid dynamics, we consider a set of N particles moving under the action of a kernel G. We begin the paper by explicitly computing the Hamiltonian for the case of N particles, and computing the equations of motion in terms of the Green’s function. Following this, in section 3 we use delta-function particles and Helmholtz-style inertia operators to find the kernels Gk corresponding to Hk metrics. The limit of these, H∞, corresponds to a Gaussian kernel for delta-function particles, where the inertia operator tends to exp( ε2 2). We show how even when blobs are required, rather than particles, we can still conside− r∇ delta-function particles through a change in the inertia operator. We then shift our attention to the case N = 2, and examine the simplest possible interaction of particles. This two body problem is always integrable. We derive the reduced Hamiltonian and consider how the particle dynamics change for different metrics. The most striking feature of the dynamics is the phenomenon of particle capture, in which particles cohere or stick together. In a typical capture orbit, the distance between two particles is (e−at) as t , but there is no actual collision. We identify the regimes of capture and (moreO traditional)→ scattering ∞ orbits. For different metrics, we also show the phase portraits of the dynamics, and the appearance of typical scattering orbits. The analysis shows that the phase portrait depends sensitively on the behaviour of G close to r = 0. Only when the kernel G is smooth at r = 0 and the relative initial velocities of the particles are sufficiently large will the particles capture each other, otherwise they scatter. For the cases k 2 the Green’s function is not sufficiently smooth to typically allow capture orbits.
Recommended publications
  • Phase Plane Methods
    Chapter 10 Phase Plane Methods Contents 10.1 Planar Autonomous Systems . 680 10.2 Planar Constant Linear Systems . 694 10.3 Planar Almost Linear Systems . 705 10.4 Biological Models . 715 10.5 Mechanical Models . 730 Studied here are planar autonomous systems of differential equations. The topics: Planar Autonomous Systems: Phase Portraits, Stability. Planar Constant Linear Systems: Classification of isolated equilib- ria, Phase portraits. Planar Almost Linear Systems: Phase portraits, Nonlinear classi- fications of equilibria. Biological Models: Predator-prey models, Competition models, Survival of one species, Co-existence, Alligators, doomsday and extinction. Mechanical Models: Nonlinear spring-mass system, Soft and hard springs, Energy conservation, Phase plane and scenes. 680 Phase Plane Methods 10.1 Planar Autonomous Systems A set of two scalar differential equations of the form x0(t) = f(x(t); y(t)); (1) y0(t) = g(x(t); y(t)): is called a planar autonomous system. The term autonomous means self-governing, justified by the absence of the time variable t in the functions f(x; y), g(x; y). ! ! x(t) f(x; y) To obtain the vector form, let ~u(t) = , F~ (x; y) = y(t) g(x; y) and write (1) as the first order vector-matrix system d (2) ~u(t) = F~ (~u(t)): dt It is assumed that f, g are continuously differentiable in some region D in the xy-plane. This assumption makes F~ continuously differentiable in D and guarantees that Picard's existence-uniqueness theorem for initial d ~ value problems applies to the initial value problem dt ~u(t) = F (~u(t)), ~u(0) = ~u0.
    [Show full text]
  • The Following Integration Formulas Will Be Provided on the Exam and You
    The following integration formulas will be provided on the exam and you may apply any of these results directly without showing work/proof: Z 1 (ax + b)n+1 (ax + b)n dx = · + C a n + 1 Z 1 eax+b dx = · eax+b + C a Z 1 uax+b dx = · uax+b + C for u > 0; u 6= 1 a ln u Z 1 1 dx = · ln jax + bj + C ax + b a Z 1 sin(ax + b) dx = − · cos(ax + b) + C a Z 1 cos(ax + b) dx = · sin(ax + b) + C a Z 1 sec2(ax + b) dx = · tan(ax + b) + C a Z 1 csc2(ax + b) dx = · cot(ax + b) + C a Z 1 p dx = sin−1(x) + C 1 − x2 Z 1 dx = tan−1(x) + C 1 + x2 Z 1 p dx = sinh−1(x) + C 1 + x2 1 The following formulas for Laplace transform will also be provided f(t) = L−1fF (s)g F (s) = Lff(t)g f(t) = L−1fF (s)g F (s) = Lff(t)g 1 1 1 ; s > 0 eat ; s > a s s − a tf(t) −F 0(s) eatf(t) F (s − a) n! n! tn ; s > 0 tneat ; s > a sn+1 (s − a)n+1 w w sin(wt) ; s > 0 eat sin(wt) ; s > a s2 + w2 (s − a)2 + w2 s s − a cos(wt) ; s > 0 eat cos(wt) ; s > a s2 + w2 (s − a)2 + w2 e−as u(t − a); a ≥ 0 ; s > 0 δ(t − a); a ≥ 0 e−as; s > 0 s u(t − a)f(t) e−asLff(t + a)g δ(t − a)f(t) f(a)e−as Here, u(t) is the unit step (Heaviside) function and δ(t) is the Dirac Delta function Laplace transform of derivatives: Lff 0(t)g = sLff(t)g − f(0) Lff 00(t)g = s2Lff(t)g − sf(0) − f 0(0) Lff (n)(t)g = snLff(t)g − sn−1f(0) − sn−2f 0(0) − · · · − sf (n−2)(0) − f (n−1)(0) Convolution: Lf(f ∗ g)(t)g = Lff(t)gLfg(t)g = Lf(g ∗ f)(t)g 2 1 First Order Linear Differential Equation Differential equations of the form dy + p(t) y = g(t) (1) dt where t is the independent variable and y(t) is the unknown function.
