State of the Art in Black Liquor Gasification Technology

Total Page:16

File Type:pdf, Size:1020Kb

State of the Art in Black Liquor Gasification Technology State of the Art in Black Liquor Gasification Technology Kevin Whitty Larry Baxter University of Utah Brigham Young University Salt Lake City, Utah, USA Provo, Utah, USA ABSTRACT Black liquor, a biomass-based fuel formed in the paper making process, has traditionally been burned in recovery boilers to generate energy and recover the inorganic chemicals that comprise about a third of the fuel. Gasifying black liquor offers an attractive alternative to the recovery boiler that has the potential to double the power output, reduce operational costs, improve safety and increase the yield of paper in a mill. Over the years, more than a dozen companies have tried to develop a commercially viable process for gasifying black liquor. About half these technologies have centered on low temperature gasification in fluidized beds. The rest have focused on high temperature gasification, usually in entrained flow reactors. Many of the low temperature technologies encountered problems attaining good carbon conversion (improves with increasing temperature) while avoiding bed agglomeration (worsens with increasing temperature). Condensation of "tars" has also been problematic in low temperature gasification. The high temperature technologies have suffered from problems with liquor distribution and severe corrosion by the molten smelt. Nonetheless, two companies appear to be on the brink of commercializing black liquor gasification. MTCI's fluidized bed steam gasification process has been developed to the point where MTCI now has five commercial projects under way. Chemrec has sold an atmospheric version of their high temperature entrained flow gasifier, and development of the pressurized version is entering the final pre-demonstration phase. If progress in these technologies continues, gasifiers should be a proven alternative to the recovery boiler within the next decade. INTRODUCTION Black liquor is a biomass-based fuel that is formed in the process of making paper. The chief chemical cycle for a typical pulping process is depicted in Figure 1. In the digester, wood chips are cooked in a caustic solution called white liquor (mostly sodium hydroxide) to liberate the fibers that form the pulp and eventually paper. Roughly half the mass of the wood, containing lignin and other organic material, dissolves into the solution to form black liquor. In order to make the black liquor combustible, it is concentrated from about 15% solids to about 70% solids. The composition of this "strong black liquor" is roughly 30% water, 35% inorganic chemicals and 35% organic material that was dissolved out of the wood. Black liquor is burned in a large recovery boiler, which is the single most expensive piece of equipment in the mill. The recovery boiler serves the dual purposes of producing steam and recovering the inorganic chemicals in the liquor for recycle to the process. As the liquor burns, the inorganic Black Liquor 10-15% Flue Gas Black Liquor Black Concentration Liquor Chips 70-80% Recovery Boiler Digester Smelt Pulp Causticizing White Green Water Dissolving Paper Liquor Liquor Tank Figure 1. Pulping chemical cycle chemicals collect in the bottom as molten smelt, mostly sodium carbonate. The smelt runs out of the boiler into a tank where it is dissolved in water to form "green liquor." The green liquor is causticized to form white liquor, thus completing the chemical cycle. Because the energy content in black liquor is derived from wood, it is classified as a biomass- based, renewable energy source. Global black liquor production is roughly 180 million tons annually, corresponding to an energy input of 80,000 MW. An average mill produces about 1500 tds (tons dry solids) per day, and recovery boilers with capacities as large as 3850 tds/day (corresponding to a thermal input of 600 MW) are in operation. Gasification of black liquor offers an interesting alternative to the conventional recovery boiler- based process. The primary advantage of a black liquor gasification system is that it has the potential to significantly increase electrical power production and overall thermal efficiency in the mill. The exact magnitude of the energy benefits depends on the configuration of the gasification system and pulping process. Several studies have projected improvements in energy efficiency for model mills, and have found that electricity production for a black liquor gasification combined cycle (BLGCC) system can be more than double that of a recovery boiler system without any penalty to overall thermal efficiency [1,2]. In addition to increasing power production, gasification has the potential for better environmental performance and improved safety. A final incentive for pursuing black liquor gasification is that it opens up possibilities for advanced pulping methods that could increase the quantity of pulp produced per ton of wood. Inspired by these advantages, no less than a dozen serious attempts have been made to develop a commercial black liquor gasification system. The majority of these projects have been discontinued, highlighting the fact that black liquor gasification presents very serious technical challenges. Currently, there are only two companies actively pursuing commercialization of the technology. This paper summarizes the previous attempts at developing black liquor gasification and describes the two systems currently being actively developed. These two systems define the state of the art in black liquor gasification technology today. 