Myelomastocytic Leukemia: Evidence for the Origin of Mast Cells from the Leukemic Clone and Eradication Byallogeneic Stem Cell T

Total Page:16

File Type:pdf, Size:1020Kb

Myelomastocytic Leukemia: Evidence for the Origin of Mast Cells from the Leukemic Clone and Eradication Byallogeneic Stem Cell T Human Cancer Biology Myelomastocytic Leukemia: Evidence for the Origin of Mast Cells from the Leukemic Clone and Eradication by Allogeneic Stem Cell Transplantation Wolfgang R. Sperr,1Johannes Drach,2 Alexander W. Hauswirth,1Jutta Ackermann,2 Margit Mitterbauer,3 Gerlinde Mitterbauer,4 Manuela Foedinger,4 Christa Fonatsch,5 Ingrid Simonitsch-Klupp,6 Peter Kalhs,3 and Peter Valent1 Abstract Purpose: Myelomastocytic leukemia is a term used for patients with advanced myeloid neoplasms, in whom elevated numbers of immature atypical mast cells are found, but criteria for a primary mast cell disease are not met. The origin of mast cells in these patients is presently unknown. Patient and Methods: We have analyzed clonality of mast cells in an 18-year-old patient suffering from acute myeloid leukemia with a complex karyotype including a t(8;21) and mastocytic transformation with a huge increase in immature mast cells and elevated serum tryptase level, but no evidence for a primary mast cell disease/mastocytosis. Results: As assessed by in situ fluorescence hybridization combined with tryptase staining, both the tryptase-negative blast cells and the tryptase-positive mast cells were found to con- tain the t(8;21)-specific AML1/ETO fusion gene. Myeloablative stem cell transplantation resulted in complete remission with consecutive disappearance of AML1/ETO transcripts, decrease of serum tryptase to normal range, and disappearance of neoplastic mast cells. Conclusion: These data suggest that mast cells directly derive from the leukemic clone in patients with myelomastocytic leukemia. Myelomastocytic leukemia is a term used for patients with cytic leukemia is a rare disease. In fact, <5% of all patients with advanced myeloid neoplasms, in whom a substantial increase myelodysplastic syndrome, myeloproliferative disease, or AML in immature atypical mast cells is found, but the criteria for a are considered to develop a ‘‘mastocytic transformation’’ (3, 4). primary mast cell disease (mast cell leukemia or systemic Metachromatic cells in myelomastocytic leukemia are im- mastocytosis) are not fulfilled (1–5). Typically, patients with mature, often exhibit a blast-like morphology, and are mast myelomastocytic leukemia exhibit an increase in blast cells as cell lineage cells by electron microscopic and immunopheno- well as >10% metachromatic cells in peripheral blood and/or typic criteria (CD117+, tryptase+, CD11bÀ, and CD123À; refs. bone marrow smears (3–5). Blast cells are myeloblasts by 3, 4). Mature mast cells may be seen occasionally. As in other morphologic and immunophenotypic criteria. These patients patients with myelodysplastic syndrome, myeloproliferative are thus diagnosed to have an advanced myelodysplastic disease, or AML, major signs of dysplasia may be found syndrome with excess of blasts, a myeloproliferative disease, in erythroid and granulomonocytic cells (1–3). The bone or an acute myeloid leukemia (AML; refs. 1–4). Myelomasto- marrow histology shows a diffuse spread of metachromatic cells (1–6), whereas multifocal aggregates of tryptase-positive mast cells, typically seen in patients with systemic mastocytosis Authors’ Affiliations: 1Department of Internal Medicine I, Division of Hematology (6, 7), are not found (1–6). Other criteria of systemic and Hemostaseology; 2Department of Internal Medicine I, Division of Oncology-the mastocytosis (6) are also not met. In fact, mast cells are Center of