Palaeoecology (Communications Arising)

Total Page:16

File Type:pdf, Size:1020Kb

Palaeoecology (Communications Arising) brief communications However, Mongolia was characterized in and Chaoyangia fall outside Ornithurae shore birds, are placed as derived forms the Late Cretaceous by extensive lakes, in Feduccia’s own work. The explicit within Aves8,9. Thus, if the ecologies that are possibly with marine connections, and by cladistic definition of Ornithurae (most basal to the crown clade are bracketed, no the Campanian it would perhaps be most recent common ancestor of Hesperornithi- support is found for such a bottleneck. accurate to describe it as a desert, as in formes plus Aves and all descendants2) Apsaravis, because of its phylogenetic South Africa, with a swampy inland delta8. is less inclusive than Feduccia’s more sub- placement, constrains the inference of the Small, possibly volant hesperornithiforms jective definition (taxa other than those ecologies of the most recent common and Presbyornis, a widespread wader with that are not ‘modern’ enough to be ancestor of the avian crown clade. We do webbed feet, have been found at nearby ornithurine). Feduccia’s ‘Ornithurae’ is not understand how an ornithurine with sites of about the same age9. predicated on the existence of a ‘Sauriurae’ no ‘shore bird’ morphologies, from a dune- I consider Apsaravis to have little to or the paraphyletic group that contains field10, can be interpreted as compatible contribute to our understanding of avian these primitive taxa. The fact that Apsaravis with Feduccia’s idea1 of ecological restric- evolution, and its lack of a clear relationship and our analyses add to the mounting tion of these taxa to shorelines and marine with any kind of modern bird makes its evidence3,4 against sauriurine monophyly environments. If Apsaravis can simply significance ambiguous. If Apsaravis is not has been overlooked in Feduccia’s estima- be assumed, without consideration of phy- related to any modern ornithurine, how can tion of the importance of Apsaravis. logenetic tests, to have flown from an it tell us anything important about the Other specimens that we did not consid- unknown nearby lake, then we do not see evolutionary questions raised by Norell er are problematic and underscore the how Feduccia’s hypothesis is testable. and Clarke? importance of well preserved and phyloge- Julia A. Clarke*, Mark A. Norell† Alan Feduccia netically placed taxa such as Apsaravis. *Department of Geology and Geophysics, Department of Biology, University of North Carolina, Feduccia did not include the fragmentary Yale University, New Haven, Chapel Hill, North Carolina 27599-3280, USA Otogornis, Ambiortus and Gansus in his Connecticut 06520-8109, USA e-mail: [email protected] analyses5. Although he claims that Chaoyan- e-mail: [email protected] 1. Norell, M. A. & Clarke, J. A. Nature 409, 181–184 (2001). gia possesses a “toothed skull”, the holotype †Division of Paleontology, American Museum 2. Feduccia, A. The Origin and Evolution of Birds 2nd edn actually consists only of a torso and partial of Natural History, 79th Street at Central Park (Yale Univ. Press, New Haven, Connecticut, 1999). hindlimbs. The “toothed skull” belongs to a West, New York, New York 10024-5192, USA 3. Hou, L.-H., Martin, L. D., Zhou, Z. H. & Feduccia, A. Science specimen once referred to as Chaoyangia5 274, 1164–1167 (1996). 1. Feduccia, A. The Origin and Evolution of Birds 2nd edn (Yale 4. Feduccia, A. Science 267, 637–638 (1995). but later identified as the holotype of Univ. Press, New Haven, Connecticut, 1999). 6 5. Dyke, G. J. & Mayr, G. Nature 399, 317–318 (1999). Songlingornis linghensis . This specimen can- 2. Chiappe, L. M. Alcheringa 15, 333–338 (1991). 6. Bleiweiss, R. Geology 26, 323–326 (1998). not be referred to Chaoyangia (as indeed it 3. Chiappe, L. M. Nature 378, 349–355 (1995). 4. Forster, C. A., Chiappe, L. M. & Sampson, S. D. Science 382, 7. Marshall, C. R. Geology 27, 95–96 (1999). has not been6) as no element known from 8. Shuvalov, V. F. in The Cretaceous Stratigraphy and 532–534 (1996). Palaeobiogeography of Mongolia (eds Benton, M. J. et al.) the holotype is also represented in the 5. Hou L.-H., Martin, L. D., Zhou, Z.-H. & Feduccia, A. Science 256–278 (Cambridge Univ. Press, Cambridge, referred specimen. 274, 1164–1167 (1996). 2000). Although we did not comment on the 6. Hou, L.