Intermediate Logic This Page Intentionally Left Blank Intermediate Logic

Total Page:16

File Type:pdf, Size:1020Kb

Intermediate Logic This Page Intentionally Left Blank Intermediate Logic Intermediate Logic This page intentionally left blank Intermediate Logic DAVID BOSTOCK CLARENDON PRESS • OXFORD This book has been printed digitally and produced in a standard specification in order to ensure its continuing availability OXFORD UNIVERSITY PRESS Great Clarendon Street, Oxford 0X2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Sao Paulo Shanghai Singapore Taipei Tokyo Toronto with an associated company in Berlin Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © David Bostock 1997 The moral rights of the author have been asserted Database right Oxford University Press (maker) Reprinted 2002 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer ISBN 0-19-875141-9 ISBN 0-19-875142-7 (pbk) Preface This book is intended for those who have studied a first book in logic, and wish to know more. It is concerned to develop logical theory, but not to apply that theory to the analysis and criticism of ordinary reasoning. For one who has no concern with such applications, it would be possible to read this book as a first book in the subject, since I do in fact introduce each logical concept that I use, even those that I expect to be already familiar (e.g. the truth-functors and the quantifiers). But it would be tough going. For in such cases my explanations proceed on a fairly abstract level, with virtually no discussion of how the logical vocabulary relates to its counterpart in everyday language. This will be difficult to grasp, if the concept is not in fact familiar. The book is confined to elementary logic, i.e. to what is called first-order predicate logic, but it aims to treat this subject in very much more detail than a standard introductory text. In particular, whereas an introductory text will pursue just one style of semantics, just one method of proof, and so on, this book aims to create a wider and a deeper understanding by showing how several alternative approaches are possible, and by introducing com- parisons between them. For the most part, it is orthodox classical logic that is studied, together with its various subsystems. (This, of course, includes the subsystem known as intuitionist logic, but I make no special study of it.) The orthodox logic, however, presumes that neither names nor domains can be empty, and in my final chapter I argue that this is a mistake, and go on to develop a 'free' logic that allows for empty names and empty domains. It is only in this part of the book that what I have to say is in any way unortho- dox. Elsewhere almost all of the material that I present has been familiar to logicians for some time, but it has not been brought together in a suitably accessible way. The title of the book shows where I think it belongs in the teaching of the subject. Institutions which allow a reasonable time for their first course in logic could certainly use some parts of this book in the later stages of that course. Institutions which do not already try to get too much into their advanced courses could equally use some parts of it in the earlier stages of those courses. But it belongs in the middle. It should provide a very suitable background for those who wish to go on to advanced treatments of model V PREFACE theory, proof theory, and other such topics; but it should also prove to be an entirely satisfying resting-place for those who are aware that a first course in logic leaves many things unexplored, but who have no ambition to master the mathematical techniques of the advanced courses. Moreover, I do not believe that the book needs to be accompanied by a simultaneous course of instruction; it should be both comprehensible and enjoyable entirely on its own. While I have been interested in logic ever since I can remember, I do not think that I would ever have contemplated writing a book on the topic, if it had not been for my involvement fifteen years ago in the booklet Notes on the Formalization of Logic. This was compiled under the guidance of Professor