Excellence in Clinical and Experimental Oncology (CLEXO); 3Department CD2 negative and CD25 negative and do not exhibit trans- 4 of Internal Medicine I, Division of Bone MarrowTransplantation; Clinical Institute of forming mutations at codon 816 of c-kit (1–6). Thus, a Medical and Chemical Laboratory Diagnostics; 5Institute of Medical Biology; and 6Institute for Clinical Pathology, Medical University ofVienna, Austria number of diagnostic criteria are available that discriminate Received 5/16/05; revised 6/20/05; accepted 7/7/05. between myelomastocytic leukemia and a primary mast Grant support: Fonds zur Fo« rderung der Wissenschaftlichen Forschung in cell disease (i.e., mast cell leukemia or systemic mastocytosis; O« sterreich grants P-14031 and F0508 and the Austrian Federal Ministry for refs. 8–11). Education, Science and Culture, grant GZ 200.062/2-VI/1/2002. The prognosis of patients suffering from myelomastocytic The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance leukemia seems grave (1–6). Similar to ‘‘true’’ mast cell with 18 U.S.C. Section 1734 solely to indicate this fact. leukemia, most patients survive only a few months (1–6). Requests for reprints: Wolfgang R. Sperr, Department of Internal Medicine I, However, complete remission (CR) in response to polychemo- Division of Hematology and Hemostaseology, Medical University of Vienna, therapy has been reported (2). This is of particular interest, Wa« hringer Gu« rtel 18-20, A-1090 Vienna, Austria. Phone: 43-1-404-6085; Fax: 43-1-402-6930; E-mail: [email protected]. because patients with mast cell leukemia or aggressive systemic F 2005 American Association for Cancer Research. mastocytosis are usually not entering CR in response to doi:10.1158/1078-0432.CCR-05-1064 polychemotherapy (6, 10, 12–15). www.aacrjournals.org 6787 Clin Cancer Res 2005;11(19) October 1, 2005 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2005 American Association for Cancer Research. Human Cancer Biology Thus far, little is known about the pathogenesis of myelo- in bone marrow and peripheral blood mononuclear cells by reverse mastocytic leukemia (3, 4). In all cases reported thus far, a transcriptase-PCR as described (22). Serum tryptase levels were complex karyotype (without specific or recurrent cytogenetic determined by fluoroenzyme immunoassay (Pharmacia, Uppsala, aberrations) has been described (1–5). However, many Sweden; ref. 17). questions concerning the origin and uncontrolled growth of Results mast cells remain open. One most important hitherto unresolved question was whether mast cells in these patients Morphologic and immunophenotypic delineation of mast cells belong to the leukemic (myeloid) clone. In the present article, and acute myeloid leukemia blasts. As assessed by morphology we provide evidence for the clonal origin of mast cells from the and immunophenotyping, two distinct populations of neo- leukemic clone in a patient with AML and myelomastocytic plastic cells were detected in the bone marrow (i.e., AML blasts transformation. and immature mast cells). AML blasts showed a prominent nucleus with fine nuclear chromatin and a basophilic cyto- Patient and Methods plasm without metachromatic granules (Fig. 1A). Pheno- typically, blasts were CD34+, CD117+, and tryptase negative Case report. In February 2001, a 17-year-old male patient (Table 1). Mast cells were small to medium sized with a pale presented with fever, an abscess in his left thigh, anemia, thrombo- cytoplasm containing few or numerous metachromatic gran- cytopenia, and a white blood count of 62,400 Â 109/L. The differential count showed 1% segmented neutrophils, 1% basophils, ules and a round or bilobed nucleus (Fig. 1A). By morphologic 7% lymphocytes, 2% monocytes, 