Older Operating Systems

Total Page:16

File Type:pdf, Size:1020Kb

Older Operating Systems Older Operating Systems Class Notes # 17 Windows 9X Memory December 16, 2003 Memory Management Managing memory with Windows 9X is almost the same as with DOS and Windows 3.X. Memory is organized as conventional, upper, and extended as before. Windows 9X has made some improvements in memory management, such as the allocation of memory and in the automation of the process which makes it easier to manage memory for the user. Windows 9X has replaced many old 16-bit device drivers with 32-bit device drivers. These 32-bit drivers are automatically loaded into extended memory. Therefore, this eliminates the need for DEVICE = entries in the CONFIG.SYS file. The new 32-bit drivers are sometimes called virtual device drivers or VxD drivers. These virtual device drivers operate in protected mode and have the .vxd or .386 file extensions. Windows 9X can use the older 16-bit drivers, but it must provide a real-mode environment for these drivers to operate in. These 16-bit drivers are loaded by using entries in the CONFIG.SYS and AUTOEXEC.BAT files. Windows 9X no longer uses SMARTDRV.EXE or SHARE.EXE. Recall, SMARTDRV.EXE is a disk caching program; a program that saves data in memory on the assumption that the same data will be used again. The SHARE program enables support for file and record locking. Windows 9X replaced SMARTDRV.EXE with a 32- bit disk caching file called VCACHE. Also, Windows 9X replaced SHARE.EXE with VSHARE.386, a part of VMM32.EXE that is automatically loaded when Windows starts. Windows 9X uses HIMEM.SYS to manage extended memory just as DOS with the exception that HIMEM.SYS is loaded using IO.SYS and not the CONFIG.SYS file. Windows 9X uses 32-bit drivers and software and therefore, there is no need to use the CONFIG.SYS file. Windows 9X is backward compatible with 16-bit drivers and software. When running DOS applications under Windows 9X, a DOS environment must be provided to the application. For example, to provide a DOS environment for the DOS program called EDIT.COM: • Right click on the filename (located in \Windows\Command directory) and select properties. • Click on the memory tab and you should see what is shown in figure one. • From the memory tab, you can specify how much conventional, expanded, and extended memory will be made available to this application. • The MS-DOS protected mode (DPMI) memory is used to assign the amount of protected mode memory allowed the application. If you check protected in the conventional memory frame, Windows 9X will protect memory used by the system from the application. 1 Figure 1: memory setting for a DOS application (Edit.com) Virtual Memory Virtual memory is using hard drive space so that it acts like RAM memory. Windows stores virtual memory in a file called a swap file. The purpose of virtual memory is to increase the amount of memory available. Virtual memory works at a considerable slower speed than real RAM memory. Virtual memory also uses hard drive space. For Windows 9X to use virtual memory, it must operate in protected mode. Recall, DOS only operate in real mode. Windows 3.X uses 386 enhanced mode, which is protected mode and provides virtual memory to applications. Windows 9X automates the managing of virtual memory. You can override the automation, but serves no purpose. The options that Windows 9X offers are shown by: • Opening the control panel and select system and select the performance tab. The performance dialog box will appear as shown in figure two. • Click the virtual memory button and a dialog box will appear as shown in figure three. The settings are used to tell Windows how to manage the swap file. You can specify the location of the swap file. 2 Figure 2: System properties dialog box Figure 3: Virtual memory dialog box 3 Windows 9X provides virtual memory addresses to DOS and 16-bit Windows application programs by memory paging. The virtual memory manager manages memory paging. Figure four illustrates how Windows 3.X manages memory where application programs share the memory addresses. For example, 64Mbytes of memory addresses are available. The 16-bit applications run in conventional memory, they might store their data in extended memory. Of the 64Mbytes of addresses, some addresses are assigned to RAM and some addresses are assigned to virtual memory contained in swap file on the hard drive. To the applications, there is only one set of memory addresses, and all application programs must share these addresses. Memory addresses 64Mb Virtual memory Hard disk 640Kb 16-bit application Physical