2 HISTORY OF BLACK LIQUOR GASIFICATION Black liquor gasification technologies can be divided into two categories based on their operating temperature. Low temperature schemes operate below the melting point of the inorganic material in the black liquor (approx. 750°C) and all have used fluidized bed reactors. High temperature schemes operate above the melting point, and a variety of reactor types have been considered. The following two sections summarize past efforts to develop low and high temperature black liquor gasification solutions. The technologies in each section are presented in approximate chronological order. Low Temperature Gasification Technologies Several companies have tried to develop low temperature processes for black liquor gasification. All of these have used fluidized bed reactors, either bubbling or circulating, and the problems that were encountered were largely the same. VTT Circulating Fluidized Bed Gasifier (1988–1992). The Technical Research Center of Finland (VTT) worked on a circulating fluidized bed gasification process in the late 1980's and early 1990's as part of the Finnish Fuel Conversion Research Program [3,4]. A 1.5 tds/day pilot unit designed to operate at pressures up to 20 bar was built in Äänekoski, Finland. The unit was operated both at atmospheric pressure and at high pressure, but encountered a number of difficulties. Agglomeration of the bed material was problematic. Changing the bed material from Na2CO3 to Al2O3 made a slight improvement. Poor conversion of the liquor was also a problem. Efforts to address this by staging the gasification were made, but were largely unsuccessful. Circulating the bed was also difficult due to the low density of the black liquor char. The program was finally abandoned in 1992 due to a lack of funds. ABB Circulating Fluidized Bed Gasifier (~1990–1997). ABB's process for black liquor gasification centered on an atmospheric air-blown circulating fluidized bed operating at roughly 700ºC [3,5]. Preheated air was both the fluidizing medium and the oxidant for gasification. ABB operated a pilot unit in Sweden for several years. Performance was reported to be good, with less than 1% unburned carbon in the solids and high sulfur reduction efficiency (>95%). The fuel gas was run through a cyclone and bag filter to remove entrained particles, and had a heating value of roughly 4 MJ/Nm3. Agglomeration of the bed did not cause severe problems. This may be due to the fact that the pilot runs were generally short, less than a day. But it also may be due to high fluidization velocities and associated attrition keeping Fuel gas agglomeration in check. ABB Cyclones discontinued development in 1997 due to lack of funding and lack of a Gas cooler clear market. Babcock & Wilcox Circulating Scrubber fluidized bed Bag house Fluidized Bed Gasifier (1989– gasifier 1998). Babcock & Wilcox's low temperature gasifier design centered on an air-blown, bubbling fluidized bed, operated either at Air atmospheric or elevated Bed pressure [6]. The system design Blower Air solids incorporated a fluidized bed preheater Black liquor combustor to preheat the air and Mix Weak wash tank Green liquor fully convert unburned bed material and tars not destroyed in the gasifier. A bench-scale system Figure 2. Fluidized bed gasifier similar to ABB process 3 was built and tested at atmospheric pressure, with bed temperatures ranging between 482–538ºC [7]. The testing proved that black liquor could be gasified in a low temperature, bubbling bed gasifier. However, serious problems associated with carbon conversion and condensation of tars were encountered, and it was concluded that unless these problems can be solved, the process will not be a viable commercial alternative. The program was discontinued in 1998. High Temperature Gasification Technologies While many companies have pursued low temperature gasification, at least as many have pursued high temperature gasification. The mix of approaches for high temperature gasification is much more varied, and the problems encountered
Recommended publications
  • Extended Impregnation Kraft Cooking of Softwood: Effects on Reject, Yield, Pulping Uniformity, and Physical Properties
    Extended Impregnation Kraft Cooking of Softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström Licentiate thesis Royal Institute of Technology (KTH) Department of Fibre and Polymer Technology Division of Wood Chemistry and Pulp Technology Stockholm 2009 TRITA-CHE-Report 2009:59 ISSN 1654-1081 ISBN 978-91-7415-496-2 Extended impregnation kraft cooking of softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknologie licentiatexamen fredagen den 18:e december 2009, kl. 10.00 i STFI-salen, Innventia AB, Drottning Kristinas väg 61, Stockholm. Avhandlingen försvaras på svenska. © Katarina Karlström Stockholm 2009 Department of Fibre and Polymer Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden Abstract Converting wood into paper is a complex process involving many different stages, one of which is pulping. Pulping involves liberating the wood fibres from each other, which can be done either chemically or mechanically. This thesis focuses on the most common chemical pulping method, the kraft cooking process, and especially on a recently developed improvement of the impregnation phase, which is the first part of a kraft cook. Extended impregnation kraft cooking (EIC) technique is demonstrated to be an improvement of the kraft pulping process and provides a way to utilize softwood to a higher degree, at higher pulp yield. We demonstrate that it is possible to produce softwood ( Picea abies ) kraft pulp using a new cooking technique, resulting in a pulp that can be defibrated without inline refining at as high lignin content as 8% on wood, measured as kappa numbers above 90.