-H. Mesozoic Birds of China (Taiwan Provincial Feng 9. Kurochkin, E. N. in The Cretaceous Stratigraphy Huang Ku Bird Park, Nan Tou, 1997). and Paleobiology of Mongolia (eds Benton, M. J. et al.) implications of Apsaravis for the timing of 7. Marshall, C. R. Geology 27, 95–96 (1999). 533–559 (Cambridge Univ. Press, Cambridge, 2000). the origin of Aves, Feduccia’s conjecture 8. Groth, J. G. & Barrowclough, G. F. Mol. Phylog. Evol. 12, that it cannot inform our understanding of 115–123 (1999). 9. Cracraft, J. & Clarke, J. A. in Perspectives on the Origin and this origin (because it is not part of an Early Evolution of Birds: Proceedings of the International extant lineage) is incompatible with his Symposium in Honor of John H. Ostrom (Peabody Mus. Nat. Norell and Clarke reply — Given that own arguments. In recounting the origin of Hist., New Haven, Connecticut, in the press). Feduccia has explicitly stated that there is Aves, he invokes taxa such as ichthyornithi- 10.Loope, D. B., Dingus, L., Swisher, C. C. & Minjin, C. Geology 26, 27–30 (1998). a near absence of ornithurine birds in forms and hesperornithiforms, which are Late Cretaceous continental deposits1 and not parts of extant lineages. Furthermore, it has speculated that ornithurines may have has been argued7 that gap analyses may be been more or less restricted to shoreline and consistent with Cretaceous or Tertiary retraction marine deposits during this time1, we do diversification of avian lineages, depending Furtive mating in female chimpanzees not believe that we misrepresented Feduc- on what model of diversification rate and Pascal Gagneux, David S. Woodruff & Christophe Boesch cia’s hypothesis. We reported the finding recovery potential is considered realistic. Nature 387, 358–359 (1997). of an almost complete skeleton of an Reasoning derived from phylogenetic In this genetic analysis of a community of chimpanzees in ornithurine from Late Cretaceous conti- analysis is a powerful way to test hypoth- the Taï forest, Côte d’Ivoire (carried out in 1994), we nental deposits, and do not see how this eses of relationships or the evolution of concluded that 7 out of 13 offspring were sired by males specimen could have no bearing on Feduc- morphology (for example, enantiornithine not found in the mother’s social group. Now a study of cia’s previous arguments. monophyly and novelties in the flight paternity using quantified and automated methods shows Feduccia comments that other Mesozoic apparatus). We used a phylogenetic test to that the incidence of extra-group paternity is much lower bird specimens are more, or just as, useful assess the idea that transitional ‘shore birds’ (1 out of 14 offspring; ref. 1). Direct comparison at the for tackling questions concerning the origin gave rise to all extant birds through an only satellite locus re-examined reveals that 10 out of 66 of extant bird lineages. Although all speci- ecological bottleneck1. alleles (15%) and 9 out of 33 individuals (27%) were mens contain some information, we If such a bottleneck occurred, then when inaccurately genotyped. Possible sources of error in the disagree with Feduccia’s current assertion ecology is bracketed phylogenetically for first study include allelic dropout in the amplification of that Apsaravis is simply one of a group living birds, ‘shore bird’ morphology and degraded DNA from field-collected samples of shed hair, of “abundant” ornithurine fossils. The ecology should be basal to the crown clade, inconsistent visual autoradiograph interpretation (stutter specimens he mentions are either not as well as in its nearest sister taxa. However, bands), contamination and sample mix-up. The new ornithurine or are so poorly preserved that virtually all molecular and morphological analysis confirms that extra-group paternity can occur in they have not shed much light on their own evidence places ‘land birds’ (tinamous, nature, but shows that the social community probably phylogenetic positions, let alone on broader ratites, galliforms and anseriforms, for corresponds to the reproductive unit in chimpanzees. 8,9 patterns of avian evolution. example) at the base of Aves . Charadri- 1. Vigilant, L., Hofreiter, M., Siedel, H. & Boesch, C. Proc. Natl The two “ornithurine” birds Liaoningornis iformes, the extant lineage referred to as Acad. Sci. USA 98, 12890–12895 (2001). 508 © 2001 Macmillan Magazines Ltd NATURE | VOL 414 | 29 NOVEMBER 2001 | www.nature.com.