2% metamyelocytes, and 87% examination alone, it was impossible to define whether these blasts. The bone marrow smear revealed 87% myeloblasts as well as cells were mast cells or basophils. As assessed by flow an increase in immature mast cells (range, 7-11%). In the bone cytometry, these cells were found to express tryptase and marrow trephine biopsy, a diffuse infiltration with leukemic blasts CD117 confirming the mast cell lineage but did not express and immature mast cells (f10%), but no focal dense mast cell CD34, CD2, or CD25 (Fig. 1B; Table 1). Identical results were infiltrates, was found. Karyotyping of bone marrow mononuclear cells obtained by immunohistochemistry. Figure 1C shows expres- revealed a complex pattern including a variant t(8;21) involving sion of tryptase in diffusely spread mast cells. Compact chromosomes 8, 10, and 21. The reported karyotype was 46,XY, infiltrates of tryptase-positive cells (typically found in systemic t(8;10;21)(q22;q21;q22), t(11;19)(q13;13) [30 of 50 metaphases]; mastocytosis) were not detected in bone marrow sections. 46,XY, t(8;10;21)(q22;q21;q22), t(11;19)(q13;13), del(9)(q22) [20 of 50 metaphases]. Reverse transcriptase-PCR confirmed the presence of Demonstration that mast cells and acute myeloid leukemia the t(8;21)-specific fusion gene AML1/ETO. The c-kit point mutation blasts belong to the same clone. To study clonality of blast cells D816V, typically found in systemic mastocytosis (6), was not and mast cells, FISH analysis with probes specific for the detectable. The diagnosis myelomastocytic leukemia arising in t(8;21)(q22;q22) were done on tryptase-stained bone marrow AML with a complex karyotype including t(8;21) was established. cells. In these experiments, AML1/ETO cohybridization signals The serum tryptase level was markedly elevated (745 ng/mL; normal indicating a t(8;21) were observed in 61% of all tryptase- range, <15 ng/mL). negative blast cells examined (100 cells evaluated). In addition, Staining techniques and fluorescence in situ hybridization. Immu- AML1/ETO cohybridization signals were detected in 94% nohistochemistry and flow cytometry were done to characterize (47 of 50) of all tryptase-positive mast cells analyzed (Fig. 2). neoplastic
Recommended publications
  • Updates in Mastocytosis
    Updates in Mastocytosis Tryptase PD-L1 Tracy I. George, M.D. Professor of Pathology 1 Disclosure: Tracy George, M.D. Research Support / Grants None Stock/Equity (any amount) None Consulting Blueprint Medicines Novartis Employment ARUP Laboratories Speakers Bureau / Honoraria None Other None Outline • Classification • Advanced mastocytosis • A case report • Clinical trials • Other potential therapies Outline • Classification • Advanced mastocytosis • A case report • Clinical trials • Other potential therapies Mastocytosis symposium and consensus meeting on classification and diagnostic criteria for mastocytosis Boston, October 25-28, 2012 2008 WHO Classification Scheme for Myeloid Neoplasms Acute Myeloid Leukemia Chronic Myelomonocytic Leukemia Atypical Chronic Myeloid Leukemia Juvenile Myelomonocytic Leukemia Myelodysplastic Syndromes MDS/MPN, unclassifiable Chronic Myelogenous Leukemia MDS/MPN Polycythemia Vera Essential Thrombocythemia Primary Myelofibrosis Myeloproliferative Neoplasms Chronic Neutrophilic Leukemia Chronic Eosinophilic Leukemia, NOS Hypereosinophilic Syndrome Mast Cell Disease MPNs, unclassifiable Myeloid or lymphoid neoplasms Myeloid neoplasms associated with PDGFRA rearrangement associated with eosinophilia and Myeloid neoplasms associated with PDGFRB abnormalities of PDGFRA, rearrangement PDGFRB, or FGFR1 Myeloid neoplasms associated with FGFR1 rearrangement (EMS) 2017 WHO Classification Scheme for Myeloid Neoplasms Chronic Myelomonocytic Leukemia Acute Myeloid Leukemia Atypical Chronic Myeloid Leukemia Juvenile Myelomonocytic