Dana Scott, for use as a study-aid in Oxford University. Several themes in the present work descend from that booklet, and I should like to acknowledge my indebtedness not only to Dana Scott himself, but also to the others who helped with the compilation of that work, namely Dan Isaacson, Graeme Forbes, and Gören Sundholm. But, of course, there are also many other works, more widely known, which I have used with profit, but with only occasional acknowledgement in what follows. David Bostock Merton College, Oxford vi Contents Parti. SEMANTICS 1 1. Introduction 3 1.1. Truth 3 1.2. Validity 5 1.3. The Turnstile 8 2. Truth-Functors 14 2.1. Truth-Functions 14 2.2. Truth-Functors 17 2.3. Languages for Truth-Functors 21 2.4. Semantics for these Languages 24 2.5. Some Principles of Entailment 30 2.6. Normal Forms (DNF, CNF) 37 2.7. Expressive Adequacy I 45 2.8. Argument by Induction 48 2.9. Expressive Adequacy II 56 2.10. Duality 62 2.11. Truth-value Analysis 65 3. Quantifiers 70 3.1. Names and Extensionality 70 3.2. Predicates, Variables, Quantifiers 74 3.3. Languages for Quantifiers 77 3.4. Semantics for these Languages 81 3.5. Some Lemmas on these Semantics 91 3.6. Some Principles of Entailment 96 3.7. Normal Forms (PNF) 109 3.8. Decision Procedures I: One-Place Predicates 115 3.9. Decision Procedures II: V3-Formulae 126 3.10. The General Situation: Proofs and Counter-examples 131 vii CONTENTS Part II. PROOFS 139 4. Semantic Tableaux 141 4.1. The Idea 141 4.2. The Tableau Rules 147 4.3. A Simplified Notation 152 4.4. Constructing Proofs 157 4.5. Soundness 165 4.6. Completeness I: Truth-Functors 168 4.7. Completeness II: Quantifiers 174 4.8. Further Remarks on Completeness, Compactness, and Decidability 182 4.9. Appendix: A Direct Proof of the Cut Principle 187 5. Axiomatic Proofs 190 5.1. The Idea 190 5.2. Axioms for the Truth-Functors 193 5.3. The Deduction Theorem 200 5.4. Some Laws of Negation 208 5.5. A Completeness Proof 217 5.6. Axioms for the Quantifiers 220 5.7. Definitions of Other Logical Symbols 227 5.8. Appendix: Some Alternative Axiomatizations 232 6. Natural Deduction 239 6.1. The Idea 239 6.2. Rules of Proof I: Truth-Functors 242 6.3. Rules of Proof II: Quantifiers 254 6.4. Alternative Styles of Proof 262 6.5. Interim Review 269 7. Sequent Calculi 273 7.1. The Idea 273 7.2. Natural Deduction as a Sequent Calculus 277 viii CONTENTS 7.3. Semantic Tableaux as a Sequent Calculus 283 7.4. Gentzen Sequents; Semantic Tableaux Again 291 7.5. Comparison of Systems 299 7.6. Reasoning with Gentzen Sequents 307 Part III. FURTHER TOPICS 321 8. Existence and Identity 323 8.1. Identity 323 8.2. Functions 333 8.3. Descriptions 341 8.4. Empty Names and Empty Domains 348 8.5. Extensionality Reconsidered 355 8.6. Towards a Universally Free Logic 360 8.7. A Formal Presentation 366 8.8. Appendix: A Note on Names, Descriptions, and Scopes 375 REFERENCES 379 LIST OF SYMBOLS 383 LIST OF AXIOMS AND RULES OF INFERENCE 384 INDEX 387 ix This page intentionally left blank Part I SEMANTICS This page intentionally left blank 1 Introduction 1.1. Truth 3 1.2. Validity 5 1.3. The Turnstile 8 1.1. Truth The most fundamental notion in classical logic is that of truth. Philo- sophers, of course, have long debated the question 'what is truth?', but that is a debate which, for the purposes of the present book, we must leave to one side. Let us assume that we know what truth is. We are concerned with truth because we are concerned with the things that are true, and I shall call these things 'propositions'. Philosophers, again, hold differing views on what is to count as a proposition. A simple view is that a proposition is just a (declarative) sentence, but when one thinks about it for a moment, there are obvious difficulties for this suggestion. For the same sentence may be used, by different speakers or in different con- texts, to say different things, some of them true and others false. So one may prefer to hold that it is not the sentences themselves that are true or false, but particular utterings of them, i.e. utterings by particular people, at particular times and places, in this or that particular situation.
