Environmental Modelling & Software
Environmental Modelling and Software 111 (2019) 121–133 Contents lists available at ScienceDirect Environmental Modelling & Software journal homepage: www.elsevier.com/locate/envsoft Development of a participatory Green Infrastructure design, visualization T and evaluation system in a cloud supported jupyter notebook computing environment ! Lorne Leonarda, , Brian Milesb, Bardia Heidaric, Laurence Lind, Anthony M. Castronovae, f g d h Barbara Minsker , Jong Lee , Charles Scaife , Lawrence E. Band a Department of Civil and Environmental Engineering, Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, USA b Brian Miles, CGI Group Inc., Lafayette, LA, USA c Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA d Department of Environmental Sciences, University of Virginia, Virginia, USA e Consortium for the Advancement of Hydrological Science, Cambridge, MA, USA f Department of Civil and Environmental Engineering, Southern Methodist University, Dallas, TX, USA g National Center for Supercomputing Applications, The University of Illinois Champaign, Urbana, IL USA h Department of Environmental Sciences, Department of Engineering Systems and Environment, University of Virginia, Virginia, USA T ABSTRACT Land use planners, landscape architects, and water resource managers are using Green Infrastructure (GI) designs in urban environments to promote ecosystem services including mitigation of storm water ! ooding and water quality degradation. An expanded set of urban sustainability goals also includes increasing carbon sequestration, songbird habitat, reducing urban heat island e"ects, and improvement of landscape aesthetics. GI is conceptualized to improve water and ecosystem quality by reducing storm water runo " at the source, but when properly designed, may also bene#t these expanded goals.
[Show full text]