    [Show full text]
  • Black Liquor Gasification
    Black Liquor Gasification Summary and Conclusions from the IEA Bioenergy ExCo54 Workshop This publication provides Wood and Wastes the record of a workshop organised by IEA Bioenergy. CO2 Pool Black liquor gasification is an interesting option for production of synthesis gas that can subsequently be converted to a variety of motor fuels. The technology can be integrated into modern, Carbon ecocyclic, kraft pulp mill Dioxide Pulp and Paper biorefineries. USA and Sweden lead developments in this field. It is of interest primarily among countries with strong pulp and paper industries and national policies which promote substitution of petrol and diesel by biofuels. IEA Bioenergy IEA BIOENERGY: ExCo:2007:03 INTRODUCTION a large pulp and paper industry. It is thus of great interest to convert the primary energy in the black liquor to an This publication provides a summary and the conclusions energy carrier of high value. from a workshop organised by IEA Bioenergy. It was held in conjunction with the 54th meeting of the Executive Worldwide, the pulp and paper industry currently processes Committee in Ottawa on 6 October 2004. The purpose of the about 170 million tonnes of black liquor (measured as dry workshop was to present the developments of black liquor solids) per year, with a total energy content of about 2EJ, gasification for the production of energy and/or biofuels making black liquor a very significant biomass source (see for transport and discuss the remaining barriers, either Figure 1). In comparison with other potential biomass technical or strategic, that need to be overcome in order sources for chemicals production, black liquor has the to accelerate the successful demonstration of black liquor great advantage that it is already partially processed and gasification technologies and subsequently their penetration exists in a pumpable, liquid form.
    [Show full text]
  • American Ft Forest & Paper 2QE5
    A 1 , i American Ft Forest & Paper 2QE5; Association , - May 6, 2015 Via Hand Delivery and by Email to iones.iim(a^epa.gov Administrator Gina McCarthy (1101A) Office of the Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 Re: Reguest for Full Exemption of Four Pulping Chemicals from the TSCA Chemical Data Reporting Rule Reguirements Dear Administrator McCarthy: The American Forest & Paper Association (AF&PA) hereby petitions EPA to amend the Chemical Data Reporting rule (CDR), 40 C.F.R. Part 711, to exempt from all CDR requirements four pulping chemicals involved in the manufacture of paper and other pulp-based products. The four pulping chemicals are complex mixtures used in the kraft pulping process: • Sulfite Liquors and Cooking Liquors, white (CAS No. 68131-33-9) (white liquor) • Sulfite Liquors and Cooking Liquors, spent (CAS No. 66071-92-9) (black liquor) • Sulfite Liquors and Cooking Liquors, spent, oxidized (CAS No. 68514-09-0) (black liquor, oxidized) • Sulfite Liquors and Cooking Liquors, green (CAS No. 68131-30-6) (green liquor) Each of these substances is manufactured and recycled onsite in a continuous closed loop. EPA has an enormous amount of information about these pulping chemicals and little current interest in them, as their potential risks are well understood and adequately managed. 1101 K Street, N.W., Suite 700 • Was hington, D.C.20005 • (202) 463•2700 •afandpa.org May 6, 2015 Page 2 This petition first identifies the four pulping chemicals in greater detail and explains why the kraft chemical regeneration process has led to inflated production volumes for these pulping chemicals in CDR data.