    [Show full text]
  • The Clinical Management of Chronic Myelomonocytic Leukemia Eric Padron, MD, Rami Komrokji, and Alan F
    The Clinical Management of Chronic Myelomonocytic Leukemia Eric Padron, MD, Rami Komrokji, and Alan F. List, MD Dr Padron is an assistant member, Dr Abstract: Chronic myelomonocytic leukemia (CMML) is an Komrokji is an associate member, and Dr aggressive malignancy characterized by peripheral monocytosis List is a senior member in the Department and ineffective hematopoiesis. It has been historically classified of Malignant Hematology at the H. Lee as a subtype of the myelodysplastic syndromes (MDSs) but was Moffitt Cancer Center & Research Institute in Tampa, Florida. recently demonstrated to be a distinct entity with a distinct natu- ral history. Nonetheless, clinical practice guidelines for CMML Address correspondence to: have been inferred from studies designed for MDSs. It is impera- Eric Padron, MD tive that clinicians understand which elements of MDS clinical Assistant Member practice are translatable to CMML, including which evidence has Malignant Hematology been generated from CMML-specific studies and which has not. H. Lee Moffitt Cancer Center & Research Institute This allows for an evidence-based approach to the treatment of 12902 Magnolia Drive CMML and identifies knowledge gaps in need of further study in Tampa, Florida 33612 a disease-specific manner. This review discusses the diagnosis, E-mail: [email protected] prognosis, and treatment of CMML, with the task of divorcing aspects of MDS practice that have not been demonstrated to be applicable to CMML and merging those that have been shown to be clinically similar. Introduction Chronic myelomonocytic leukemia (CMML) is a clonal hemato- logic malignancy characterized by absolute peripheral monocytosis, ineffective hematopoiesis, and an increased risk of transformation to acute myeloid leukemia.
    [Show full text]
  • Philadelphia Chromosome Unmasked As a Secondary Genetic Change in Acute Myeloid Leukemia on Imatinib Treatment
    Letters to the Editor 2050 The ELL/MLLT1 dual-color assay described herein entails 3Department of Cytogenetics, City of Hope National Medical Center, Duarte, CA, USA and co-hybridization of probes for the ELL and MLLT1 gene regions, 4 each labeled in a different fluorochrome to allow differentiation Cytogenetics Laboratory, Seattle Cancer Care Alliance, between genes involved in 11q;19p chromosome translocations Seattle, WA, USA E-mail: [email protected] in interphase or metaphase cells. In t(11;19) acute leukemia cases, gain of a signal easily pinpoints the specific translocation breakpoint to either 19p13.1 or 19p13.3 and 11q23. In the References re-evaluation of our own cases in light of the FISH data, the 19p breakpoints were re-assigned in two patients, underscoring a 1 Harrison CJ, Mazzullo H, Cheung KL, Gerrard G, Jalali GR, Mehta A certain degree of difficulty in determining the precise 19p et al. Cytogenetic of multiple myeloma: interpretation of fluorescence in situ hybridization results. Br J Haematol 2003; 120: 944–952. breakpoint in acute leukemia specimens in the context of a 2 Thirman MJ, Levitan DA, Kobayashi H, Simon MC, Rowley JD. clinical cytogenetics laboratory. Furthermore, we speculate that Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) the ELL/MLLT1 probe set should detect other 19p translocations in acute myeloid leukemia. Proc Natl Acad Sci 1994; 91: 12110– that involve these genes with partners other than MLL. Accurate 12114. molecular classification of leukemia is becoming more im- 3 Tkachuk DC, Kohler S, Cleary ML.
