Wo 2009/130479 A2

Total Page:16

File Type:pdf, Size:1020Kb

Wo 2009/130479 A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 29 October 2009 (29.10.2009) WO 2009/130479 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/11 (2006.01) C12N 15/861 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, PCT/GB2009/001056 EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, 23 April 2009 (23.04.2009) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, (25) Filing Language: English NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, (26) Publication Language: English SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 0807424.7 23 April 2008 (23.04.2008) GB (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): ISIS IN¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, NOVATION LIMITED [GB/GB]; Ewert House, Ewert ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Place, Summertown, Oxford OX2 7SG (GB). TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (72) Inventors; and MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), (75) Inventors/ Applicants (for US only): SEYMOUR, OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, Leonard, William [GB/GB]; Department Of Clinical MR, NE, SN, TD, TG). Pharmacology, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ (GB). CAWOOD, Ryan Published: [GB/GB]; Department Of Clinical Pharmacology, Univer — without international search report and to be republished sity of Oxford, Old Road Campus, Headington, Oxford upon receipt of that report (Rule 48.2(gf) OX3 7DQ (GB). (74) Agents: ALI, Suleman et al; J.A. KEMP & CO., 14 South Square, Gray's Inn, London WClR 5JJ (GB). (54) Title: VIRUS (57) Abstract: The invention provides an attenuated virus. VIRUS Field of the Invention The present invention relates to attenuated viruses for use in vaccination. Background to the Invention The different tissues within an organism regularly exhibit varied gene expression and this variation is crucial to tissue and cell identity. The level of protein produced in a tissue from any given gene can be controlled at multiple points prior to translation in both the nucleus and cytoplasm. The recent discovery that an entire network of small non-coding RNA molecules (typically 21-23 nucleotides in length) called microRNAs exists within cells added another level of control to gene regulation. MicroRNAs have been shown to negatively regulate gene expression post-transcription through a number of mechanisms which all involve binding of the microRNA to complementary regions within a messenger RNA (mRNA). Such binding sites usually reside within the 3' un-translated region (UTR) of a transcript; however, they have also been discovered within exons and the 5' UTR. Following microRNA binding, translation is inhibited either by direct interactions between microRNA machinery and translation machinery, mRNA sequestration to P bodies or by an increase in mRNA turnover due to increased degradation. Efficient repression is probably a consequence of more than one of these mechanisms. Some microRNA genes show distinct tissue or cell type expression and their transcripts cannot be found in other tissue lineages. This allows efficient down- regulation in specific cell types and can be integral to their function and identity. This property has previously been exploited to efficiently regulate the expression of a factor IX transgene cassette. Summary of the Invention The invention concerns the use of microRNA binding sites to prevent virus infection and/or replication in vulnerable cells and tissues, thereby improving safety and efficacy of vaccination. By incorporating binding sites to microRNAs that are expressed in disease-associated tissues, viral replication can be decreased, restricted, or entirely ablated, to allow safer vaccination. The invention is of particular utility where viral infections compromise or kill cells that are normally involved in producing an immune response, since protection of these cells while allowing infection to proceed in less important cells should enable effective vaccination against viral pathogens that previously could not be subject to prophylactic vaccination. Accordingly, the present invention provides a virus for use in a method of vaccination of a host, which virus is attenuated by means of a microRNA binding sequence which is present within the genome of the virus, wherein attenuation is achieved by the microRNA binding sequence causing a reduction in the level of virus replication in host cells which express a microRNA that binds to the microRNA binding sequence of the virus. hi one embodiment the virus is one which when present in a cell in which it is able to replicate, expresses at least one (for example at least 2, 3, 4 or more) mRNA molecule that comprises a microRNA binding site. Detailed Description of the Invention The inventors have found that limiting the infectious tropism of viruses may be used to produce safer and more effective attenuated vaccines. The viruses are modified to substantially reduce their rate of replication in a cell which is important in causing disease in the host. Preferably the virus is able to replicate in other cells, for example at rate which is similar to (or the same as) the wild-type virus, and this replication leads to an immune response against the virus. It is to be understood that the