    [Show full text]
  • PHYS2100: Hamiltonian Dynamics and Chaos
    PHYS2100: Hamiltonian dynamics and chaos M. J. Davis September 2006 Chapter 1 Introduction Lecturer: Dr Matthew Davis. Room: 6-403 (Physics Annexe, ARC Centre of Excellence for Quantum-Atom Optics) Phone: (334) 69824 email: [email protected] Office hours: Friday 8-10am, or by appointment. Useful texts Rasband: Chaotic dynamics of nonlinear systems. Q172.5.C45 R37 1990. • Percival and Richards: Introduction to dynamics. QA614.8 P47 1982. • Baker and Gollub: Chaotic dynamics: an introduction. QA862 .P4 B35 1996. • Gleick: Chaos: making a new science. Q172.5.C45 G54 1998. • Abramowitz and Stegun, editors: Handbook of mathematical functions: with formulas, graphs, and• mathematical tables. QA47.L8 1975 The lecture notes will be complete: However you can only improve your understanding by reading more. We will begin this section of the course with a brief reminder of a few essential conncepts from the first part of the course taught by Dr Karen Dancer. 1.1 Basics A mechanical system is known as conservative if F dr = 0. (1.1) I · Frictional or dissipative systems do not satisfy Eq. (1.1). Using vector analysis it can be shown that Eq. (1.1) implies that there exists a potential function 1 such that F = V (r). (1.2) −∇ for some V (r). We will assume that conservative systems have time-independent potentials. A holonomic constraint is a constraint written in terms of an equality e.g. r = a, a> 0. (1.3) | | A non-holonomic constraint is written as an inequality e.g. r a. | | ≥ 1.2 Lagrangian mechanics For a mechanical system of N particles with k holonomic constraints, there are a total of 3N k degrees of freedom.
    [Show full text]
  • Phaser: an R Package for Phase Plane Analysis of Autonomous ODE Systems by Michael J
    CONTRIBUTED RESEARCH ARTICLES 43 phaseR: An R Package for Phase Plane Analysis of Autonomous ODE Systems by Michael J. Grayling Abstract When modelling physical systems, analysts will frequently be confronted by differential equations which cannot be solved analytically. In this instance, numerical integration will usually be the only way forward. However, for autonomous systems of ordinary differential equations (ODEs) in one or two dimensions, it is possible to employ an instructive qualitative analysis foregoing this requirement, using so-called phase plane methods. Moreover, this qualitative analysis can even prove to be highly useful for systems that can be solved analytically, or will be solved numerically anyway. The package phaseR allows the user to perform such phase plane analyses: determining the stability of any equilibrium points easily, and producing informative plots. Introduction Repeatedly, when a system of differential equations is written down, it cannot be solved analytically. This is particularly true in the non-linear case, which unfortunately habitually arises when modelling physical systems. As such, it is common that numerical integration is the only way for a modeller to analyse the properties of their system. Consequently, many software packages exist today to assist in this step. In R, for example, the package deSolve (Soetaert et al., 2010) deals with many classes of differential equation. It allows users to solve first-order stiff and non-stiff initial value problem ODEs, as well as stiff and non-stiff delay differential equations (DDEs), and differential algebraic equations (DAEs) up to index 3. Moreover, it can tackle partial differential equations (PDEs) with the assistance ReacTran (Soetaert and Meysman, 2012).
