A Concise Summary of @RISK Functions

Copyright © 2002 - 2005 Palisade Corporation All Rights Reserved

Beta RISKBeta(α1, α2)

Parameters:

α1 continuous shape parameter α1 > 0

α2 continuous shape parameter α2 > 0

Domain:

0 ≤ x ≤ 1 continuous

Density and Cumulative Distribution Functions:

xα1 −1()1− x α 2 −1 f (x) = Β(α1,α2 )

Bx ()α1,α2 F(x) = ≡ Ix ()α1,α2 B(α1,α2 ) where B is the Beta Function and Bx is the Incomplete Beta Function.

Mean:

α 1 α1 + α2

Variance:

α α 1 2 2 ()α1 + α2 (α1 + α2 +1)

Skewness:

α − α α + α +1 2 2 1 1 2 α1 + α2 + 2 α1α2

Kurtosis:

()α + α +1 2(α + α )2 + α α (α + α − 6) 3 1 2 ( 1 2 1 2 1 2 ) α1α2 ()α1 + α2 + 2 (α1 + α2 + 3)

Mode:

α1 −1 α1>1, α2>1 α1 + α2 − 2

0 α1<1, α2≥1 or α1=1, α2>1

1 α1≥1, α2<1 or α1>1, α2=1

PDF - Beta(2,3) CDF - Beta(2,3)

2.0 1.0

1.8

1.6 0.8

1.4

1.2 0.6

1.0

0.8 0.4

0.6

0.4 0.2

0.2

0.0 0.0 0 2 4 6 8 0 2 0 2 4 6 8 0 2 2 2 . . 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. -0 -0

Beta (Generalized) RISKBetaGeneral(α1, α2, min, max)

Parameters:

α1 continuous shape parameter α1 > 0

α2 continuous shape parameter α2 > 0

min continuous boundary parameter min < max

max continuous boundary parameter

Domain:

min ≤ x ≤ max continuous

Density and Cumulative Distribution Functions:

()x − min α1 −1(max− x)α2 −1 f (x) = α1 +α2 −1 Β(α1,α2 )()max− min

Bz ()α1,α2 x − min F(x) = ≡ Iz (α1,α2 ) with z ≡ B(α1,α2 ) max− min where B is the Beta Function and Bz is the Incomplete Beta Function.

Mean:

α min+ 1 ()max− min α1 + α2

Variance: α α 1 2 ()max− min 2 2 ()α1 + α2 (α1 + α2 +1)

Skewness:

α − α α + α +1 2 2 1 1 2 α1 + α2 + 2 α1α2

Kurtosis:

()α + α +1 2(α + α )2 + α α (α + α − 6) 3 1 2 ( 1 2 1 2 1 2 ) α1α2 ()α1 + α2 + 2 (α1 + α2 + 3)

Mode:

α1 −1 min+ (max− min) α1>1, α2>1 α1 + α2 − 2

min α1<1, α2≥1 or α1=1, α2>1

max α1≥1, α2<1 or α1>1, α2=1

PDF - BetaGeneral(2,3,0,5) CDF - BetaGeneral(2,3,0,5)

0.40 1.0

0.35 0.8 0.30

0.25 0.6

0.20

0.4 0.15

0.10 0.2 0.05

0.00 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -1 -1

Beta (Subjective) RISKBetaSubj(min, m.likely, mean, max)

Definitions:

min+ max mid ≡ 2

()mean − min (mid − m.likely) max− mean α ≡ 2 α ≡ α 1 ()mean − m.likely (max− min)2 1 mean − min

Parameters:

min continuous boundary parameter min < max

m.likely continuous parameter min < m.likely < max

mean continuous parameter min < mean < max

max continuous boundary parameter

mean > mid if m.likely > mean mean < mid if m.likely < mean mean = mid if m.likely = mean

Domain: min ≤ x ≤ max continuous

Density and Cumulative Distribution Functions:

()x − min α1 −1(max− x)α2 −1 f (x) = α1 +α2 −1 Β(α1,α2 )()max− min

Bz ()α1,α2 x − min F(x) = ≡ Iz (α1,α2 ) with z ≡ B(α1,α2 ) max− min where B is the Beta Function and Bz is the Incomplete Beta Function.