    [Show full text]
  • Late Effects Among Long-Term Survivors of Childhood Acute Leukemia in the Netherlands: a Dutch Childhood Leukemia Study Group Report
    0031-3998/95/3805-0802$03.00/0 PEDIATRIC RESEARCH Vol. 38, No.5, 1995 Copyright © 1995 International Pediatric Research Foundation, Inc. Printed in U.S.A. Late Effects among Long-Term Survivors of Childhood Acute Leukemia in The Netherlands: A Dutch Childhood Leukemia Study Group Report A. VAN DER DOES-VAN DEN BERG, G. A. M. DE VAAN, J. F. VAN WEERDEN, K. HAHLEN, M. VAN WEEL-SIPMAN, AND A. J. P. VEERMAN Dutch Childhood Leukemia Study Group,' The Hague, The Netherlands A.8STRAC ' Late events and side effects are reported in 392 children cured urogenital, or gastrointestinal tract diseases or an increased vul­ of leukemia. They originated from 1193 consecutively newly nerability of the musculoskeletal system was found. However, diagnosed children between 1972 and 1982, in first continuous prolonged follow-up is necessary to study the full-scale late complete remission for at least 6 y after diagnosis, and were effects of cytostatic treatment and radiotherapy administered treated according to Dutch Childhood Leukemia Study Group during childhood. (Pediatr Res 38: 802-807, 1995) protocols (70%) or institutional protocols (30%), all including cranial irradiation for CNS prophylaxis. Data on late events (relapses, death in complete remission, and second malignancies) Abbreviations were collected prospectively after treatment; late side effects ALL, acute lymphocytic leukemia were retrospectively collected by a questionnaire, completed by ANLL, acute nonlymphocytic leukemia the responsible pediatrician. The event-free survival of the 6-y CCR, continuous first complete remission survivors at 15 y after diagnosis was 92% (±2%). Eight late DCLSG, Dutch Childhood Leukemia Study Group relapses and nine second malignancies were diagnosed, two EFS, event free survival children died in first complete remission of late toxicity of HR, high risk treatment, and one child died in a car accident.
    [Show full text]
  • Acute Myeloid Leukemia Evolving from JAK 2-Positive Primary Myelofibrosis and Concomitant CD5-Negative Mantle Cell
    Hindawi Publishing Corporation Case Reports in Hematology Volume 2012, Article ID 875039, 6 pages doi:10.1155/2012/875039 Case Report Acute Myeloid Leukemia Evolving from JAK 2-Positive Primary Myelofibrosis and Concomitant CD5-Negative Mantle Cell Lymphoma: A Case Report and Review of the Literature Diana O. Treaba,1 Salwa Khedr,1 Shamlal Mangray,1 Cynthia Jackson,1 Jorge J. Castillo,2 and Eric S. Winer2 1 Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA 2 Division of Hematology/Oncology, The Miriam Hospital, The Warren Alpert Medical School, Brown University, Providence, RI 02904, USA Correspondence should be addressed to Diana O. Treaba, [email protected] Received 2 April 2012; Accepted 21 June 2012 Academic Editors: E. Arellano-Rodrigo, G. Damaj, and M. Gentile Copyright © 2012 Diana O. Treaba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Primary myelofibrosis (formerly known as chronic idiopathic myelofibrosis), has the lowest incidence amongst the chronic myeloproliferative neoplasms and is characterized by a rather short median survival and a risk of progression to acute myeloid leukemia (AML) noted in a small subset of the cases, usually as a terminal event. As observed with other chronic myeloproliferative neoplasms, the bone marrow biopsy may harbor small lymphoid aggregates, often assumed reactive in nature. In our paper, we present a 70-year-old Caucasian male who was diagnosed with primary myelofibrosis, and after 8 years of followup and therapy developed an AML.
    [Show full text]
  • Mirna182 Regulates Percentage of Myeloid and Erythroid Cells in Chronic Myeloid Leukemia
    Citation: Cell Death and Disease (2017) 8, e2547; doi:10.1038/cddis.2016.471 OPEN Official journal of the Cell Death Differentiation Association www.nature.com/cddis MiRNA182 regulates percentage of myeloid and erythroid cells in chronic myeloid leukemia Deepak Arya1,2, Sasikala P Sachithanandan1, Cecil Ross3, Dasaradhi Palakodeti4, Shang Li5 and Sudhir Krishna*,1 The deregulation of lineage control programs is often associated with the progression of haematological malignancies. The molecular regulators of lineage choices in the context of tyrosine kinase inhibitor (TKI) resistance remain poorly understood in chronic myeloid leukemia (CML). To find a potential molecular regulator contributing to lineage distribution and TKI resistance, we undertook an RNA-sequencing approach for identifying microRNAs (miRNAs). Following an unbiased screen, elevated miRNA182-5p levels were detected in Bcr-Abl-inhibited K562 cells (CML blast crisis cell line) and in a panel of CML patients. Earlier, miRNA182-5p upregulation was reported in several solid tumours and haematological malignancies. We undertook a strategy involving transient modulation and CRISPR/Cas9 (clustered regularly interspersed short palindromic repeats)-mediated knockout of the MIR182 locus in CML cells. The lineage contribution was assessed by methylcellulose colony formation assay. The transient modulation of miRNA182-5p revealed a biased phenotype. Strikingly, Δ182 cells (homozygous deletion of MIR182 locus) produced a marked shift in lineage distribution. The phenotype was rescued by ectopic expression of miRNA182-5p in Δ182 cells. A bioinformatic analysis and Hes1 modulation data suggested that Hes1 could be a putative target of miRNA182-5p. A reciprocal relationship between miRNA182-5p and Hes1 was seen in the context of TK inhibition.