Recommended publications
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Supplemental Figs S1-S6
    Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds Chi Zhang1,2,* and Min Wang1,2 1Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China ∗Corresponding author: E-mail: [email protected] Supplementary Information Figures Dromaeosauridae Archaeopteryx Jeholornis Chongmingia Sapeornis Confuciusornis_sanctus Changchengornis Confuciusornis_dui Yangavis Eoconfuciusornis Pengornis Eopengornis Protopteryx 15.5 Boluochia Longipteryx Longirostravis Rapaxavis Shanweiniao Concornis Elsornis Gobipteryx Neuquenornis Eoalulavis Cathayornis Eocathayornis Eoenantiornis Linyiornis mean relative rate Fortunguavis Sulcavis Bohaiornis 0.3 Parabohaiornis Longusunguis Zhouornis Shenqiornis Vescornis Dunhuangia 1.0 Piscivorenantiornis Pterygornis Qiliania Cruralispennia Monoenantiornis Archaeorhynchus Jianchangornis Schizooura Bellulornis Vorona Patagopteryx Songlingornis Iteravis Yanornis clade probability Yixianornis Piscivoravis Longicrusavis 0.5 Hongshanornis Parahongshanornis Archaeornithura Tianyuornis Apsaravis Gansus Ichthyornis Vegavis Anas Hesperornis Gallus Parahesperornis Baptornis_varneri Baptornis_advenus Enaliornis -175 -150 -125 -100 - 7 5 - 5 0 - 2 5 0 Figure S1. Dated phylogeny (time tree) of the Mesozoic birds under the partitioned analysis. The color of the branch represents the mean relative
    [Show full text]
  • Phylogenetic Position of Ornithomimosauria in Coelurosauria with Comments on the Relationship of Ornithomimosaurs and Alvarezsaurids
    ver/化石研究会会誌 PDF化/08080079 化石研究会誌41巻1号/本文/5 25‐32 欧文 2008.09.24 09. 化石研究会会誌 Journal of Fossil Research, Vol.41(1),25-32(2008) [Original report] Phylogenetic position of Ornithomimosauria in Coelurosauria with comments on the relationship of ornithomimosaurs and alvarezsaurids KOBAYASHI, Yoshitsugu* Abstract The phylogenetic position of Ornithomimosauria within Coerulosauria is discussed. Most of previous phylogenetic analyses suggested that Ornithomimosauria is basal coelurosaur dinosaurs (Tyrannosauridae is the most basal taxon). One study suggested that ornithomimosaurs and alvarezsaurids form a monophyly. This study argues an ornithomimosaurs-alvarezsaurids relationship and supports the idea that they are probably not closely related. Additional information from this study are that two characters for the ornithomimosaur-alvarezsaurid monophyly from the previous study (metacarpals I-III extent of shaft-to-shaft contact 60-70% of shafts and metacarpal I length at least 60% that of metacarapal II) are not supported (roughly 20% contact between metacarpals II and III, less than 50% shaft-to shaft contact in metacarpals I and II in some taxa, and metacarpal I in Harpymimus rougly 50% of metacarpal II). A phylogenetic analysis in this study suggests that the features, supporting a close relationship between ornithomimsoaurs and alvarezsaurids in the previous study are from derived ornithomimids, not primitive forms. Key words: Dinosauria, Coelurosauria, Ornithomimosauria, Alvarezsauridae, phylogeny Introduction ornithomimosaur genera were placed in the Ornithomimosauria are a group of theropod families Harpymimidae (includes Harpymimus) dinosaurs, each of which resembles modern ground and Garudimimidae (includes Garudimimus) (Barsbold, birds in having a beak-like jaw and lightly built body 1981 ; Barsbold and Perle, 1984) from Mongolia with long, slender limbs (Fig.
    [Show full text]
  • Unenlagiid Theropods: Are They Members of the Dromaeosauridae (Theropoda, Maniraptora)?