RAM memory 16-bit application Figure 4: Windows 3.X memory management Figure five illustrates how Windows 9X manages memory. Windows 9X not only has virtual memory stored in a swap file, but also provides virtual memory addresses to application programs. For example, in figure five you see three sets of virtual memory available. Each set contains 0 to 2Gbytes of addresses, depending on the amount of virtual memory available. Each virtual memory for DOS applications has their own set of virtual memory addresses. Each 32-bit program have their own set of addresses. The 16-bit Windows programs share a single set of virtual memory addresses. In figure five, all virtual addresses map onto the page table, which in turn maps onto either physical memory (RAM) or virtual memory on the hard drive (swap file). Not all virtual memory addresses in Windows 9X have physical or virtual memory assigned to them. These virtual addresses remain unassigned until an application program uses them. The virtual memory manager controls the page table, moving 4kbyte pages in and out of physical memory (RAM). If a program requests memory that the memory manager knows is stored in the swap file, the manager generates a page fault, which causes the manager to go to the drive to return the data from the swap file to RAM. 4 Virtual Memory Page addresses Table 2Gb 16-bit application 16-bit application 0 Virtual memory 2Gb Hard disk DOS application Physical RAM memory 0 2Gb 32-bit application 0 Figure 5: Windows 9X memory mangement Memory addresses A memory address is a number the CPU assigns to ROM or RAM, to locate any part of the memory. Therefore, both RAM and ROM must be assigned memory addresses so that the CPU can access this memory. Each memory address contains one byte of information. The number of address lines on the memory bus limits the amount of CPU memory addresses. For example, a CPU with 32 address lines can address up to 4Gbytes (232 = 4Gb) of memory. The CPU assigns memory addresses to RAM and ROM during the boot stage, and is sometimes called memory mapping. Figure six shows the memory assigned to the various devices during the boot sequence. Typically, each components of a computer system is assigned a portion of RAM and that component is controlled through RAM memory. ROM, on the other hand, is not copied onto RAM. ROM only requires the CPU to assign it memory addresses. Therefore, the ROM programs become part of the total memory available and those programs are executed directly from ROM. 5 CPU assigned memory addresses 00000H Physical RAM 99999H A0000H System BIOS BFFFFH (ROM) C0000H Video card CFFFFH D8000H Video RAM DF000H F0000H Video ROM FFFFFH Network card (Ethernet) Figure 6: CPU assigns memory addresses during booting 6.
Recommended publications
  • Memory Deduplication: An
    1 Memory Deduplication: An Effective Approach to Improve the Memory System Yuhui Deng1,2, Xinyu Huang1, Liangshan Song1, Yongtao Zhou1, Frank Wang3 1Department of Computer Science, Jinan University, Guangzhou, 510632, P. R. China {[email protected][email protected][email protected][email protected]} 2Key Laboratory of Computer System and Architecture, Chinese Academy of Sciences Beijing, 100190, PR China 3 School of Computing,University of Kent, CT27NF, UK [email protected] Abstract— Programs now have more aggressive demands of memory to hold their data than before. This paper analyzes the characteristics of memory data by using seven real memory traces. It observes that there are a large volume of memory pages with identical contents contained in the traces. Furthermore, the unique memory content accessed are much less than the unique memory address accessed. This is incurred by the traditional address-based cache replacement algorithms that replace memory pages by checking the addresses rather than the contents of those pages, thus resulting in many identical memory contents with different addresses stored in the memory. For example, in the same file system, opening two identical files stored in different directories, or opening two similar files that share a certain amount of contents in the same directory, will result in identical data blocks stored in the cache due to the traditional address-based cache replacement algorithms. Based on the observations, this paper evaluates memory compression and memory deduplication. As expected, memory deduplication greatly outperforms memory compression. For example, the best deduplication ratio is 4.6 times higher than the best compression ratio.
    [Show full text]
  • Allgemeines Abkürzungsverzeichnis
    Allgemeines Abkürzungsverzeichnis L.