    [Show full text]
  • Outcomes for Patients with Chronic Lymphocytic Leukemia and Acute Leukemia Or Myelodysplastic Syndrome
    Leukemia (2016) 30, 325–330 © 2016 Macmillan Publishers Limited All rights reserved 0887-6924/16 www.nature.com/leu ORIGINAL ARTICLE Outcomes for patients with chronic lymphocytic leukemia and acute leukemia or myelodysplastic syndrome FP Tambaro1, G Garcia-Manero2, SM O'Brien2, SH Faderl3, A Ferrajoli2, JA Burger2, S Pierce2, X Wang4, K-A Do4, HM Kantarjian2, MJ Keating2 and WG Wierda2 Acute leukemia (AL) and myelodysplastic syndrome (MDS) are uncommon in chronic lymphocytic leukemia (CLL). We retrospectively identified 95 patients with CLL, also diagnosed with AL (n = 38) or MDS (n = 57), either concurrently (n =5)or subsequent (n = 90) to CLL diagnosis and report their outcomes. Median number of CLL treatments prior to AL and MDS was 2 (0–9) and 1 (0–8), respectively; the most common regimen was purine analog combined with alkylating agent±CD20 monoclonal antibody. Twelve cases had no prior CLL treatment. Among 38 cases with AL, 33 had acute myelogenous leukemia (AML), 3 had acute lymphoid leukemia (ALL; 1 Philadelphia chromosome positive), 1 had biphenotypic and 1 had extramedullary (bladder) AML. Unfavorable AML karyotype was noted in 26, and intermediate risk in 7 patients. There was no association between survival from AL and number of prior CLL regimens or karyotype. Expression of CD7 on blasts was associated with shorter survival. Among MDS cases, all International Prognostic Scoring System (IPSS) were represented; karyotype was unfavorable in 36, intermediate in 6 and favorable in 12 patients; 10 experienced transformation to AML. Shorter survival from MDS correlated with higher risk IPSS, poor-risk karyotype and increased number of prior CLL treatments.
    [Show full text]
  • Mutations and Prognosis in Primary Myelofibrosis
    Leukemia (2013) 27, 1861–1869 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu ORIGINAL ARTICLE Mutations and prognosis in primary myelofibrosis AM Vannucchi1, TL Lasho2, P Guglielmelli1, F Biamonte1, A Pardanani2, A Pereira3, C Finke2, J Score4, N Gangat2, C Mannarelli1, RP Ketterling5, G Rotunno1, RA Knudson5, MC Susini1, RR Laborde5, A Spolverini1, A Pancrazzi1, L Pieri1, R Manfredini6, E Tagliafico7, R Zini6, A Jones4, K Zoi8, A Reiter9, A Duncombe10, D Pietra11, E Rumi11, F Cervantes12, G Barosi13, M Cazzola11, NCP Cross4 and A Tefferi2 Patient outcome in primary myelofibrosis (PMF) is significantly influenced by karyotype. We studied 879 PMF patients to determine the individual and combinatorial prognostic relevance of somatic mutations. Analysis was performed in 483 European patients and the seminal observations were validated in 396 Mayo Clinic patients. Samples from the European cohort, collected at time of diagnosis, were analyzed for mutations in ASXL1, SRSF2, EZH2, TET2, DNMT3A, CBL, IDH1, IDH2, MPL and JAK2. Of these, ASXL1, SRSF2 and EZH2 mutations inter-independently predicted shortened survival. However, only ASXL1 mutations (HR: 2.02; Po0.001) remained significant in the context of the International Prognostic Scoring System (IPSS). These observations were validated in the Mayo Clinic cohort where mutation and survival analyses were performed from time of referral. ASXL1, SRSF2 and EZH2 mutations were independently associated with poor survival, but only ASXL1 mutations held their prognostic relevance (HR: 1.4; P ¼ 0.04) independent of the Dynamic IPSS (DIPSS)-plus model, which incorporates cytogenetic risk. In the European cohort, leukemia-free survival was negatively affected by IDH1/2, SRSF2 and ASXL1 mutations and in the Mayo cohort by IDH1 and SRSF2 mutations.