    “main” — 2011/2/10 — 14:01 — page 117 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 117-162 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)? , FEDERICO L. AGNOLIN1 2 and FERNANDO E. NOVAS1 1Laboratorio de Anatomía Comparada y Evolución de los Vertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Ángel Gallardo, 470 (1405BDB), Buenos Aires, Argentina 2Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y Antropología CEBBAD, Universidad Maimónides, Valentín Virasoro 732 (1405BDB), Buenos Aires, Argentina Manuscript received on November 9, 2009; accepted for publication on June 21, 2010 ABSTRACT In the present paper we analyze the phylogenetic position of the derived Gondwanan theropod clade Unen- lagiidae. Although this group has been frequently considered as deeply nested within Deinonychosauria and Dromaeosauridae, most of the features supporting this interpretation are conflictive, at least. Modification of integrative databases, such as that recently published by Hu et al. (2009), produces significant changes in the topological distribution of taxa within Deinonychosauria, depicting unenlagiids outside this clade. Our analysis retrieves, in contrast, a monophyletic Avialae formed by Unenlagiidae plus Aves. Key words: Gondwana, Deinonychosauria, Dromaeosauridae, Unenlagiidae, Avialae. INTRODUCTION Until recently, the deinonychosaurian fossil record has been geographically restricted to the Northern Hemisphere (Norell and Makovicky 2004), but recent discoveries demonstrated that they were also present and highly diversified in the Southern landmasses, suggesting that an important adaptive radiation took place in Gondwana during the Cretaceous. Gondwanan dromaeosaurids have been documented from Turonian through Maastrichtian beds of Argentina (Makovicky et al.
    [Show full text]
  • A Second Cretaceous Ornithuromorph Bird from the Changma Basin, Gansu Province, Northwestern China Hai-Lu You,Jessie Atterholt
    1 http://app.pan.pl/acta55/app55-You_etal_SOM.pdf SUPPLEMENTARY ONLINE MATERIAL FOR A second Cretaceous ornithuromorph bird from the Changma Basin, Gansu Province, northwestern China Hai-Lu You, Jessie Atterholt, Jingmai K. O’Connor, Jerald D. Harris, Matthew C. Lamanna and Da-Qing Li Published in Acta Palaeontologica Polonica 2010 55 (4): 617-625. doi: 10.4202/app.2009.0095 SOM_1 Hypothesized phylogenetic position of Ornithuromorpha gen. et sp. indet. (FRDC-05-CM-021 [05-CM-021, indicated by sternum]) from the Early Cretaceous of the Changma Basin, northwestern Gansu Province, China. Two most parsimonious trees (A, B) of 592 steps (CI = 47; RCI = 47; RI = 67) recovered by cladistic analysis. Other specimen numbers correspond to undescribed enantiornithine fossils in the FRDC collection. http://app.pan.pl/SOM/app55-You_etal_SOM/SOM_1.bmp SOM_2 Apomorphies supporting nodes (with absolute/relative [0-100] Bremer support values in parentheses) from one of the two most parsimonious trees recovered by the present phylogenetic analysis (depicted in SOM_1:A). Confuciusornithidae (3/45): char 62: 0 --> 2 char 128: 1 --> 2 char 172: 0 --> 1 char 173: 0 --> 1 char 231: 0 --> 2 2 Zhongornis + Confuciusornithidae (1/4): char 35: 0 --> 1 char 103: 1 --> 0 char 143: 1 --> 0 char 175: 1 --> 0 Shanweiniao + Longirostravis (2/8): char 171: 0 --> 1 char 209: 0 --> 1 Longipterygidae (2/38): char 5: 0 --> 1 char 79: 0 --> 1 char 196: 0 --> 1 Eoalulavis + Liaoningornis (1/8): char 117: 2 --> 3 Gobipteryx + Vescornis (1/8): char 77: 1 --> 0 char 238: 0 -->
    [Show full text]
  • Birdlike Growth and Mixed-Age Flocks in Avimimids (Theropoda
    www.nature.com/scientificreports OPEN Birdlike growth and mixed-age focks in avimimids (Theropoda, Oviraptorosauria) G. F. Funston1*, P. J. Currie 1, M. J. Ryan2 & Z.-M. Dong3 Avimimids were unusual, birdlike oviraptorosaurs from the Late Cretaceous of Asia. Initially enigmatic, new information has ameliorated the understanding of their anatomy, phylogenetic position, and behaviour. A monodominant bonebed from the Nemegt Formation of Mongolia showed that some avimimids were gregarious, but the site is unusual in the apparent absence of juveniles. Here, a second monodominant avimimid bonebed is described from the Iren Dabasu Formation of northern China. Elements recovered include numerous vertebrae and portions of the forelimbs and hindlimbs, representing a minimum of six individuals. Histological sampling of two tibiotarsi from