    [Show full text]
  • Construction Health and Safety Manual: Pulp and Paper Mills
    PULP AND PAPER MILLS 33 PULP AND PAPER MILLS The two common forms of chemical pulping are 1) the dominant “alkaline” or “kraft” process, and Processes 2) the “acid pulping” or “sulphite” process. Acid pulping has generally declined but is still in use. The A number of processes, grouped by type as mechanical, digester liquor is a solution of sulphurous acid, H SO , chemical, and semi-chemical (or hybrid), are used in 2 3 mixed with lime (CaO) or other base (magnesium, the preparation of wood pulp. In 1990 (according to sodium, or ammonium) to form bisulphites. Lockwood’s Directory) the distribution of pulp mills in Ontario and Quebec was as follows: Mechanical processes produce the highest yield from the wood, but have high energy demands. Mechanical pulping Process Type generally incorporates thermal or chemical pre-softening Chemical Processes Semi-chemical Mechanical Total of the wood chips, resulting in lower energy requirements. Kraft Sulphite Some chemical processes include mechanical features. Ontario 94 2 15 30 The division is not distinct and is generally based on Quebec 10 8241 61 efficiency of production from dry wood. Figure 22.1: Number of pulp mills by type in Ontario and Quebec Figure 22.2 provides a flow diagram for a semi-chemical pulp mill. In chemical pulping, the wood chips are cooked, using heat and a chemical solution that depends on the type of Of the chemical processes , alkaline pulping – the kraft process being used. The lignin binder, a natural glue that or sulphite process – is the most common and is shown in holds the wood cells (fibres) together, is dissolved.
    [Show full text]
  • Sorption and Desorption of Black Liquor Xylan Onto Cellulose Fibers – a New Separation Technique
    CELLULOSE CHEMISTRY AND TECHNOLOGY SORPTION AND DESORPTION OF BLACK LIQUOR XYLAN ONTO CELLULOSE FIBERS – A NEW SEPARATION TECHNIQUE SVERKER DANIELSSON Innventia AB, Stockholm, Sweden ✉Corresponding author: [email protected] The potential of xylan as a polymer in different new materials is large and not yet utilized. The availability in kraft pulp mills is large as the polymeric xylan dissolved in process liquors corresponds to up to 160 kg/adt and is today burnt to recover energy. A pre-requisite for using black liquor xylan in high-value products is to purify it from inorganic material and lignin in a technically effective and economical feasible way. This study combines two known properties of xylan: its affinity to cellulose and its solubility in alkali. The aim is to design an efficient separation process to produce black liquor xylan of high purity. A very pure xylan was reached with as low lignin contents as 1%. The hydroxide ion concentration was varied in the sorption step and it was found that an increase in hydroxide ion concentration resulted in a decreased amount of isolated xylan, decreased degree of substitution of uronic acids, but no effect on the lignin content and ash content was seen. Keywords : hardwood xylan, kraft pulping, separation, purification, precipitation, 4-O-methylglucuronic acid, hexenuronic acid, black liquor INTRODUCTION In the kraft pulping process, large amounts of tion from black liquor. The separation technique xylan are dissolved in the cooking liquor and end used in this study combines two well-known up as heat in the recovery boiler. The liquor is an phenomena of dissolved xylan in alkali: the attractive source for xylan production as the tendency of attaching to cellulose fibres 4-7 and the availability is high and the heat value for xylan possibility of dissolving xylan in alkali.