    [Show full text]
  • Murciano Soto, Joan; Rexachs Del Rosario, Dolores Isabel, Dir
    This is the published version of the bachelor thesis: Murciano Soto, Joan; Rexachs del Rosario, Dolores Isabel, dir. Anàlisi de presta- cions de sistemes d’emmagatzematge per IA. 2021. (958 Enginyeria Informàtica) This version is available at https://ddd.uab.cat/record/248510 under the terms of the license TFG EN ENGINYERIA INFORMATICA,` ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA` DE BARCELONA (UAB) Analisi` de prestacions de sistemes d’emmagatzematge per IA Joan Murciano Soto Resum– Els programes d’Intel·ligencia` Artificial (IA) son´ programes que fan moltes lectures de fitxers per la seva naturalesa. Aquestes lectures requereixen moltes crides a dispositius d’emmagatzematge, i aquestes poden comportar endarreriments en l’execucio´ del programa. L’ample de banda per transportar dades de disc a memoria` o viceversa pot esdevenir en un bottleneck, incrementant el temps d’execucio.´ De manera que es´ important saber detectar en aquest tipus de programes, si les entrades/sortides (E/S) del nostre sistema se saturen. En aquest treball s’estudien diferents programes amb altes quantitats de lectures a disc. S’utilitzen eines de monitoritzacio,´ les quals ens informen amb metriques` relacionades amb E/S a disc. Tambe´ veiem l’impacte que te´ el swap, el qual tambe´ provoca un increment d’operacions d’E/S. Aquest document preten´ mostrar la metodologia utilitzada per a realitzar l’analisi` descrivint les eines i els resultats obtinguts amb l’objectiu de que serveixi de guia per a entendre el comportament i l’efecte de les E/S i el swap. Paraules clau– E/S, swap, IA, monitoritzacio.´ Abstract– Artificial Intelligence (IA) programs make many file readings by nature.
    [Show full text]
  • Strict Memory Protection for Microcontrollers
    Master Thesis Spring 2019 Strict Memory Protection for Microcontrollers Erlend Sveen Supervisor: Jingyue Li Co-supervisor: Magnus Själander Sunday 17th February, 2019 Abstract Modern desktop systems protect processes from each other with memory protection. Microcontroller systems, which lack support for memory virtualization, typically only uses memory protection for areas that the programmer deems necessary and does not separate processes completely. As a result the application still appears monolithic and only a handful of errors may be detected. This thesis presents a set of solutions for complete separation of processes, unleash- ing the full potential of the memory protection unit embedded in modern ARM-based microcontrollers. The operating system loads multiple programs from disk into indepen- dently protected portions of memory. These programs may then be started, stopped, modified, crashed etc. without affecting other running programs. When loading pro- grams, a new allocation algorithm is used that automatically aligns the memories for use with the protection hardware. A pager is written to satisfy additional run-time demands of applications, and communication primitives for inter-process communication is made available. Since every running process is unable to get access to other running processes, not only reliability but also security is improved. An application may be split so that unsafe or error-prone code is separated from mission-critical code, allowing it to be independently restarted when an error occurs. With executable and writeable memory access rights being mutually exclusive, code injection is made harder to perform. The solution is all transparent to the programmer. All that is required is to split an application into sub-programs that operates largely independently.
    [Show full text]
  • Understanding the Microsoft Office 2013 Protected-View Sandbox
    MWRI PUBLIC UNDERSTANDING THE MICROSOFT OFFICE 2013 PROTECTED-VIEW SANDBOX Yong Chuan, Koh (@yongchuank) 2015/07/09 mwrinfosecurity.com | © MWR InfoSecurity MWRI PUBLIC MWRI PUBLIC Table of Contents 1. Introduction .................................................................................................................... 3 2. Sandbox Internals ............................................................................................................. 4 2.1 Architecture .............................................................................................................. 4 2.1.1 Interception Component ......................................................................................... 4 2.1.2 Elevation Policy Manager ........................................................................................ 4 2.1.3 Inter-Process Communication ................................................................................... 5 2.2 Sandbox Restrictions.................................................................................................... 6 2.2.1 Sandbox Initialization ............................................................................................ 6 2.2.2 File Locations .................................................................................................... 12 2.2.3 Registry Keys ..................................................................................................... 12 2.2.4 Network Connections ..........................................................................................
    [Show full text]
  • Hiding Process Memory Via Anti-Forensic Techniques
    DIGITAL FORENSIC RESEARCH CONFERENCE Hiding Process Memory via Anti-Forensic Techniques By: Frank Block (Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and ERNW Research GmbH) and Ralph Palutke (Friedrich-Alexander Universität Erlangen-Nürnberg) From the proceedings of The Digital Forensic Research Conference DFRWS USA 2020 July 20 - 24, 2020 DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development. https://dfrws.org Forensic Science International: Digital Investigation 33 (2020) 301012 Contents lists available at ScienceDirect Forensic Science International: Digital Investigation journal homepage: www.elsevier.com/locate/fsidi DFRWS 2020 USA d Proceedings of the Twentieth Annual DFRWS USA Hiding Process Memory Via Anti-Forensic Techniques Ralph Palutke a, **, 1, Frank Block a, b, *, 1, Patrick Reichenberger a, Dominik Stripeika a a Friedrich-Alexander Universitat€ Erlangen-Nürnberg (FAU), Germany b ERNW Research GmbH, Heidelberg, Germany article info abstract Article history: Nowadays, security practitioners typically use memory acquisition or live forensics to detect and analyze sophisticated malware samples. Subsequently, malware authors began to incorporate anti-forensic techniques that subvert the analysis process by hiding malicious memory areas. Those techniques Keywords: typically modify characteristics, such as access permissions, or place malicious data near legitimate one, Memory subversion in order to prevent the memory from being identified by analysis tools while still remaining accessible.