the bonebed reveals rapid growth early in ontogeny followed by unexpectedly early onset of fusion and limited subsequent growth. This indicates that avimimids grew rapidly to adult size, like most extant birds but contrasting other small theropod dinosaurs. The combination of adults and juveniles in the Iren Dabasu bonebed assemblage provides evidence of mixed-age focking in avimimids and the onset of fusion in young individuals suggests that some of the individuals in the Nemegt Formation bonebed may have been juveniles. Regardless, these individuals were likely functionally analogous to adults, and this probably facilitated mixed-age focking by reducing ontogenetic niche shift in avimimids. Avimimidae was an enigmatic, monogeneric family of oviraptorosaurs from China and Mongolia (Fig. 1). Avimimus was frst described by Kurzanov1 and its bird-like morphology immediately confused palaeontologists. Although regarded as a non-avian theropod by Kurzanov1, other workers interpreted its mosaic of features as similar to those of a fightless avian2, a sauropod3, and even an ornithopod dinosaur3.
    [Show full text]
  • Redalyc.Unenlagiid Theropods: Are They Members of the Dromaeosauridae (Theropoda, Maniraptora)?
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil AGNOLIN, FEDERICO L.; NOVAS, FERNANDO E. Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)? Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 117-162 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 14:01 — page 117 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 117-162 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)? , FEDERICO L. AGNOLIN1 2 and FERNANDO E. NOVAS1 1Laboratorio de Anatomía Comparada y Evolución de los Vertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Ángel Gallardo, 470 (1405BDB), Buenos Aires, Argentina 2Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y Antropología CEBBAD, Universidad Maimónides, Valentín Virasoro 732 (1405BDB), Buenos Aires, Argentina Manuscript received on November 9, 2009; accepted for publication on June 21, 2010 ABSTRACT In the present paper we analyze the phylogenetic position of the derived Gondwanan theropod clade Unen- lagiidae. Although this group has been frequently considered as deeply nested within Deinonychosauria and Dromaeosauridae, most of the features supporting this interpretation are conflictive, at least.
    [Show full text]
  • Chapter 4 the Biogeography of Coelurosaurian Theropods and Its Impact on Their Evolutionary History
    Chapter 4 The Biogeography of Coelurosaurian Theropods and Its Impact on Their Evolutionary History ANYANG DING,1 MICHAEL PITTMAN,1 PAUL UPCHURCH,2 JINGMAI O’CONNOR,3 DANIEL J. FIELD,4 AND XING XU3 ABSTRACT The Coelurosauria are a group of mostly feathered theropods that gave rise to birds, the only dinosaurians that survived the Cretaceous-Paleogene extinction event and are still found today. Between their first appearance in the Middle Jurassic up to the end Cretaceous, coelurosaurians were party to dramatic geographic changes on the Earth’s surface, including the breakup of the supercon- tinent Pangaea, and the formation of the Atlantic Ocean. These plate tectonic events are thought to have caused vicariance or dispersal of coelurosaurian faunas, influencing their evolution. Unfortu- nately, few coelurosaurian biogeographic hypotheses have been supported by quantitative evidence. Here, we report the first, broadly sampled quantitative analysis of coelurosaurian biogeography using the likelihood-based package BioGeoBEARS. Mesozoic geographic configurations and changes are reconstructed and employed as constraints in this analysis, including their associated uncertainties. We use a comprehensive time-calibrated coelurosaurian evolutionary tree produced from the The- ropod Working Group phylogenetic data matrix. Six biogeographic models in the BioGeoBEARS package with different assumptions about the evolution of spatial distributions are tested against geographic constraints. Our results statistically favor the DIVALIKE+J and DEC+J models, which allow vicariance and founder events, supporting continental vicariance as an important factor in coelurosaurian evolution. Ancestral range estimation indicates frequent dispersal events via the Apu- lian route (connecting Europe and Africa during the Early Cretaceous) and the Bering land bridge (connecting North America and Asia during the Late Cretaceous).