    [Show full text]
  • The AML Guide Information for Patients and Caregivers Acute Myeloid Leukemia
    The AML Guide Information for Patients and Caregivers Acute Myeloid Leukemia Emily, AML survivor Revised 2012 Inside Front Cover A Message from Louis J. DeGennaro, PhD President and CEO of The Leukemia & Lymphoma Society The Leukemia & Lymphoma Society (LLS) wants to bring you the most up-to-date blood cancer information. We know how important it is for you to understand your treatment and support options. With this knowledge, you can work with members of your healthcare team to move forward with the hope of remission and recovery. Our vision is that one day most people who have been diagnosed with acute myeloid leukemia (AML) will be cured or will be able to manage their disease and have a good quality of life. We hope that the information in this Guide will help you along your journey. LLS is the world’s largest voluntary health organization dedicated to funding blood cancer research, advocacy and patient services. Since the first funding in 1954, LLS has invested more than $814 million in research specifically targeting blood cancers. We will continue to invest in research for cures and in programs and services that improve the quality of life for people who have AML and their families. We wish you well. Louis J. DeGennaro, PhD President and Chief Executive Officer The Leukemia & Lymphoma Society Inside This Guide 2 Introduction 3 Here to Help 6 Part 1—Understanding AML About Marrow, Blood and Blood Cells About AML Diagnosis Types of AML 11 Part 2—Treatment Choosing a Specialist Ask Your Doctor Treatment Planning About AML Treatments Relapsed or Refractory AML Stem Cell Transplantation Acute Promyelocytic Leukemia (APL) Treatment Acute Monocytic Leukemia Treatment AML Treatment in Children AML Treatment in Older Patients 24 Part 3—About Clinical Trials 25 Part 4—Side Effects and Follow-Up Care Side Effects of AML Treatment Long-Term and Late Effects Follow-up Care Tracking Your AML Tests 30 Take Care of Yourself 31 Medical Terms This LLS Guide about AML is for information only.
    [Show full text]
  • Acute Massive Myelofibrosis with Acute Lymphoblastic Leukemia Akut Masif Myelofibrozis Ve Akut Lenfoblastik Lösemi Birlikteliği
    204 Case Report Acute massive myelofibrosis with acute lymphoblastic leukemia Akut masif myelofibrozis ve akut lenfoblastik lösemi birlikteliği Zekai Avcı1, Barış Malbora1, Meltem Gülşan1, Feride Iffet Şahin2, Bülent Celasun3, Namık Özbek1 1Department of Pediatrics, Başkent University Faculty of Medicine, Ankara, Turkey 2Department of Medical Genetics, Başkent University Faculty of Medicine, Ankara, Turkey 3Department of Pathology, Başkent University Faculty of Medicine, Ankara, Turkey Abstract Acute myelofibrosis is characterized by pancytopenia of sudden onset, megakaryocytic hyperplasia, extensive bone mar- row fibrosis, and the absence of organomegaly. Acute myelofibrosis in patients with acute lymphoblastic leukemia is extremely rare. We report a 4-year-old boy who was diagnosed as having acute massive myelofibrosis and acute lym- phoblastic leukemia. Performing bone marrow aspiration in this patient was difficult (a “dry tap”), and the diagnosis was established by means of a bone marrow biopsy and immunohistopathologic analysis. The prognostic significance of acute myelofibrosis in patients with acute lymphoblastic leukemia is not clear. (Turk J Hematol 2009; 26: 204-6) Key words: Acute myelofibrosis, acute lymphoblastic leukemia, dry tap Received: April 9, 2008 Accepted: December 24, 2008 Özet Akut myelofibrozis ani gelişen pansitopeni, kemik iliğinde megakaryositik hiperplazi, belirgin fibrozis ve organomegali olmaması ile karakterize bir hastalıktır. Akut myelofibrozis ile akut lenfoblastik lösemi birlikteliği çok nadir görülmektedir.