Recommended publications
  • Introduction to Formal Logic II (3 Credit
    PHILOSOPHY 115 INTRODUCTION TO FORMAL LOGIC II BULLETIN INFORMATION PHIL 115 – Introduction to Formal Logic II (3 credit hrs) Course Description: Intermediate topics in predicate logic, including second-order predicate logic; meta-theory, including soundness and completeness; introduction to non-classical logic. SAMPLE COURSE OVERVIEW Building on the material from PHIL 114, this course introduces new topics in logic and applies them to both propositional and first-order predicate logic. These topics include argument by induction, duality, compactness, and others. We will carefully prove important meta-logical results, including soundness and completeness for both propositional logic and first-order predicate logic. We will also learn a new system of proof, the Gentzen-calculus, and explore first-order predicate logic with functions and identity. Finally, we will discuss potential motivations for alternatives to classical logic, and examine how those motivations lead to the development of intuitionistic logic, including a formal system for intuitionistic logic, comparing the features of that formal system to those of classical first-order predicate logic. ITEMIZED LEARNING OUTCOMES Upon successful completion of PHIL 115, students will be able to: 1. Apply, as appropriate, principles of analytical reasoning, using as a foundation the knowledge of mathematical, logical, and algorithmic principles 2. Recognize and use connections among mathematical, logical, and algorithmic methods across disciplines 3. Identify and describe problems using formal symbolic methods and assess the appropriateness of these methods for the available data 4. Effectively communicate the results of such analytical reasoning and problem solving 5. Explain and apply important concepts from first-order logic, including duality, compactness, soundness, and completeness 6.
    [Show full text]
  • Intuitionistic Logic
    Intuitionistic Logic Nick Bezhanishvili and Dick de Jongh Institute for Logic, Language and Computation Universiteit van Amsterdam Contents 1 Introduction 2 2 Intuitionism 3 3 Kripke models, Proof systems and Metatheorems 8 3.1 Other proof systems . 8 3.2 Arithmetic and analysis . 10 3.3 Kripke models . 15 3.4 The Disjunction Property, Admissible Rules . 20 3.5 Translations . 22 3.6 The Rieger-Nishimura Lattice and Ladder . 24 3.7 Complexity of IPC . 25 3.8 Mezhirov's game for IPC . 28 4 Heyting algebras 30 4.1 Lattices, distributive lattices and Heyting algebras . 30 4.2 The connection of Heyting algebras with Kripke frames and topologies . 33 4.3 Algebraic completeness of IPC and its extensions . 38 4.4 The connection of Heyting and closure algebras . 40 5 Jankov formulas and intermediate logics 42 5.1 n-universal models . 42 5.2 Formulas characterizing point generated subsets . 44 5.3 The Jankov formulas . 46 5.4 Applications of Jankov formulas . 47 5.5 The logic of the Rieger-Nishimura ladder . 52 1 1 Introduction In this course we give an introduction to intuitionistic logic. We concentrate on the propositional calculus mostly, make some minor excursions to the predicate calculus and to the use of intuitionistic logic in intuitionistic formal systems, in particular Heyting Arithmetic. We have chosen a selection of topics that show various sides of intuitionistic logic. In no way we strive for a complete overview in this short course. Even though we approach the subject for the most part only formally, it is good to have a general introduction to intuitionism.
    [Show full text]
  • On the Intermediate Logic of Open Subsets of Metric Spaces Timofei Shatrov
    On the intermediate logic of open subsets of metric spaces Timofei Shatrov abstract. In this paper we study the intermediate logic MLO( ) of open subsets of a metric space . This logic is closely related to Medvedev’sX logic X of finite problems ML. We prove several facts about this logic: its inclusion in ML, impossibility of its finite axiomatization and indistinguishability from ML within some large class of propositional formulas. Keywords: intermediate logic, Medvedev’s logic, axiomatization, indistin- guishability 1 Introduction In this paper we introduce and study a new intermediate logic MLO( ), which we first define using Kripke semantics and then we will try to ratio-X nalize this definition using the concepts from prior research in this field. An (intuitionistic) Kripke frame is a partially ordered set (F, ). A Kripke model is a Kripke frame with a valuation θ (a function which≤ maps propositional variables to upward-closed subsets of the Kripke frame). The notion of a propositional formula being true at some point w F of a model M = (F,θ) is defined recursively as follows: ∈ For propositional letter p , M, w p iff w θ(p ) i i ∈ i M, w ψ χ iff M, w ψ and M, w χ ∧ M, w ψ χ iff M, w ψ or M, w χ ∨ M, w ψ χ iff for any w′ w, M, w ψ implies M, w′ χ → ≥ M, w 6 ⊥ A formula is true in a model M if it is true in each point of M. A formula is valid in a frame F if it is true in all models based on that frame.