term "binding sequence" mentioned herein includes a sequence which can directly bind to a microRNA (for example when the relevant sequence is present in an mRNA). However, unless the context requires otherwise, the term also includes the complement of such a binding sequence or any sequence which when expressed as RNA would lead to the generation of a sequence which is capable of binding microRNA, i.e. the term includes sense and antisense sequences in the genomes of viruses (in positive or negative strands) which correspond to sequences capable of binding microRNA. Vaccination/Stimulation of an Immune Response The invention relates to attenuating a virus for use in vaccination of a host. The vaccination may be prophylactic or therapeutic, and typically causes the host to have: (i) decreased susceptibility to infection by the wild-type form of the virus and/or (ii) decreased susceptibility to disease caused by the wild-type form of the virus and/or (iii) decreased disease symptoms when infected by the wild-type form of the virus. The vaccination may thus be protective against infection and/or disease. The invention also relates to use of the attenuated virus of the invention for stimulating an immune response in a host, for example stimulating an antibody and/or T cell response directed against the virus. The virus of the invention is typically administered in a form in which at least some of the viruses that are administered are capable of normal or attenuated replication in at least one cell type of the host (i.e. a live vaccine). However the invention is also applicable to a "killed vaccine" where the virus preparation has been subject to a treatment which should render all of the viruses incapable of replicating in any cell of the host. Introduction of microRNA binding sites into viruses for use in a killed vaccine will enhance the safety of such vaccines. The Host Human or Animal The host is an animal (including birds), preferably a mammal. The host may be a human or any of any of the groups or species mentioned below: Ungulates - Family: Suidae, Genus: Sue (Pigs) Family Bovidae, Sub family: Bovinae, Genus: Bos (Cows) Family: Bovidae, Sub family: Carpinae, Genus: Ovis (Sheep) Family: Equidae, Genus: Equus (Horses) Primates: Order: Primates, Sub order: Haplorrhini (Including Simian Monkeys), Sub family: Homininae (Gorillas, Chimpanzees) Tribe: Hominini (Humans) Other: Family: Canidae, Genus: Canis. (Dogs) Family: Felidae, Genus: Felis (Cats) Non-tetrapod chordates: Class: Actinopterygii (Fish) Class: Aves, Order: Galliformes (Land fowl), and Order: Anseriformes (Water Fowl) Family: Muridae (Rats, Gerbils, Mice, Hamsters) The host may be at (increased) risk of infection by the virus, or at (increased) risk of disease caused by the virus. The host may or may not inhabit a region for which the virus is endemic. The host may live in a population which includes individuals infected with (or carrying) the wild-type virus. The host may visit regions where the wild type virus is endemic and other individuals are carrying the virus or infected with it. The host may be an infant (for example less than 5, 3 or 1 year old) or may be old (for example more than 60, 70 or 80) years old. The host may be immunocompromised. The host typically has more than one cell type, for example at least 2, 3, 4, 5 or more cell types in which the virus is able to replicate. The Virus of the Invention This invention is applicable to any virus which in its wild-type form can act as a pathogen, i.e. which will typically be capable of infecting a host in its wild-type form.
Recommended publications
  • Virus De Rna De Doble Cadena En Epichloë Festucae 2010
    UNIVERSIDAD DE SALAMANCA FACULTAD DE BIOLOGÍA Departamento de Microbiología y Genética CARACTERIZACIÓN DE UN VIRUS QUE INFECTA AL HONGO ENDOFÍTICO Epichloë festucae María Romo Vaquero 2010 UNIVERSIDAD DE SALAMANCA FACULTAD DE BIOLOGÍA Departamento de Microbiología y Genética CARACTERIZACIÓN DE UN VIRUS QUE INFECTA AL HONGO ENDOFÍTICO Epichloë festucae Memoria que presenta la Licenciada en Biología María Romo Vaquero para optar al grado de Doctor por la Universidad de Salamanca Salamanca, Octubre de 2010 “Primero te ienoran, después se ríen de ti, luego te atacan, entonces eanas” Mahatma Gandhi. Agradecimientos Esta tesis doctoral, si bien ha requerido de esfuerzo y mucha dedicación por parte de la autora durante seis años, no hubiese sido posible su finalización sin la cooperación desinteresada de todas y cada una de las personas que a continuación citaré. Quiero expresar mi agradecimiento al Dr. Iñigo Zabalgogeazcoa González, director de esta Tesis Doctoral, por darme la oportunidad de llevarla a cabo , así como por sus sugerencias sin las cuales no hubiera sido posible la elaboración de este trabajo. Igualmente quisiera agradecer a todo el Departamento de Pastos del Instituto de Recursos Naturales y Agrobiología de Salamanca su cooperación en la realización de esta tesis doctoral. Agradecer también al Dr Balbino García Criado y la Dr. Mª Antonia García Ciudad su apoyo en el logro de la beca de tres años, con la cual se financió ésta tesis. De igual forma, quiero mencionar la valiosísima ayuda desinteresada de la Dr. Rosa Esteban, cuya orientación fue clave para la consecución de resultados favorables. Especialmente, también quisiera dar mi más sincero agradecimiento a D.