    [Show full text]
  • Energy Generation and Use in the Kraft Pulp Industry
    ENERGY GENERAnON AND USE IN THE KRAFT PULP INDUSTRY Alex Orr, H.A.Simoos Ltd INTRODUCTION The pulp and paper industry is one of the largest users of energy among the process industries, but most of its requirements, both steam and electrical power, can be produced from by-product and waste material produced within the process. This paper will discuss energy utilisation and generation in kraft pulp mills, and briefly describe the basic kraft pulping process. THE KRAFT PROCESS The kraft process is the most widely used chemical pulping process for a number of reasons: it produces the strongest pulp; it can handle a wide range of furnish: softwood, hardwood, bagasse and bamboo; the cooking chemicals can be recovered economically; it is energy efficient Figure 1 shows a simplified schematic of a kraft mill. The wood furnish supplied to the mill can be in the form of logs (roundwood) or by-product chips from sawmills.. The source of the wood supply has a significant affect on the energy production.. Ifroundwood is chipped the waste wood produced per ton ofchips will be around 200 kg, but when sawmill by-product chips are used the waste wood produced in the sawmill will be in the range of 450 kg/ton chips, as most of the log goes to produce lumbero This waste wood may be available to the pulp mill at a low cost, or even negative cost, allowing the production of low cost steam and electrical power" The chips are mixed with white liquor (NaOH and N~S) and cooked, using steam, in a large pressure vessel called a digester, either in a continuous or batch process.
    [Show full text]
  • Evaporation Principles & Black Liquor Properties
    Evaporation Principles & Black Liquor Properties David T. Clay Senior Process Consultant Jacobs Engineering Slide 2 Outline • Evaporator basics • Multiple effect evaporation • Black liquor properties 1 Slide 3 Kraft Black Liquor Production ~ 3000 lb of black liquor solids per ton of air-dried unbleached pulp Slide 4 Evaporation Required to Burn Liquor • Weak BL from washers – 15-20% solids – 80-85% water • BL to recovery boiler – 65-85% solids – 15-25% water 2 Slide 5 Principle of Evaporation vapor liquor liquor steam condensate liquor Slide 6 Types of Black Liquor Evaporators • Rising Film • Falling Film • Direct Contact • Forced Circulation 3 Slide 7 Evaporator Material and Energy Balance • If the heat content of the steam was used only once, 100,000 lbs of steam would evaporate only 100,000 lbs of water from the liquor • Venting, radiation and other losses prevent attaining theoretical efficiency Slide 8 Single Effect Operation 116k lb/hr steam 105k lb/hr vapor 45k lb/hr SBL 116k lb/hr condensate 50% TS 150k lb/hr WBL 15% TS water evaporated 105 Steam Economy = steam supplied = 116 = 0.9 4 Slide 9 Multiple Effect Evaporation • If the heat content of the steam was used only once, 100,000 lbs of steam would evaporate only 100,000 lbs of water from the liquor • Venting, radiation and other losses prevent attaining theoretical efficiency • Economic operation dictates the multiple effective use of the heat content of the steam Slide 10 Two-Effect Operation 51k lb/hr vapor 54k lb/hr 57k lb/hr vapor steam 45k lb/hr 111k lb/hr 50% BL condensate 150k lb/hr 99k lb/hr 15% BL 23% BL Steam Economy = 105/57 = 1.8 5 Slide 11 Simple Six-Effect Evaporator Set Steam Condenser 1 234 5 6 Weak black Product liquor liquor Steam Economy ~ 5 Slide 12 Heat Transfer in Evaporators • Evaporation rate = Q = U*A*ΔT • U is the overall heat transfer coefficient • A is the total heat transfer surface area • Overall ΔT is the temp difference – Steam temperature in first effect minus..