    [Show full text]
  • Intermediate Logic
    Intermediate Logic Richard Zach Philosophy 310 Winter Term 2015 McGill University Intermediate Logic by Richard Zach is licensed under a Creative Commons Attribution 4.0 International License. It is based on The Open Logic Text by the Open Logic Project, used under a Creative Commons Attribution 4.0 In- ternational License. Contents Prefacev I Sets, Relations, Functions1 1 Sets2 1.1 Basics ................................. 2 1.2 Some Important Sets......................... 3 1.3 Subsets ................................ 4 1.4 Unions and Intersections...................... 5 1.5 Pairs, Tuples, Cartesian Products ................. 7 1.6 Russell’s Paradox .......................... 9 2 Relations 10 2.1 Relations as Sets........................... 10 2.2 Special Properties of Relations................... 11 2.3 Orders................................. 12 2.4 Graphs ................................ 14 2.5 Operations on Relations....................... 15 3 Functions 17 3.1 Basics ................................. 17 3.2 Kinds of Functions.......................... 19 3.3 Inverses of Functions ........................ 20 3.4 Composition of Functions ..................... 21 3.5 Isomorphism............................. 22 3.6 Partial Functions........................... 22 3.7 Functions and Relations....................... 23 4 The Size of Sets 24 4.1 Introduction ............................. 24 4.2 Enumerable Sets........................... 24 4.3 Non-enumerable Sets........................ 28 i CONTENTS 4.4 Reduction..............................
    [Show full text]
  • Admissible Rules in Logic and Algebra
    Admissible Rules in Logic and Algebra George Metcalfe Mathematics Institute University of Bern Pisa Summer Workshop on Proof Theory 12-15 June 2012, Pisa George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June2012,Pisa 1/107 Derivability vs Admissibility Consider a system defined by two rules: Nat(0) and Nat(x) ⊲ Nat(s(x)). The following rule is derivable: Nat(x) ⊲ Nat(s(s(x))). However, this rule is only admissible: Nat(s(x)) ⊲ Nat(x). But what if we add to the system: Nat(s(−1)) ??? George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June2012,Pisa 2/107 Derivability vs Admissibility Consider a system defined by two rules: Nat(0) and Nat(x) ⊲ Nat(s(x)). The following rule is derivable: Nat(x) ⊲ Nat(s(s(x))). However, this rule is only admissible: Nat(s(x)) ⊲ Nat(x). But what if we add to the system: Nat(s(−1)) ??? George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June2012,Pisa 2/107 Derivability vs Admissibility Consider a system defined by two rules: Nat(0) and Nat(x) ⊲ Nat(s(x)). The following rule is derivable: Nat(x) ⊲ Nat(s(s(x))). However, this rule is only admissible: Nat(s(x)) ⊲ Nat(x). But what if we add to the system: Nat(s(−1)) ??? George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June2012,Pisa 2/107 Derivability vs Admissibility Consider a system defined by two rules: Nat(0) and Nat(x) ⊲ Nat(s(x)). The following rule is derivable: Nat(x) ⊲ Nat(s(s(x))).