Mean:

mean

Variance:

()mean − min (max− mean)(mean − m.likely)

2 ⋅ mid + mean − 3⋅ m.likely

Skewness:

2()mid − mean mean − m.likely 2 ⋅ mid + mean − 3⋅ m.likely ()( ) mean + mid − 2 ⋅ m.likely ()mean − min (max− mean)

Kurtosis:

()α + α +1 2(α + α )2 + α α (α + α − 6) 3 1 2 ( 1 2 1 2 1 2 ) α1α2 ()α1 + α2 + 2 (α1 + α2 + 3)

Mode:

m.likely

PDF - BetaSubj(0,1,2,5) CDF - BetaSubj(0,1,2,5)

0.30 1.0

0.25 0.8

0.20 0.6

0.15

0.4 0.10

0.2 0.05

0.00 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -1 -1

Binomial RISKBinomial(n, p)

Parameters:

n discrete “count” parameter n > 0 *

p continuous “success” probability 0 < p < 1 *

*n = 0, p = 0 and p = 1 are supported for modeling convenience, but give degenerate distributions.

Domain:

0 ≤ x ≤ n discrete integers

Mass and Cumulative Functions:

⎛n ⎞ x n−x f (x) = ⎜ ⎟p (1− p) ⎝ x⎠

x ⎛n⎞ F(x) = ⎜ ⎟ pi (1− p)n −i ∑⎜ i ⎟ i=0 ⎝ ⎠

Mean:

np

Variance:

np()1− p

Skewness:

()1− 2p

np()1− p

Kurtosis:

6 1 3 − + n np(1− p)

Mode:

(bimodal) p(n +1)−1 and p(n +1) if p(n +1) is integral

(unimodal) largest integer less than p(n +1) otherwise

PMF - Binomial(8,.4) CDF - Binomial(8,.4)

0.30 1.0

0.25 0.8

0.20 0.6

0.15

0.4 0.10

0.2 0.05

0.00 0.0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 -1 -1

Chi-Squared RISKChiSq(ν)

Parameters:

ν discrete shape parameter ν > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

1 f (x) = e−x 2x (ν 2)−1 2ν 2 Γ()ν 2

Γx 2 ()ν 2 F(x) = Γ()ν 2

where Γ is the Gamma Function, and Γx is the Incomplete Gamma Function.

Mean:

ν

Variance:

Skewness:

8

ν

Kurtosis:

12 3 + ν

Mode:

ν-2 if ν ≥ 2

0 if ν = 1

PDF - ChiSq(5) CDF - ChiSq(5)

0.18 1.0

0.16 0.9

0.8 0.14 0.7 0.12 0.6 0.10 0.5 0.08 0.4 0.06 0.3 0.04 0.2

0.02 0.1

0.00 0.0 0 2 4 6 8 0 2 4 6 8 -2 -2 10 12 14 16 10 12 14 16

Cumulative (Ascending) RISKCumul(min, max, {x}, {p})

Parameters:

min continuous parameter min < max

max continuous parameter

{x} = {x1, x2, …, xN} array of continuous parameters min ≤ xi ≤ max

{p} = {p1, p2, …, pN} array of continuous parameters 0 ≤ pi ≤ 1

Domain:

min ≤ x ≤ max continuous

Density and Cumulative Functions:

pi+1 − pi f (x) = for xi ≤ x < xi+1 xi+1 − xi

⎛ x − xi ⎞ F(x) = pi + ()pi+1 − pi ⎜ ⎟ for xi ≤ x ≤ xi+1 ⎝ xi+1 − xi ⎠

With the assumptions: 1. The arrays are ordered from left to right

2. The i index runs from 0 to N+1, with two extra elements : x0 ≡ min, p0 ≡ 0 and xN+1 ≡ max, pN+1 ≡ 1.

Mean:

No Closed Form

Variance:

No Closed Form

Skewness:

No Closed Form

Kurtosis:

No Closed Form

Mode:

No Closed Form

PDF - Cumul(0,5,{1,2,3,4},{.2,.3,.7,.8}) CDF - Cumul(0,5,{1,2,3,4},{.2,.3,.7,.8})

