Improved Rectangle Attacks on SKINNY and CRAFT Hosein Hadipour1, Nasour Bagheri2 and Ling Song3( ) 1 Department of Mathematics and Computer Science, University of Tehran, Tehran, Iran,
[email protected] 2 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran,
[email protected] 3 Jinan University, Guangzhou, China
[email protected] Abstract. The boomerang and rectangle attacks are adaptions of differential crypt- analysis that regard the target cipher E as a composition of two sub-ciphers, i.e., 2 2 E = E1 ◦ E0, to construct a distinguisher for E with probability p q by concatenat- ing two short differential trails for E0 and E1 with probability p and q respectively. According to the previous research, the dependency between these two differential characteristics has a great impact on the probability of boomerang and rectangle distinguishers. Dunkelman et al. proposed the sandwich attack to formalise such dependency that regards E as three parts, i.e., E = E1 ◦ Em ◦ E0, where Em contains the dependency between two differential trails, satisfying some differential propagation with probability r. Accordingly, the entire probability is p2q2r. Recently, Song et al. have proposed a general framework to identify the actual boundaries of Em and systematically evaluate the probability of Em with any number of rounds, and applied their method to accurately evaluate the probabilities of the best SKINNY’s boomerang distinguishers. In this paper, using a more advanced method to search for boomerang distinguishers, we show that the best previous boomerang distinguishers for SKINNY can be significantly improved in terms of probability and number of rounds.