    [Show full text]
  • Teach Yourself Logic 2016: a Study Guide
    Teach Yourself Logic 2016: A Study Guide Peter Smith University of Cambridge Version of January 1, 2016 Pass it on, . That's the game I want you to learn. Pass it on. Alan Bennett, The History Boys c Peter Smith 2016 The latest version of this Guide can always be downloaded from logicmatters.net/tyl/ URLs in blue are live links to external web-pages or PDF documents. Internal cross-references to sections etc. are also live. But to avoid the text being covered in ugly red rashes internal links are not coloured { if you are reading onscreen, your cursor should change as you hover over such live links: try here. The Guide's layout is optimized for reading on-screen: try, for example, reading in iBooks on an iPad, or in double-page mode in Adobe Reader on a laptop. Contents A very quick introduction iii 1 Preliminaries1 1.1 Why this Guide for philosophers? ..................... 1 1.2 Why this Guide for mathematicians too?................. 2 1.3 A strategy for reading logic books (and why this Guide is so long)... 3 1.4 On the question of exercises ........................ 3 1.5 Assumed background ............................ 4 1.6 Do you really need more logic?....................... 6 1.7 How to prove it ............................... 7 2 How the Guide is structured9 2.1 Logic, in the broad sense .......................... 9 2.2 Mapping the field .............................. 10 2.3 Three comments on the Guide's structure................. 12 2.4 Choices, choices ............................... 13 3 First order logic 15 3.1 FOL: the basic topics............................ 15 3.2 The main recommendations on FOL...................
    [Show full text]
  • Interpolation for Intermediate Logics Via Hyper- and Linear Nested Sequents
    Interpolation for Intermediate Logics via Hyper- and Linear Nested Sequents Roman Kuznetsa1 Bj¨ornLellmanna2 a TU Wien, Austria Abstract The goal of this paper is extending to intermediate logics the constructive proof- theoretic method of proving Craig and Lyndon interpolation via hypersequents and nested sequents developed earlier for classical modal logics. While both Jankov and G¨odellogics possess hypersequent systems, we show that our method can only be applied to the former. To tackle the latter, we switch to linear nested sequents, demonstrate syntactic cut elimination for them, and use it to prove interpolation for G¨odellogic. Thereby, we answer in the positive the open question of whether G¨odel logic enjoys the Lyndon interpolation property. Keywords: Intermediate logics, hypersequents, linear nested sequents, interpolation, cut elimination, G¨odellogic, Lyndon interpolation 1 Introduction The Craig Interpolation Property (CIP) is one of the fundamental properties of for logics, alongside decidability, compactness, etc. It states that for any theorem A Ñ B of the logic, there must exist an interpolant C that only uses propositional variables common to A and B such that both A Ñ C and C Ñ B are theorems. The Lyndon Interpolation Property (LIP) strengthens the com- mon language requirement by demanding that each variable in C occur in both A and B with the same polarity as it does in C. One of the more ro- bust constructive methods of proving interpolation, which unlike many other methods, can yield both CIP and LIP, is the so-called proof-theoretic method, whereby an interpolant is constructed by induction on a given analytic sequent derivation of (a representation of) A Ñ B.
    [Show full text]
  • Proof Analysis in Intermediate Logics
    Proof Analysis in Intermediate Logics Roy Dyckhoff, Sara Negri School of Computer Science St Andrews University E-mail: [email protected] Department of Philosophy University of Helsinki E-mail: sara.negri@helsinki.fi Abstract Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic is presented, together with an easy cut-admissibility proof; both extend to cover, in a uniform fashion, all intermediate logics characterised by frames satisfying conditions ex- pressible by one or more geometric implications. Each of these logics is embedded by the G¨odel-McKinsey-Tarski translation into an extension of S4. Faithfulness of the embedding is proved in a simple and general way by constructive proof-theoretic methods, without appeal to semantics other than in the explanation of the rules. Keywords: sequent calculus - modal logic - intermediate logic - labelled deduction - modal companion. Mathematics Subject Classification Codes: 03A99, 03B20, 03B45, 03B55, 03F03, 03F05. 1 Introduction Following Gentzen’s pioneering work in the 1930s on sequent calculus, for classical and intu- itionistic logic, important advances were made by Ketonen and Kanger. Ketonen [21] proposed calculi organised for root-first rather than for leaf-first proof construction, i.e. for the analysis of problems rather than for the synthesis of solutions; these are now better known as Kleene’s cal- culi G3. Kanger [20] proposed for the classical modal logic S5 (but the method is immediately applicable to other logics) the use of “spotted” formulae, to incorporate (in effect) the seman- tics; these were developed with names like ‘semantic tableaux’, ‘labelled formulae’ and ‘prefixed formulae’ by various authors, notably Fitch [13], Fitting [14], Kripke [23, 24] and Maslov [26].