    [Show full text]
  • 1991-Automated Phase Portrait Analysis by Integrating Qualitative
    From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved. Toyoaki Nishida and Kenji Department of Information Science Kyoto University Sakyo-ku, Kyoto 606, Japan email: [email protected] Abstract intelligent mathematical reasoner. We have chosen two-dimensional nonlinear difFeren- It has been widely believed that qualitative analysis tial equations as a domain and analysis of long-term guides quantitative analysis, while sufficient study has behavior including asymptotic behavior as a task. The not been made from technical viewpoints. In this pa- domain is not too trivial, for it contains wide varieties per, we present a case study with PSX2NL, a pro- of phenomena; while it is not too hard for the first step, gram which autonomously analyzes the behavior of for we can step aside from several hard representational two-dimensional nonlinear differential equations, by in- issues which constitute an independent research sub- tegrating knowledge-based methods and numerical al- ject by themselves. The task is novel in qualitative gorithms. PSX2NL focuses on geometric properties of physics, for nobody except a few researchers has ever solution curves of ordinary differential equations in the addressed it. phase space. PSX2NL is designed based on a couple of novel ideas: (a) a set of flow mappings which is an abstract description of the behavior of solution curves, Analysis of Two-dimensional Nonlinear and (b) a flow grammar which specifies all possible pat- Ordinary ifferentid Equations terns of solution curves, enabling PSX2NL to derive the The following is a typical ordinary differential equation most plausible interpretation when complete informa- (ODE) we investigate in this paper: tion is not available.
    [Show full text]
  • First Integrals and Phase Portraits of Planar Polynomial Differential Cubic Systems with Invariant Straight Lines of Total Multiplicity Eight
    Electronic Journal of Qualitative Theory of Differential Equations 2017, No. 85, 1–35; https://doi.org/10.14232/ejqtde.2017.1.85 www.math.u-szeged.hu/ejqtde/ First integrals and phase portraits of planar polynomial differential cubic systems with invariant straight lines of total multiplicity eight Cristina Bujac and Nicolae Vulpe B Institute of Mathematics and Computer Science, Academy of Science of Moldova 5 Academiei str, Chis, in˘au,MD-2028, Moldova Received 22 April 2017, appeared 2 December 2017 Communicated by Gabriele Villari Abstract. In [C. Bujac, J. Llibre, N. Vulpe, Qual. Theory Dyn. Syst. 15(2016), 327–348] all first integrals and phase portraits were constructed for the family of cubic differential systems with the maximum number of invariant straight lines, i.e. 9 (considered with their multiplicities). Here we continue this investigation for systems with invariant straight lines of total multiplicity eight. For such systems the classification according to the configurations of invariant lines in terms of affine invariant polynomials was done in [C. Bujac, Bul. Acad. S, tiint,e Repub. Mold. Mat. 75(2014), 102–105], [C. Bujac, N. Vulpe, J. Math. Anal. Appl. 423(2015), 1025–1080], [C. Bujac, N. Vulpe, Qual. Theory Dyn. Syst. 14(2015), 109–137], [C. Bujac, N. Vulpe, Electron. J. Qual. Theory Differ. Equ. 2015, No. 74, 1–38], [C. Bujac, N. Vulpe, Qual. Theory Dyn. Syst. 16(2017), 1–30] and all possible 51 configurations were constructed. In this article we prove that all systems in this class are integrable. For each one of the 51 such classes we compute the corresponding first integral and we draw the corresponding phase portrait.
    [Show full text]
  • Math 2280-002 Week 9, March 4-8 5.1-5.3, Introduction to Chapter 6
    Math 2280-002 Week 9, March 4-8 5.1-5.3, introduction to Chapter 6 Mon Mar 4 5.1-5.2 Systems of differential equations - summary so far; converting differential equations (or systems) into equivalent first order systems of DEs; example with pplane visualization and demo. Announcements: Warm-up Exercise: Summary of Chapters 4-5 so far (for reference): Theorem 1 For the IVP x t = F t, x t x t0 = x0 If F t, x is continuous in the t variable and differentiable in its x variable, then there exists a unique solution to the IVP, at least on some (possibly short) time interval t0 t t0 . Theorem 2 For the special case of the first order linear system of differential equations IVP x t P t x t = f t x t0 = x0 If the matrix P t and the vector function f t are continuous on an open interval I containing t0 then a solution x t exists and is unique, on the entire interval. Theorem 3) Vector space theory for first order systems of linear DEs (We noticed the familiar themes... we can completely understand these facts if we take the intuitively reasonable existence-uniqueness Theorem 2 as fact.) 3.1) For vector functions x t differentiable on an interval, the operator L x t x t P t x t is linear, i.e. L x t z t = L x t L z t L c x t = c L x t . 3.2) Thus, by the fundamental theorem for linear transformations, the general solution to the non- homogeneous linear problem x t P t x t = f t t I is x t = xp t xH t where xp t is any single particular solution and xH t is the general solution to the homogeneous problem x t P t x t = 0 .