    [Show full text]
  • Virtual Memory - Paging
    Virtual memory - Paging Johan Montelius KTH 2020 1 / 32 The process code heap (.text) data stack kernel 0x00000000 0xC0000000 0xffffffff Memory layout for a 32-bit Linux process 2 / 32 Segments - a could be solution Processes in virtual space Address translation by MMU (base and bounds) Physical memory 3 / 32 one problem Physical memory External fragmentation: free areas of free space that is hard to utilize. Solution: allocate larger segments ... internal fragmentation. 4 / 32 another problem virtual space used code We’re reserving physical memory that is not used. physical memory not used? 5 / 32 Let’s try again It’s easier to handle fixed size memory blocks. Can we map a process virtual space to a set of equal size blocks? An address is interpreted as a virtual page number (VPN) and an offset. 6 / 32 Remember the segmented MMU MMU exception no virtual addr. offset yes // < within bounds index + physical address segment table 7 / 32 The paging MMU MMU exception virtual addr. offset // VPN available ? + physical address page table 8 / 32 the MMU exception exception virtual address within bounds page available Segmentation Paging linear address physical address 9 / 32 a note on the x86 architecture The x86-32 architecture supports both segmentation and paging. A virtual address is translated to a linear address using a segmentation table. The linear address is then translated to a physical address by paging. Linux and Windows do not use use segmentation to separate code, data nor stack. The x86-64 (the 64-bit version of the x86 architecture) has dropped many features for segmentation.
    [Show full text]
  • Chapter 4 Memory Management and Virtual Memory Asst.Prof.Dr
    Chapter 4 Memory management and Virtual Memory Asst.Prof.Dr. Supakit Nootyaskool IT-KMITL Object • To discuss the principle of memory management. • To understand the reason that memory partitions are importance for system organization. • To describe the concept of Paging and Segmentation. 4.1 Difference in main memory in the system • The uniprogramming system (example in DOS) allows only a program to be present in memory at a time. All resources are provided to a program at a time. Example in a memory has a program and an OS running 1) Operating system (on Kernel space) 2) A running program (on User space) • The multiprogramming system is difference from the mentioned above by allowing programs to be present in memory at a time. All resource must be organize and sharing to programs. Example by two programs are in the memory . 1) Operating system (on Kernel space) 2) Running programs (on User space + running) 3) Programs are waiting signals to execute in CPU (on User space). The multiprogramming system uses memory management to organize location to the programs 4.2 Memory management terms Frame Page Segment 4.2 Memory management terms Frame Page A fixed-lengthSegment block of main memory. 4.2 Memory management terms Frame Page A fixed-length block of data that resides in secondary memory. A page of data may temporarily beSegment copied into a frame of main memory. A variable-lengthMemory management block of data that residesterms in secondary memory. A segment may temporarily be copied into an available region of main memory or the segment may be divided into pages which can be individuallyFrame copied into mainPage memory.
    [Show full text]
  • Module 4: Memory Management the Von Neumann Principle for the Design and Operation of Computers Requires That a Program Has to Be Primary Memory Resident to Execute
    Operating Systems/Memory management Lecture Notes Module 4: Memory Management The von Neumann principle for the design and operation of computers requires that a program has to be primary memory resident to execute. Also, a user requires to revisit his programs often during its evolution. However, due to the fact that primary memory is volatile, a user needs to store his program in some non-volatile store. All computers provide a non-volatile secondary memory available as an online storage. Programs and files may be disk resident and downloaded whenever their execution is required. Therefore, some form of memory management is needed at both primary and secondary memory levels. Secondary memory may store program scripts, executable process images and data files. It may store applications, as well as, system programs. In fact, a good part of all OS, the system programs which provide services (the utilities for instance) are stored in the secondary memory. These are requisitioned as needed. The main motivation for management of main memory comes from the support for multi- programming. Several executables processes reside in main memory at any given time. In other words, there are several programs using the main memory as their address space. Also, programs move into, and out of, the main memory as they terminate, or get suspended for some IO, or new executables are required to be loaded in main memory. So, the OS has to have some strategy for main memory management. In this chapter we shall discuss the management issues and strategies for both main memory and secondary memory.