    [Show full text]
  • The Rules of Intermediate Logic
    The rules of intermediate logic Rosalie Iemho® ¤ Institute for Discrete Mathematics and Geometry E104, Technical University Vienna Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria [email protected] http://www.logic.at/people/iemhoff For Dick de Jongh, on the occasion of his 65th birthday. Abstract If Visser's rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of Visser's rules are admissible is not known. Here we study the situation for speci¯c intermediate logics. We provide natural examples of logics for which Visser's rule are derivable, admissible but non-derivable, or not admissible. Keywords: Intermediate logics, admissible rules, realizability, Rieger-Nishimura for- mulas, Medvedev logic. 1 Introduction Admissible rules, the rules under which a theory is closed, form one of the most intriguing aspects of intermediate logics. A rule A= B is admissible for a theory if B is provable in it whenever A is. The rule A= B is said to be derivable if the theory proves that A ! B. Classical propositional logic CPC does not have any non-derivable admissible rules, because in this case A= B is admissible if and only if A ! B is derivable, but for example intuitionistic propositional logic IPC has many admissible rules that are not derivable in the theory itself. For example, the Independence of Premise rule IPR :A ! B _ C = (:A ! B) _ (:A ! C) is not derivable as an implication within the system, but it is an admissible rule of it.
    [Show full text]
  • Kripke Completeness for Intermediate Logics
    Universita` degli Studi di Milano Dipartimento di Informatica Dottorato di Ricerca in Informatica Ph.D. Thesis Kripke Completeness for Intermediate Logics Camillo Fiorentini Advisors: Prof. Pierangelo Miglioli Prof. Mario Ornaghi ii Camillo Fiorentini Dipartimento di Scienze dell’Informazione Universit`adegli Studi di Milano via Comelico 39, 20135 Milano–Italy fi[email protected] Contents 1 Introduction and Preliminaries 1 1.1 Introduction................................ 1 1.2 Preliminarydefinitions.......................... 5 1.3 Intermediatelogics ............................ 7 1.4 Specialsetsofformulas ......................... 9 1.5 Somenotionsofcompleteness . 10 1.6 SeparabilityinKripkemodels . 12 1.7 The notions of Canonicity and ω-canonicity . 13 1.8 Morphismsbetweenframes . 15 1.9 FiniteKripkemodels........................... 16 1.10 Frameswithenoughfinalpoints. 19 2 Intermediate Logics 21 2.1 Thelogicsofboundeddepth. 21 2.2 Thelogicsofboundedbranching . 21 2.3 TheDummettlogic............................ 22 2.4 TheKreisel-Putnamlogic . 22 2.5 The logics axiomatized by formulas in one variable . ..... 23 2.5.1 TheJankovlogic ......................... 25 2.5.2 TheScottlogic .......................... 26 2.5.3 TheAnti-Scottlogic . 27 2.6 TheMedvedevlogic ........................... 29 2.7 Thelogicofrhombuses.......................... 30 3 Canonicity and ω-Canonicity 33 3.1 Kindsofcanonicity............................ 33 3.2 Kinds of ω-canonicity .......................... 39 4 Analysis of Canonicity 41 4.1 Somecriteriaforcanonicity . 41 4.2 Acriterionforthestrongcompleteness . 48 4.3 Strong completeness of the logics in one variable . ..... 51 4.3.1 Thecanonicallogicsinonevariable . 51 iii iv CONTENTS 4.3.2 The Scott logic St ........................ 54 4.3.3 The logics NLm+1 (m ≥ 7) and NLn+1,n+2 (n ≥ 4)...... 56 4.3.4 The Anti-Scott logic Ast .................... 58 4.4 Non extensive canonicity of Medvedev logic . 66 4.5 Noncanonicityofthelogicofrhombuses . 67 5 Analysis of ω-Canonicity 71 5.1 Some conditions about strong ω-completeness .