    [Show full text]
  • One-Dimensional Conservative Systems
    Chapter 3 One-Dimensional Conservative Systems 3.1 Description as a Dynamical System For one-dimensional mechanical systems, Newton’s second law reads mx¨ = F (x) . (3.1) A system is conservative if the force is derivable from a potential: F = dU/dx. The total − energy, 1 2 E = T + U = 2 mx˙ + U(x) , (3.2) is then conserved. This may be verified explicitly: dE d = 1 mx˙ 2 + U(x) dt dt 2 h i ′ = mx¨ + U (x) x˙ = 0 . (3.3) h i Conservation of energy allows us to reduce the equation of motion from second order to first order: dx 2 = E U(x) . (3.4) v dt ±um − ! u Note that the constant E is a constantt of integration. The sign above depends on the ± direction of motion. Points x(E) which satisfy − E = U(x) x(E)= U 1(E) , (3.5) ⇒ where U −1 is the inverse function, are called turning points. When the total energy is E, the motion of the system is bounded by the turning points, and confined to the region(s) 1 2 CHAPTER 3. ONE-DIMENSIONAL CONSERVATIVE SYSTEMS U(x) E. We can integrate eqn. 3.4 to obtain ≤ x m dx′ t(x) t(x )= . (3.6) − 0 ± 2 E U(x′) r xZ0 − p This is to be inverted to obtain the function x(t). Note that there are now two constants of integration, E and x0. Since 1 2 E = E0 = 2 mv0 + U(x0) , (3.7) we could also consider x0 and v0 as our constants of integration, writing E in terms of x0 and v0.
    [Show full text]
  • 18.03 Final Exam Review
    18.03 Final Exam Review Chris Kottke Contents 1 Definitions & Terminology 2 1.1 Single Equations . 2 1.2 Systems of Equations . 3 1.3 Initial Value Problems . 3 2 First Order Equations 4 2.1 Separable Equations . 4 2.2 Linear Equations . 4 2.3 Graphical Methods . 7 2.3.1 Isoclines . 7 2.3.2 Phase Portraits . 8 2.4 Numerical Methods . 10 3 Higher Order Linear Equations 10 3.1 Homogeneous Solutions . 11 3.2 Particular Solutions . 12 3.2.1 Exponential Response . 12 3.2.2 Undetermined Coefficients . 14 3.2.3 Fourier Series for Periodic Inputs . 15 3.3 Laplace Transform Methods . 17 3.3.1 Weight Function, Transfer Function, & Convolution . 19 4 Systems of Equations 20 4.1 Relationship to Higher Order Equations . 21 4.2 Homogeneous Solutions . 22 4.3 Fundamental Matrices & Initial Value Problems . 25 4.4 Inhomogeneous Equations & Variation of Parameters . 27 4.5 Phase Diagrams for Linear Systems . 29 4.6 Nonlinear Systems . 31 A Complex Variables 34 A.1 Multiplication and Division . 35 A.2 Powers and roots . 36 A.3 Trigonometric Identities . 36 A.4 Sinusoidal Identity . 37 B Fourier Series 38 B.1 Periodic Extensions . 38 B.2 Operations on Series . 39 1 C Laplace Transform 40 C.1 Convolution and the Laplace Transform . 43 C.2 Piecewise Functions & Delta Functions . 44 D Matrices 45 D.1 Eigenvalues & Eigenvectors . 46 D.2 Matrix Exponentials . 47 1 Definitions & Terminology 1.1 Single Equations A general differential equation looks like F t; x(t); x0(t); : : : ; x(n)(t) = 0 The order of the equation is the highest order derivative of x(t) which occurs in the equation.