    [Show full text]
  • Nitrate-Alkaline Pulp from Non-Wood Plants
    materials Article Nitrate-Alkaline Pulp from Non-Wood Plants KateˇrinaHájková 1,* , Jiˇrí Bouˇcek 1,2,*, Petr Procházka 3 , Petr Kalous 4 and Dominik Budský 4 1 Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Science Prague, Kamýcká 1176, 165 21 Prague, Czech Republic 2 Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 21 Prague, Czech Republic 3 Department of Economics, Faculty of Economics and Administration, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; [email protected] 4 Secondary and Higher Vocational School of Packaging Technology in Štˇetí, Kostelní 134, 411 08 Štˇetí, Czech Republic; [email protected] (P.K.); [email protected] (D.B.) * Correspondence: hajkovakaterina@fld.czu.cz (K.H.); jboucek@fld.czu.cz (J.B.) Abstract: Because there is a lack of wood resources in many countries, this work focused on pulp and paper production from the waste and agricultural residues of non-wood plants. The work aimed to pulp the nitrate-alkaline of black mustard (Brassica Nigra L.) and camelina (Camelina Sativa L.). The black mustard and the camelina were selected due to the expanding planted areas of these crops in the Czech Republic. To characterize the chemical composition of black mustard and camelina, cellulose, lignin, ash, and extractives were determined. Raw alpha-cellulose, beta-cellulose, and gamma-cellulose were also measured. The results showed that the content of lignin in non-wood plants is lower than that in softwoods. The cooked pulp was characterized by the delignification degree–Kappa number.
    [Show full text]
  • Black Liquor Gasification Luleå University of Technology 2011 Burner Characteristics and Syngas Cooling
    ISSN: 1402-1757 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SI S Department of Engineering Sciences and Mathematics Division of Energy Engineering ISSN: 1402-1757 ISBN 978-91-7439-225-8 Black Liquor Gasification Luleå University of Technology 2011 Burner Characteristics and Syngas Cooling Mikael Risberg LICENTIATE THESIS Black Liquor Gasification Burner Characteristics and Syngas Cooling Mikael Risberg Division of Energy Engineering Department of Engineering Sciences and Mathematics Luleå University of Technology SE-971 87 Luleå, Sweden [email protected] March 2011 Printed by Universitetstryckeriet, Luleå 2011 ISSN: 1402-1757 ISBN 978-91-7439-225-8 Luleå 2011 www.ltu.se Abstract Black liquor gasification at high temperature is a promising alternative to the conventional recovery boiler process used in chemical pulp mills today. Compared to a conventional recovery boiler a black liquor gasifier can increase the total energy efficiency of a chemical pulp mill and produce a synthesis gas that can be used for production of motor fuel. In Piteå, a 3 MW or 20 tons per day entrained flow pressurized black liquor gasification development plant has been constructed by Chemrec at Energy Technology Center. The plant has been run more than 12 000 h since 2005. One of the key parts in the gasification process is the spray burner nozzle where the black liquor is disintegrated into the hot gasifier as a spray of fine droplets. In this thesis the spray burner nozzle was characterized with high speed photography in order to visualize the atomization process of black liquor.
    [Show full text]
  • Black Liquor and Other Biomass Gasification and Combustion (R&D at ETC)
    Black liquor and other biomass gasification and combustion (R&D at ETC) Hassan Salman 1 Energy Technology Centre ETC, Piteå , Sweden 2 Energy Technology Centre The ETC Bioenergy Laboratory Smurfit Kappa Kraftliner ETC Bioenergy Laboratory Chemrec DP1 3 Energy Technology Centre Key facts • Independent non-profit research foundation (started in 1989) • Founded by Piteå Municipality, Luleå University of Technology and the County Administrative Board of Norrbotten • Formal ties with Luleå University of Technology (adjunct professorship and joint PhD students) • Focus on bioenergy and biorefiner y • Both applied research (70%) and industrial problem solving and development {consulting} (30%) 4 Energy Technology Centre Research areas at ETC • Black liquor gasification – CFD modelling – Atomisation and burner optimisation – Large scale experiments • Biomass com bus tion – Particle emissions from combustion – Fuel characterisation – Equipment optimisation • Biomass gasification – Cyclone gasification for CHP – Fixed bed for small scale applications – Entrained flow for syngas production • Biorefinery processes – Catalytic conversion (syngas impurities, methanol, DME) – Lignin precipitation (with KIRAM and SmurfitKappa) – Bio-diesel from tall oil ((gtogether with Sun pine) – Pyrolysis oil (together with KIRAM) 5 Energy Technology Centre Biorefinery research • Catalytic conversion of syngas – Methanol – DME • Lignin precipitation from black liquor • Biodiesel from tall oil • Pyrolysis oil • Hydrogen enrichment of syngas – Wind power and electrolysis