    [Show full text]
  • OS Paging and Buffer Management
    OS Paging and Bu↵er Management Using the Virtual-Memory Paging Mechanism to Balance Hot/Cold Data in Memory and HDD Jana Lampe TU Kaiserslautern LGIS Seminar SS 2014 Optimizing Data Management on New Hardware 1 Introduction 1.1 Motivation Traditional database systems follow the design principle that all data is stored on hard disk where records are accessible via indexing structures and loaded into main-memory as soon as they are requested. Since memory prices have dropped significantly during the last three decades, new database systems have been designed that allow faster access to the data by storing all data inside the main-memory, e.g. H-Store [9]. Notwithstanding the above, also durable storage technologies have made con- siderable progress towards larger capacity, more input/output operations per second as well as reduced cost per storage unit at the same time. Solid-state drives (SSDs) have entered the market and, using the non-volatile NAND-flash technology, convince by their reading and writing speed, although they are still about ten times more expensive than common HDDs. Another promising tech- nology is phase-change memory (PCM), but it is still in research state. Now one could ask, why all the data is stored in memory. If there are records that are not accessed that frequently, would it not be cheaper to store them on a secondary storage device such as HDD or SSD? Moreover, energy consump- tion would decrease and more space would be available to temporarily store intermediate results thereby accelerating query processing. To answer this question, Gray and Putzolu proposed in [5] the 5-minute rule, which says, that a record should be kept in memory if it has accessed at least every 5 minutes (the break-even interval).
    [Show full text]
  • Protected Mode - Wikipedia
    2/12/2019 Protected mode - Wikipedia Protected mode In computing, protected mode, also called protected virtual address mode,[1] is an operational mode of x86- compatible central processing units (CPUs). It allows system software to use features such as virtual memory, paging and safe multi-tasking designed to increase an operating system's control over application software.[2][3] When a processor that supports x86 protected mode is powered on, it begins executing instructions in real mode, in order to maintain backward compatibility with earlier x86 processors.[4] Protected mode may only be entered after the system software sets up one descriptor table and enables the Protection Enable (PE) bit in the control register 0 (CR0).[5] Protected mode was first added to the x86 architecture in 1982,[6] with the release of Intel's 80286 (286) processor, and later extended with the release of the 80386 (386) in 1985.[7] Due to the enhancements added by protected mode, it has become widely adopted and has become the foundation for all subsequent enhancements to the x86 architecture,[8] although many of those enhancements, such as added instructions and new registers, also brought benefits to the real mode. Contents History The 286 The 386 386 additions to protected mode Entering and exiting protected mode Features Privilege levels Real mode application compatibility Virtual 8086 mode Segment addressing Protected mode 286 386 Structure of segment descriptor entry Paging Multitasking Operating systems See also References External links History https://en.wikipedia.org/wiki/Protected_mode
    [Show full text]
  • A+ Certification for Dummies, 2Nd Edition.Pdf
    A+ Certification for Dummies, Second Edition by Ron Gilster ISBN: 0764508121 | Hungry Minds © 2001 , 567 pages Your fun and easy guide to Exams 220-201 and 220-202! A+ Certification For Dummies by Ron Gilster Published by Hungry Minds, Inc. 909 Third Avenue New York, NY 10022 www.hungryminds.com www.dummies.com Copyright © 2001 Hungry Minds, Inc. All rights reserved. No part of this book, including interior design, cover design, and icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or otherwise) without the prior written permission of the publisher. Library of Congress Control Number: 2001086260 ISBN: 0-7645-0812-1 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 2O/RY/QU/QR/IN Distributed in the United States by Hungry Minds, Inc. Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United Kingdom; by IDG Norge Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for Australia and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia, Thailand, Indonesia, and Hong Kong; by Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for France; by International Thomson Publishing for Germany, Austria and Switzerland; by Distribuidora Cuspide for Argentina; by LR International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer Publishing Corporation, Inc., for the Philippines; by Contemporanea de Ediciones for Venezuela; by Express Computer Distributors for the Caribbean and West Indies; by Micronesia Media Distributor, Inc.
    [Show full text]