    [Show full text]
  • Uvic Thesis Template
    Characterization of a new mitovirus OMV1c in a Canadian isolate of the Dutch Elm Disease pathogen Ophiostoma novo-ulmi 93-1224 by Irina Kassatenko B.Sc., from Kiev State University, 1993 M.Sc., from Kiev State University, 1995 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Biology Irina Kassatenko, 2012 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Characterization of a new mitovirus OMV1c in a Canadian isolate of the Dutch Elm Disease pathogen Ophiostoma novo-ulmi 93-1224 by Irina Kassatenko B.Sc., from Kiev State University, 1993 M.Sc., from Kiev State University, 1995 Supervisory Committee Dr. William E. Hintz, (Department of Biology) Supervisor Dr. Paul de la Bastide, (Department of Biology) Departmental Member Dr. Barbara Hawkins, (Department of Biology) Departmental Member Dr. Juergen Ehlting, (Department of Biology) Departmental Member Dr. Delano James, (Canadian Food Inspection Agency) Additional Member iii Abstract Supervisory Committee Dr. William E. Hintz, (Department of Biology) Supervisor Dr. Paul de la Bastide, (Department of Biology) Departmental Member Dr. Barbara Hawkins, (Department of Biology) Departmental Member Dr. Juergen Ehlting, (Department of Biology) Departmental Member Dr. Delano James, (Canadian Food Inspection Agency) Additional Member The fungal pathogen Ophiostoma novo-ulmi is the causal agent of Dutch elm disease (DED) and has been responsible for the catastrophic decline of elms in North America and Europe. Double-stranded RNA (dsRNA) viruses are common to all fungal classes and although these viruses do not always cause disease symptoms, the presence of certain dsRNA viruses have been associated with reduced virulence (hypovirulence) in O.
    [Show full text]
  • Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies
    viruses Review Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies Varvara I. Maliogka 1,* ID , Angelantonio Minafra 2 ID , Pasquale Saldarelli 2, Ana B. Ruiz-García 3, Miroslav Glasa 4 ID , Nikolaos Katis 1 and Antonio Olmos 3 ID 1 Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (P.S.) 3 Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain; [email protected] (A.B.R.-G.); [email protected] (A.O.) 4 Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic; [email protected] * Correspondence: [email protected]; Tel.: +30-2310-998716 Received: 23 July 2018; Accepted: 13 August 2018; Published: 17 August 2018 Abstract: Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches.
    [Show full text]
  • Viral Diversity in Tree Species
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Fitopatologia Programa de Pós-Graduação em Biologia Microbiana Doctoral Thesis Viral diversity in tree species FLÁVIA MILENE BARROS NERY Brasília - DF, 2020 FLÁVIA MILENE BARROS NERY Viral diversity in tree species Thesis presented to the University of Brasília as a partial requirement for obtaining the title of Doctor in Microbiology by the Post - Graduate Program in Microbiology. Advisor Dra. Rita de Cássia Pereira Carvalho Co-advisor Dr. Fernando Lucas Melo BRASÍLIA, DF - BRAZIL FICHA CATALOGRÁFICA NERY, F.M.B Viral diversity in tree species Flávia Milene Barros Nery Brasília, 2025 Pages number: 126 Doctoral Thesis - Programa de Pós-Graduação em Biologia Microbiana, Universidade de Brasília, DF. I - Virus, tree species, metagenomics, High-throughput sequencing II - Universidade de Brasília, PPBM/ IB III - Viral diversity in tree species A minha mãe Ruth Ao meu noivo Neil Dedico Agradecimentos A Deus, gratidão por tudo e por ter me dado uma família e amigos que me amam e me apoiam em todas as minhas escolhas. Minha mãe Ruth e meu noivo Neil por todo o apoio e cuidado durante os momentos mais difíceis que enfrentei durante minha jornada. Aos meus irmãos André, Diego e meu sobrinho Bruno Kawai, gratidão. Aos meus amigos de longa data Rafaelle, Evanessa, Chênia, Tati, Leo, Suzi, Camilets, Ricardito, Jorgito e Diego, saudade da nossa amizade e dos bons tempos. Amo vocês com todo o meu coração! Minha orientadora e grande amiga Profa Rita de Cássia Pereira Carvalho, a quem escolhi e fui escolhida para amar e fazer parte da família.