    [Show full text]
  • April 2015 Meeting Minutes V2.Pdf
    BLACK LIQUOR RECOVERY BOILER ADVISORY COMMITTEE MINUTES OF MEETING Crowne Plaza Hotel/Atlanta Airport March-April 30, 31 & 1, 2015 OBJECTIVE BLRBAC’s objective is to promote improved safety of chemical recovery boilers and their auxiliaries through the interchange of technical knowledge, experience, and data on past and any future recovery boiler incidents. Bylaws - 2.1 OFFICERS Chairman: John Gray (NEW) Tel: 912-277-1388 Rayonier Advanced Materials Cell: 912-321-7582 10 Gum Street [email protected] Fernandina Beach, FL 32034 Vice- Dave Slagel (NEW) Tel: 912-966-4312 Chairman: Weyerhaeuser Cell: 912-247-6295 1 Bonnybridge Road [email protected] Port Wentworth, GA 31407 Secretary: Everett Hume (NEW) Tel: 781-255-4733 FM Global Cell: 413-323-6781 1151 Boston-Providence Turnpike [email protected] Norwood, MA 02062 Treasurer: Len Olavessen Cell: 901 573 8343 LENRO, Inc. [email protected] 5303 Atascocita Road, #117 Humble, TX 77346 REGULAR MEMBERSHIP Organizations operating, manufacturing, or insuring chemical recovery boilers are eligible. ASSOCIATE MEMBERSHIP Organizations having a direct interest or role in the safety of chemical recovery boilers are eligible. CORRESPONDING MEMBERSHIP A company residing outside of the United States which finds it impractical to attend meetings on a regular basis because of distance and expenses, but desires to be involved and informed of BLRBAC activities. Bylaws - 3.1 BLRBAC INTERNET ADDRESS: ---- www.blrbac.org IRS Employer ID/Tax ID (IRS E.I.N.T./T.I.N) ---- #13-366-5137 Page - 2 EXECUTIVE COMMITTEE John Gray (NEW) Dave Slagel (NEW) BLRBAC Chairman BLRBAC Vice-Chairman Rayonier Advanced Materials Weyerhaeuser 10 Gum Street 1 Bonnybridge Road Fernandina Beach, FL 32034 Port Wentworth, GA 31407 Tel: 912- 277-1388 Tel: 912-9664312 Cell: 912-321-1388 Cell: 912-247-6295 [email protected] [email protected] Everett Hume (NEW) Len Olavessen BLRBAC Secretary BLRBAC Treasurer FM Global LENRO, Inc.
    [Show full text]
  • Effect of Raw Material and Kraft Pulping Conditions on Characteristics of Dissolved Lignin
    KTH 2014 Effect of raw material and Kraft Pulping Conditions on Characteristics of Dissolved Lignin Degree Project in Pulp technology KF274X Antonia Svärd Supervisors: Assistant professor Elisabet Brännvall and PhD Olena Sevastyanova Examiner: Professor Mikael Lindström Abstract Lignin is one of the main components in wood and during the chemical pulping processes it is degraded and dissolved into the cooking liquor. The current challenge is to meet the need for energy and raw materials, and reform to a more environmentally sustainable society, so there is a great interest in using kraft lignin as a raw material for energy, materials and as source of chemicals. ) To meet this goal, it is essential to obtain kraft lignin with desirable properties. The overall goal of this master thesis project was to understand the relationship between kraft process conditions and the structure and properties of the dissolved lignin. Wood chips of pine, spruce and eucalyptus were pulped with the kraft process at constant temperature and similar alkali charge and sulphidity to different cooking times. From the collected black liquor, the dissolved kraft lignin was precipitated by acidification with sulphuric acid. It was observed that longer cooking time yields more precipitated material, where pine gave the highest yield. There was a significant difference in colour of the precipitated between eucalyptus and the softwood samples. Some the characteristic properties of the collected samples were investigated. Results from the Klason lignin and ionic chromatography showed variation in lignin and carbohydrate composition depending on raw material and cooking time. This was also indicated by results lignin carbohydrate ratio from analytical pyrolysis.
    [Show full text]