0.45 1.0

0.40

0.8 0.35

0.30 0.6 0.25

0.20 0.4 0.15

0.10 0.2

0.05

0.00 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -1 -1

Cumulative (Descending) RISKCumulD(min, max, {x}, {p})

Parameters:

min continuous parameter min < max

max continuous parameter

{x} = {x1, x2, …, xN} array of continuous parameters min ≤ xi ≤ max

{p} = {p1, p2, …, pN} array of continuous parameters 0 ≤ pi ≤ 1

Domain:

min ≤ x ≤ max continuous

Density and Cumulative Functions:

pi − pi+1 f (x) = for xi ≤ x < xi+1 xi+1 − xi

⎛ x − xi ⎞ F(x) = 1− pi + ()pi − pi+1 ⎜ ⎟ for xi ≤ x ≤ xi+1 ⎝ xi+1 − xi ⎠

With the assumptions: 1. The arrays are ordered from left to right

2. The i index runs from 0 to N+1, with two extra elements : x0 ≡ min, p0 ≡ 1 and xN+1 ≡ max, pN+1 ≡ 0.

Mean:

No Closed Form

Variance:

No Closed Form

Skewness:

No Closed Form

Kurtosis:

No Closed Form

Mode:

No Closed Form

PDF - CumulD(0,5,{1,2,3,4},{.8,.7,.3,.2}) CDF - CumulD(0,5,{1,2,3,4},{.8,.7,.3,.2})

0.45 1.0

0.40

0.8 0.35

0.30 0.6 0.25

0.20 0.4 0.15

0.10 0.2

0.05

0.00 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -1 -1

Discrete RISKDiscrete({x}, {p})

Parameters:

{x} = {x1, x2, …, xN} array of continuous parameters

{p} = {p1, p2, …, pN} array of continuous parameters

Domain:

x ∈{x} discrete

Mass and Cumulative Functions:

f (x) = pi for x = xi

f (x) = 0 for x ∉{x}

F(x) = 0 for x < x1

s F(x) = ∑pi for xs ≤ x < xs+1, s < N i=1

F(x) = 1 for x ≥ xN

With the assumptions: 1. The arrays are ordered from left to right 2. The p array is normalized to 1.

Mean:

N ∑ xipi ≡ µ i=1

Variance:

N 2 ∑(xi − µ) pi ≡ V i=1

Skewness:

N 1 (x − µ)3 p 3 2 ∑ i i V i=1

Kurtosis:

N 1 (x − µ)4 p 2 ∑ i i V i=1

Mode:

The x-value corresponding to the highest p-value.

PMF - Discrete({1,2,3,4},{2,1,2,1}) CDF - Discrete({1,2,3,4},{2,1,2,1})

0.35 1.0

0.30 0.8

0.25

0.6 0.20

0.15 0.4

0.10

0.2 0.05

0.00 0.0 5 0 5 0 5 0 5 0 5 5 0 5 0 5 0 5 0 5 0. 1. 1. 2. 2. 3. 3. 4. 4. 0. 1. 1. 2. 2. 3. 3. 4. 4.

Discrete Uniform RISKDUniform({x})

Parameters:

{x} = {x1, x1, …, xN} array of continuous parameters

Domain:

x ∈{x} discrete

Mass and Cumulative Functions:

1 f (x) = for x ∈{x} N

f (x) = 0 for x ∉{x}

F(x) = 0 for x < x1

i F(x) = for xi ≤ x < xi+1 N

F(x) = 1 for x ≥ xN assuming the {x} array is ordered.

Mean:

N 1 x ≡ µ N ∑ i i=1

Variance:

N 1 (x − µ)2 ≡ V N ∑ i i=1

Skewness:

N 1 (x − µ)3 3 2 ∑ i NV i=1

Kurtosis:

N 1 (x − µ)4 2 ∑ i NV i=1

Mode:

Not uniquely defined

PMF - DUniform({1,5,8,11,12}) CDF - DUniform({1,5,8,11,12})

0.25 1.0

0.20 0.8

0.15 0.6

0.10 0.4

0.05 0.2

0.00 0.0 0 2 4 6 8 0 2 4 6 8 10 12 14 10 12 14

“Error Function” RISKErf(h)

Parameters:

h continuous inverse scale parameter h > 0

Domain:

-∞ < x < +∞ continuous

Density and Cumulative Functions:

h 2 f (x) = e−(hx) π

1+ erf (hx) F(x) ≡ Φ()2hx = 2 where Φ is called the Laplace-Gauss Integral and erf is the Error Function.