    [Show full text]
  • Myelodysplastic Syndromes Overview and Types
    cancer.org | 1.800.227.2345 About Myelodysplastic Syndromes Overview and Types If you have been diagnosed with a myelodysplastic syndrome or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Are Myelodysplastic Syndromes? ● Types of Myelodysplastic Syndromes Research and Statistics See the latest estimates for new cases of myelodysplastic syndromes in the US and what research is currently being done. ● Key Statistics for Myelodysplastic Syndromes ● What's New in Myelodysplastic Syndrome Research? What Are Myelodysplastic Syndromes? Myelodysplastic syndromes (MDS) are conditions that can occur when the blood- forming cells in the bone marrow become abnormal. This leads to low numbers of one or more types of blood cells. MDS is considered a type of cancer1. Normal bone marrow 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 Bone marrow is found in the middle of certain bones. It is made up of blood-forming cells, fat cells, and supporting tissues. A small fraction of the blood-forming cells are blood stem cells. Stem cells are needed to make new blood cells. There are 3 main types of blood cells: red blood cells, white blood cells, and platelets. Red blood cells pick up oxygen in the lungs and carry it to the rest of the body. These cells also bring carbon dioxide back to the lungs. Having too few red blood cells is called anemia. It can make a person feel tired and weak and look pale. Severe anemia can cause shortness of breath. White blood cells (also known as leukocytes) are important in defending the body against infection.
    [Show full text]
  • Death from Mast Cell Leukemia: a Young Patient with Longstanding Cutaneous Mastocytosis Evolving Into Fatal Mast Cell Leukemia
    CASE REPORTS Pediatric Dermatology Vol. 29 No. 5 605–609, 2012 Death from Mast Cell Leukemia: A Young Patient with Longstanding Cutaneous Mastocytosis Evolving into Fatal Mast Cell Leukemia Rattanavalai Chantorn, M.D.,*, and Tor Shwayder, M.D. *Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Pediatric Dermatology, Henry Ford Hospital, Detroit, Michigan Abstract: Mastocytosis is a broad term used for a group of disorders characterized by accumulation of mast cells in the skin with or without extracutaneous involvement. The clinical spectrum of the disease varies from only cutaneous lesions to highly aggressive systemic involvement such as mast cell leukemia. Mastocytosis can present from birth to adult- hood. In children, mastocytosis is usually benign, and there is a good chance of spontaneous regression at puberty, unlike adult-onset disease, which is generally systemic and more severe. Moreover, individuals with systemic mastocytosis may be at risk of developing hematologic malignancies. We describe a girl who presented to us with a solitary mastocytoma at age 5 and later developed maculopapular cutaneous mastocytosis. At age 23, after an episode of anaphylactic shock, a bone marrow examination revealed mast cell leukemia. She ultimately died despite aggressive chemotherapy and bone marrow transplantation. Mastocytosis is characterized by the abnormal common forms of CM in childhood. The excoriation growth and infiltration of mast cells (MC) in various of lesions causes hives and perilesional erythema, tissues and is classified into two broad categories: which characterizes Darier’s sign (Fig. 3). SM is cutaneous mastocytosis (CM) and systemic mastocy- characterized by multifocal MC infiltrates with or tosis (SM) (1).
    [Show full text]