    [Show full text]
  • Reflecting on the Legacy of CI Lewis
    Organon F, Volume 26, 2019, Issue 3 Special Issue Reflecting on the Legacy of C.I. Lewis: Contemporary and Historical Perspectives on Modal Logic Matteo Pascucci and Adam Tamas Tuboly Guest Editors Contents Matteo Pascucci and Adam Tamas Tuboly: Preface ................................... 318 Research Articles Max Cresswell: Modal Logic before Kripke .................................................. 323 Lloyd Humberstone: Semantics without Toil? Brady and Rush Meet Halldén .................................................................................................. 340 Edwin Mares and Francesco Paoli: C. I. Lewis, E. J. Nelson, and the Modern Origins of Connexive Logic ............................................... 405 Claudio Pizzi: Alternative Axiomatizations of the Conditional System VC ............................................................................................ 427 Thomas Atkinson, Daniel Hill and Stephen McLeod: On a Supposed Puzzle Concerning Modality and Existence .......................................... 446 David B. Martens: Wiredu contra Lewis on the Right Modal Logic ............. 474 Genoveva Martí and José Martínez-Fernández: On ‘actually’ and ‘dthat’: Truth-conditional Differences in Possible Worlds Semantics ............... 491 Daniel Rönnedal: Semantic Tableau Versions of Some Normal Modal Systems with Propositional Quantifiers ................................................ 505 Report Martin Vacek: Modal Metaphysics: Issues on the (Im)possible VII ............. 537 Organon F 26 (3) 2019: 318–322
    [Show full text]
  • Proof Theory & Philosophy
    proof theory & philosophy Greg Restall Philosophy Department University of Melbourne [email protected] http://consequently.org/writing/ptp version of september 18, 2006 c greg restall Comments on this work in progress are most welcome. Visit http://consequently.org/edit/page/Proof_Theory_and_Philosophy to give feedback. A single paper copy may be made for study purposes. Other rights reserved. contents 1 Why Proof Theory? | 9 Part I Propositional Logic 2 Propositional Logic: Tools & Techniques | 15 2.1 Natural Deduction for Conditionals · 15 2.2 Sequents and Derivations · 53 2.3 From Proofs to Derivations and Back · 69 2.4 Circuits · 99 2.5 Counterexamples · 116 2.6 Proof Identity · 128 3 Propositional Logic: Applications | 129 3.1 Assertion and Denial · 129 3.2 Definition and Harmony · 138 3.3 Tonk and Non-Conservative Extension · 141 3.4 Meaning · 144 3.5 Achilles and the Tortoise · 147 3.6 Warrant · 147 3.7 Gaps and Gluts · 147 3.8 Realism · 147 Part II Quantifiers, Identity and Existence 4 Quantifiers: Tools & Techniques | 151 4.1 Predicate Logic · 151 4.2 Identity and Existence · 151 4.3 Models · 152 4.4 Arithmetic · 153 4.5 Second Order Quantification · 153 5 Quantifiers: Applications | 155 5.1 Objectivity · 155 5.2 Explanation · 155 5.3 Relativity · 155 5.4 Existence · 155 5.5 Consistency · 155 5.6 Second Order Logic · 155 2 [september 18, 2006] Part III Modality and Truth 6 Modality and Truth: Tools and Techniques | 159 6.1 Simple Modal Logic · 159 6.2 Modal Models · 159 6.3 Quantified Modal Logic · 159 6.4 Truth as a Predicate · 159 7 Modality and Truth: Applications | 161 7.1 Possible Worlds · 161 7.2 Counterparts · 161 7.3 Synthetic Necessities · 161 7.4 Two Dimensional Semantics · 161 7.5 Truth and Paradox · 161 References | 163 3 [september 18, 2006] introduction This manuscript is a draft of a guided introduction to logic and its ap- I should like to outline an image plications in philosophy.
    [Show full text]