    [Show full text]
  • Tically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2021 doi:10.20944/preprints202106.0526.v1 Review Towards the forest virome: next-generation-sequencing dras- tically expands our understanding on virosphere in temperate forest ecosystems Artemis Rumbou 1,*, Eeva J. Vainio 2 and Carmen Büttner 1 1 Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Ber- lin, Germany; [email protected], [email protected] 2 Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland; [email protected] * Correspondence: [email protected] Abstract: Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont. Symbiotic mi- crobiota and pathogens engage in a permanent interplay, which influences the host. Thanks to the development of NGS technol- ogies, a vast amount of genetic information on the virosphere of temperate forests has been gained the last seven years. To estimate the qualitative/quantitative impact of NGS in forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of NGS methods is ex- tremely significant for forest virology. Reviewed data about viral presence in holobionts, allowed us to address the role of the virome in the holobionts. Genetic variation is a crucial aspect in hologenome, significantly reinforced by horizontal gene transfer among all interacting actors. Through virus-virus interplays synergistic or antagonistic relations may evolve, which may drasti- cally affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protec- tion based on endophytes and mycovirus biocontrol agents.
    [Show full text]
  • Wo 2007/056463 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date PCT 18 May 2007 (18.05.2007) WO 2007/056463 A2 (51) International Patent Classification: (74) Agents: WILLIAMS, Kathleen et al.; Edwards Angell C12Q 1/70 (2006.01) C12Q 1/68 (2006.01) Palmer & Dodge LLP, P.O. Box 55874, Boston, MA 02205 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2006/043502 kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, (22) International Filing Date: CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, 9 November 2006 (09.1 1.2006) GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, (25) Filing Language: English LT, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, (26) Publication Language: English RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 60/735,085 9 November 2005 (09. 11.2005) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), PRIMERA BIOSYSTEMS, INC.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • 2006.01) Kr, Kw, Kz, La, Lc, Lk, Lr, Ls, Lu, Ly, Ma, Md, Me, (21
    ( (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 48/00 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US20 19/06 1701 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 15 November 2019 (15. 11.2019) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available) . ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/768,645 16 November 2018 (16. 11.2018) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/769,697 20 November 2018 (20. 11.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 62/778,706 12 December 2018 (12. 12.2018) US MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, (71) Applicant: ASKLEPIOS BIOPHARMACEUTICAL, KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Effect of Putative Mitoviruses on in Vitro Growth of Gremmeniella Abietina Isolates Under Different Laboratory Conditions C
    Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Forest Systems 2012 21(3), 515-525 Available online at www.inia.es/forestsystems ISSN: 2171-5068 http://dx.doi.org/10.5424/fs/2012213-02266 eISSN: 2171-9845 Effect of putative mitoviruses on in vitro growth of Gremmeniella abietina isolates under different laboratory conditions C. Romeralo1, *, L. Botella1, 2, O. Santamaria3 and J. Diez1 1 Instituto de Universitario de Gestión Forestal Sostenible, Universidad de Valladolid-INIA, Avda. Madrid 44, Edificio E, 34004 Palencia, Spain 2 Department of Forest Protection and Wildfire Management, Faculty of Forestry and Wood Technology, Mendel University, Zemedelska 3, 61300, Brno, Czech Republic 3 Departamento de Ingeniería del Medio Agronómico y Forestal. Escuela de Ingenierías Agrarias (Universidad