Mean:

0

Variance:

1 2h2

Skewness:

0

Kurtosis:

3

Mode:

0

PDF - Erf(1) CDF - Erf(1)

0.6 1.0

0.9 0.5 0.8

0.7 0.4 0.6

0.3 0.5

0.4 0.2 0.3

0.2 0.1 0.1

0.0 0.0 0 5 0 5 0 5 0 5 0 5 0 5 0 0 5 0 5 0 ...... 0. 0. 1. 1. 2. 0. 0. 1. 1. 2. -2 -1 -1 -0 -2 -1 -1 -0

Erlang RISKErlang(m,β)

Parameters:

m integral shape parameter m > 0

β continuous scale parameter β > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

m−1 1 ⎛ x ⎞ −x β f (x) = ⎜ ⎟ e β (m −1)!⎝ β ⎠

m− 1 i Γx β ()m ()x β F(x) = = 1− e−x β Γ m ∑ i! () i=0 where Γ is the Gamma Function and Γx is the Incomplete Gamma Function.

Mean:

Variance:

mβ2

Skewness:

2

m

Kurtosis:

6 3 + m

Mode:

β()m −1

PDF - Erlang(2,1) CDF - Erlang(2,1)

0.40 1.0

0.9 0.35 0.8 0.30 0.7 0.25 0.6

0.20 0.5

0.4 0.15 0.3 0.10 0.2 0.05 0.1

0.00 0.0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 -1 -1

Exponential RISKExpon(β)

Parameters:

β continuous scale parameter β > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

e−x β f (x) = β

F(x) = 1− e−x β

Mean:

β

Variance:

β2

Skewness:

2

Kurtosis:

9

Mode:

0

PDF - Expon(1) CDF - Expon(1)

1.2 1.0

0.9 1.0 0.8

0.7 0.8 0.6

0.6 0.5

0.4 0.4 0.3

0.2 0.2 0.1

0.0 0.0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 . . 0. 0. 1. 1. 2. 2. 3. 3. 4. 4. 5. 0. 0. 1. 1. 2. 2. 3. 3. 4. 4. 5. -0 -0

Extreme Value RISKExtValue(a, b)

Parameters:

a continuous location parameter

b continuous scale parameter b > 0

Domain:

-∞ < x < +∞ continuous

Density and Cumulative Functions:

1 ⎛ 1 ⎞ f (x) = ⎜ ⎟ b ⎝ ez+exp(−z) ⎠

1 ()x − a F(x) = where z ≡ eexp(−z) b

Mean:

a − bΓ′()1 ≈ a +.577b where Γ’(x) is the derivative of the Gamma Function.

Variance:

π2b2

6

Skewness:

12 6 ζ()3 ≈ 1.139547 π3

Kurtosis:

5.4

Mode:

a

PDF - ExtValue(0,1) CDF - ExtValue(0,1)

0.40 1.0

0.9 0.35 0.8 0.30 0.7 0.25 0.6

0.20 0.5

0.4 0.15 0.3 0.10 0.2 0.05 0.1

0.00 0.0 0 1 2 3 4 5 0 1 2 3 4 5 -2 -1 -2 -1

Gamma RISKGamma(α, β)

Parameters:

α continuous shape parameter α > 0

β continuous scale parameter β > 0

Domain:

0 < x < +∞ continuous

Density and Cumulative Functions:

α−1 1 ⎛ x ⎞ −x β f (x) = ⎜ ⎟ e βΓ()α ⎝ β ⎠

Γx β ()α F(x) = Γ()α where Γ is the Gamma Function and Γx is the Incomplete Gamma Function.