    [Show full text]
  • A New Paravian Dinosaur from the Late Jurassic of North America Supports a Late Acquisition of Avian flight
    A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight Scott Hartman1, Mickey Mortimer2, William R. Wahl3, Dean R. Lomax4, Jessica Lippincott3 and David M. Lovelace5 1 Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA 2 Independent, Maple Valley, WA, USA 3 Wyoming Dinosaur Center, Thermopolis, WY, USA 4 School of Earth and Environmental Sciences, The University of Manchester, Manchester, UK 5 University of Wisconsin Geology Museum, University of Wisconsin-Madison, Madison, WI, USA ABSTRACT The last two decades have seen a remarkable increase in the known diversity of basal avialans and their paravian relatives. The lack of resolution in the relationships of these groups combined with attributing the behavior of specialized taxa to the base of Paraves has clouded interpretations of the origin of avialan flight. Here, we describe Hesperornithoides miessleri gen. et sp. nov., a new paravian theropod from the Morrison Formation (Late Jurassic) of Wyoming, USA, represented by a single adult or subadult specimen comprising a partial, well-preserved skull and postcranial skeleton. Limb proportions firmly establish Hesperornithoides as occupying a terrestrial, non-volant lifestyle. Our phylogenetic analysis emphasizes extensive taxonomic sampling and robust character construction, recovering the new taxon most parsimoniously as a troodontid close to Daliansaurus, Xixiasaurus, and Sinusonasus. Multiple alternative paravian topologies have similar degrees of support, but proposals of basal paravian archaeopterygids, avialan microraptorians, and Rahonavis being closer to Pygostylia than archaeopterygids or unenlagiines are strongly rejected. All parsimonious results support the hypothesis that each early paravian clade was plesiomorphically flightless, raising the possibility that avian Submitted 10 September 2018 flight originated as late as the Late Jurassic or Early Cretaceous.
    [Show full text]
  • Chapter 2 the Fossil Record of Mesozoic and Paleocene Pennaraptorans
    Chapter 2 The Fossil Record of Mesozoic and Paleocene Pennaraptorans MICHAEL PITTMAN,1 JINGMAI O’CONNOR,2 EDISON TSE,1 PETER MAKOVICKY,3 DANIEL J. FIELD,4 WAISUM MA,5 ALAN H. TURNER,6 MARK A. NORELL,7 RUI PEI,2 AND XING XU2 ABSTRACT An unabated surge of new and important discoveries continues to transform knowledge of pen- naraptoran biology and evolution amassed over the last 150+ years. This chapter summarizes prog- ress made thus far in sampling the pennaraptoran fossil record of the Mesozoic and Paleocene and proposes priority areas of attention moving forward. Oviraptorosaurians are bizarre, nonparavian pennaraptorans first discovered in North America and Mongolia within Late Cretaceous rocks in the early 20th century. We now know that oviraptorosaurians also occupied the Early Cretaceous and their unquestionable fossil record is currently limited to Laurasia. Early Cretaceous material from China preserves feathers and other soft tissues and ingested remains including gastroliths and other stomach contents, while brooding specimens and age-structured, single- species accumulations from China and Mongolia provide spectacular behavioral insights. Less specialized early oviraptorosaurians like Incisivosaurus and Microvenator remain rare, and ancestral forms expected in the Late Jurassic are yet to be discovered, although some authors have suggested Epidexipteryx and possibly other scansoriopterygids may represent early-diverging oviraptorosaurians. Long-armed scansoriopterygids from the Middle-Late Jurassic of Laurasia are either early-diverg- ing oviraptorosaurians or paravians, and some have considered them to be early-diverging avialans. Known from five (or possibly six) feathered specimens from China, only two mature individuals exist, representing these taxa. These taxa,Yi and Ambopteryx, preserve stylopod-supported wing membranes that are the only known alternative to the feathered, muscular wings that had been exclusively associated with dinosaurian flight.
    [Show full text]