de Extremadura). Ctra. de Cáceres, s/n. 06007 Badajoz, Spain Abstract Mitoviruses have been found in several forest pathogens (i.e. Cryphonectria parasitica, Gremmeniella abietina), and because they have been shown to reduce the virulence of host fungi there is a growing interest in studying their use as a biocontrol. This study was carried out to test the effect of temperature (5°C, 15°C, 25°C and 35°C), pH (4, 5, 7 and 9) and osmotic potential (–0.6, –1.2, –1.8 and –2.4 MPa) on the mycelial growth of seven G. abietina isolates under controlled laboratory conditions. Four of the isolates hosted mitoviruses and three of them did not. During the ex- periment, mycelial growth was recorded every week for a period of 8 weeks. Results showed no differences in growth behavior between mitovirus infected and non-infected isolates when placed under different pH modifications.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Molecular Characterization of a Novel Species of Capillovirus from Japanese Apricot (Prunus Mume)
    Molecular Characterization of a Novel Species of Capillovirus from Japanese Apricot (Prunus mume). Armelle Marais, Chantal Faure, Sébastien Theil, Thierry Candresse To cite this version: Armelle Marais, Chantal Faure, Sébastien Theil, Thierry Candresse. Molecular Characterization of a Novel Species of Capillovirus from Japanese Apricot (Prunus mume).. Viruses, MDPI, 2018, 10, pp.144. 10.3390/v10040144. hal-02624911 HAL Id: hal-02624911 https://hal.inrae.fr/hal-02624911 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Communication Molecular Characterization of a Novel Species of Capillovirus from Japanese Apricot (Prunus mume) Armelle Marais * ID , Chantal Faure, Sébastien Theil and Thierry Candresse UMR 1332 Biologie du Fruit et Pathologie, INRA, University Bordeaux, CS 20032, 33882 Villenave d’Ornon, France; [email protected] (C.F.); [email protected] (S.T.); [email protected] (T.C.) * Correspondence: [email protected]; Tel.: +33-557-122-379 Received: 8 February 2018; Accepted: 21 March 2018; Published: 23 March 2018 Abstract: With the increased use of high-throughput sequencing methods, new viruses infecting Prunus spp.
    [Show full text]
  • Wirusy Roślin W Aktualnym (2017) Układzie Taksonomicznym Ictv Z Propozycjami Polskich Nazw Gatunków
    Zeszyty Problemowe Postępów Nauk Rolniczych nr 591, 2017, 63–77 DOI 10.22630/ZPPNR.2017.591.44 WIRUSY ROŚLIN W AKTUALNYM (2017) UKŁADZIE TAKSONOMICZNYM ICTV Z PROPOZYCJAMI POLSKICH NAZW GATUNKÓW. CZĘŚĆ 1. WIRUSY O GENOMIE W POSTACI DNA Selim Kryczyński, Marek S. Szyndel SGGW w Warszawie, Wydział Ogrodnictwa, Biotechnologii i Architektury Krajobrazu Streszczenie. Krótko przypomniano źródła informacji o zasadach taksonomii wirusów i uzasadniono włączenie do tekstu wirusów grzybów oraz wiroidów. Wykaz wirusów w tej części obejmuje rodziny Geminiviridae, Nanoviridae, Caulimoviridae i Rhizidioviridae. Słowa kluczowe: wirusy roślin, taksonomia wirusów, Geminiviridae, Nanoviridae, Cauli- moviridae, Rhizidioviridae. WSTĘP Wykazy polskich nazw gatunków wirusów roślin uznanych oficjalnie przez Inter- national Committee on Taxonomy of Viruses (ICTV) były ostatnio publikowane w la- tach 2002 [Kryczyński 2002b] i 2007 [Kryczyński 2007]. Ich podstawę stanowiły 7. [van Regenmortel i in. 2000] i 8. [Fauquet i in., 2005] Raporty ICTV. Od tamtej pory ukazał się drukiem 9. Raport (King i in., 2012) Komitetu wprowadzający do porządku taksonomicznego wiele zmian. W wydawnictwie tym zasygnalizowano możliwość, iż kolejne Raporty ICTV ukazywać się będą wyłącznie na stronie internetowej Komitetu. Przygotowując obecny tekst, autorzy korzystali z tej właśnie strony (ICTV Online (10th) Report, 2017). W 2017 roku ukazało się wprawdzie wydawnictwo Polskiego Towarzy- stwa Fitopatologicznego [Borecki i Schollenberger 2017], podano w nim jednak polskie nazwy chorób roślin powodowanych przez wirusy, które nie są tożsame z nazwami sa- mych wirusów, nie mówiąc o tym, że zamieszczono tam tylko nazwy względnie często [email protected] © Copyright by Wydawnictwo SGGW 64 S. Kryczyński, M.S. Szyndel występujących w Polsce chorób. Wydaje się więc, że pora już zaktualizować wykaz pol- skich nazw gatunków wirusów roślin.
    [Show full text]