    [Show full text]
  • Chapter 3 One-Dimensional Systems
    Chapter 3 One-Dimensional Systems In this chapter we describe geometrical methods of analysis of one-dimensional dynam- ical systems, i.e., systems having only one variable. An example of such a system is the space-clamped membrane having Ohmic leak current IL ˙ C V = ¡gL(V ¡ EL) : (3.1) Here the membrane voltage V is a time-dependent variable, and the capacitance C, leak conductance gL and leak reverse potential EL are constant parameters described in the previous chapter. We use this and other one-dimensional neural models to introduce and illustrate the most important concepts of dynamical system theory: equilibrium, stability, attractor, phase portrait, and bifurcation. 3.1 Electrophysiological Examples The Hodgkin-Huxley description of dynamics of membrane potential and voltage-gated conductances can be reduced to a one-dimensional system when all transmembrane conductances have fast kinetics. For the sake of illustration, let us consider a space- clamped membrane having leak current and a fast voltage-gated current Ifast having only one gating variable p, Leak I I z }| L { z }|fast { ˙ C V = ¡ gL(V ¡ EL) ¡ g p (V ¡ E) (3.2) p˙ = (p1(V ) ¡ p)=¿(V ) (3.3) with dimensionless parameters C = 1, gL = 1, and g = 1. Suppose that the gating kinetic (3.3) is much faster than the voltage kinetic (3.2), which means that the voltage- sensitive time constant ¿(V ) is very small, i.e. ¿(V ) ¿ 1, in the entire biophysical voltage range. Then, the gating process may be treated as being instantaneous, and the asymptotic value p = p1(V ) may be used
    [Show full text]
  • CDS 101 Precourse Phase Plane Analysis and Stability Melvin Leok
    CDS 101 Precourse Phase Plane Analysis and Stability Melvin Leok Control and Dynamical Systems California Institute of Technology Pasadena, CA, 26 September, 2002. [email protected] http://www.cds.caltech.edu/~mleok/ Control and Dynamical Systems 2 Introduction ¥ Overview ² Equilibrium points ² Stability of equilibria ² Tools for analyzing stability ² Phase portraits and visualization of dynamical systems ² Computational tools 3 Equilibrium and Stability ¥ Equilibrium Points ² Consider a pendulum, under the influence of gravity. ² An Equilibrium Point is a state that does not change under the dynamics. ² The fully down and fully up positions to a pendulum are ex- amples of equilibria. 4 Equilibrium and Stability ¥ Equilibria of Dynamical Systems ² To understand what is an equilibrium point of a dynamical systems, we consider the equation of motion for a pendulum, g θÄ + sin θ = 0; L which is a second-order linear di®erential equation without damp- ing. ² We can rewrite this as a system of ¯rst-order di®erential equations by introducing the velocity variable, v. θ_ = v; g v_ = ¡ sin θ: L 5 Equilibrium and Stability ¥ Equilibria of Dynamical Systems ² The dynamics of the pendulum can then be visualized by plotting the vector ¯eld, (θ_; v_). ² The equilibrium points correspond to the positions at which the vector ¯eld vanishes. 6 Equilibrium and Stability ¥ Stability of Equilibrium Points ² A point is at equilibrium if when we start the system at exactly that point, it will stay at that point forever. ² Stability of an equilibrium point asks the question what happens if we start close to the equilibrium point, does it stay close? ² If we start near the fully down position, we will stay near it, so the fully down position is a stable equilibrium.
    [Show full text]
  • The Simple Plane Pendulum
    The simple plane pendulum Definition: Why study it? • pendulum bob of mass m attached to rigid rod • it is one of the simplest dynamical systems exhi- of length L and negligible mass; biting periodic motion; • pendulum confined to swing in a plane. • a small modification makes it into one of the simplest systems exhibiting chaos. Summary: The equation of motion is L θ d 2 θ g + sinθ = 0 dt2 L mg Go to derivation. 111111111 000000000 Prerequisites: • fundamentals of Newtonian mechanics; • energy; • the harmonic oscillator; Go to Java™ applet • rotational motion. while the potential energy is Introduction V = mg á L – L cos θ é . The pendulum is free to swing in one plane only, We have chosen the potential to be zero when the so we don’t need to worry about a second angle. pendulum is at the bottom of its swing, θ=0. We will neglect the mass of the rod, for sim- This choice is arbitrary. plicity. Then the total energy is 1 E = mL2 θ˙ 2 + mg á L – L cos θ é . 2 L The equation of motion is most easily found by θ using the conservation of energy. Setting dE = 0 dt L – L cos θ 10 10 10 10 10 mg 111111111 000000000 leads to The easiest way to approach this problem is from mL2 θ˙ θ¨ + mgLθ˙ sin θ = 0 the point of view of energy. That way, we don’t . have to talk about any forces or analyze their This has two solutions; either θ˙ = 0 always, or components in various directions.
    [Show full text]