Mean:

βα

Variance:

β2α

Skewness:

2

α

Kurtosis:

6 3 + α

Mode:

β(α −1) if α ≥ 1

0 if α < 1

PDF - Gamma(4,1) CDF - Gamma(4,1)

0.25 1.0

0.9

0.20 0.8

0.7

0.15 0.6

0.5

0.10 0.4

0.3

0.05 0.2

0.1

0.00 0.0 0 2 4 6 8 0 2 4 6 8 -2 -2 10 12 10 12

General RISKGeneral(min, max, {x}, {p})

Parameters:

min continuous parameter min < max

max continuous parameter

{x} = {x1, x2, …, xN} array of continuous parameters min ≤ xi ≤ max

{p} = {p1, p2, …, pN} array of continuous parameters pi ≥ 0

Domain:

min ≤ x ≤ max continuous

Density and Cumulative Functions:

⎡ x − xi ⎤ f (x) = pi + ⎢ ⎥(pi+1 − pi ) for xi ≤ x ≤ xi+1 ⎣xi+1 − xi ⎦

⎡ (pi+1 − pi )(x − xi )⎤ F(x) = F(xi ) + ()x − xi ⎢pi + ⎥ for xi ≤ x ≤ xi+1 ⎣ 2(xi+1 − xi )⎦

With the assumptions: 1. The arrays are ordered from left to right 2. The {p} array has been normalized to give the general distribution unit area.

3. The i index runs from 0 to N+1, with two extra elements : x0 ≡ min, p0 ≡ 0 and xN+1 ≡ max, pN+1 ≡ 0.

Mean:

No Closed Form

Variance:

No Closed Form

Skewness:

No Closed Form

Kurtosis:

No Closed Form

Mode:

No Closed Form

PDF - General(0,5,{1,2,3,4},{2,1,2,1}) CDF - General(0,5,{1,2,3,4},{2,1,2,1})

0.35 1.0

0.30 0.8 0.25

0.6 0.20

0.15 0.4

0.10

0.2 0.05

0.00 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -1 -1

Geometric RISKGeomet(p)

Parameters:

p continuous “success” probability 0< p ≤ 1

Domain:

0 ≤ x < +∞ discrete integers

Mass and Cumulative Functions:

x f (x) = p(1− p)

F(x) = 1− (1− p)x +1

Mean:

1 −1 p

Variance:

1− p

p2

Skewness:

()2 − p for p < 1 1− p

Not Defined for p = 1

Kurtosis: p2 9 + for p < 1 1− p

Not Defined for p = 1

Mode:

0

PMF - Geomet(.5) CDF - Geomet(.5)

0.6 1.0

0.9 0.5 0.8

0.7 0.4 0.6

0.3 0.5

0.4 0.2 0.3

0.2 0.1 0.1

0.0 0.0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 -1 -1

Histogram RISKHistogrm(min, max, {p})

Parameters:

min continuous parameter min < max *

max continuous parameter

{p} = {p1, p2, …, pN} array of continuous parameters pi ≥ 0

* min = max is supported for modelling convenience, but yields a degenerate distribution.

Domain:

min ≤ x ≤ max continuous

Density and Cumulative Functions:

f (x) = pi for xi ≤ x < xi+1

⎛ x − xi ⎞ F(x) = F(xi ) + pi ⎜ ⎟ for xi ≤ x ≤ xi+1 ⎝ xi+1 − xi ⎠

⎛ max− min ⎞ where xi ≡ min+ i⎜ ⎟ ⎝ N ⎠

The {p} array has been normalized to give the histogram unit area.

Mean:

No Closed Form

Variance:

No Closed Form

Skewness:

No Closed Form

Kurtosis:

No Closed Form

Mode:

Not Uniquely Defined.

PDF - Histogrm(0,5,{6,5,3,4,5}) CDF - Histogrm(0,5,{6,5,3,4,5})

0.30 1.0

0.25 0.8

0.20 0.6

0.15

0.4 0.10

0.2 0.05

0.00 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -1 -1

Hypergeometric RISKHyperGeo(n, D, M)

Parameters:

n the number of draws integer 0 ≤ n ≤ M

D the number of "tagged" items integer 0 ≤ D ≤ M

M the total number of items integer M ≥ 0

Domain:

max(0,n+D-M) ≤ x ≤ min(n,D) discrete integers

Mass and Cumulative Functions:

⎛D⎞⎛M − D⎞ ⎛D⎞⎛M − D⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ x ⎟⎜ n − x ⎟ x ⎜ x ⎟⎜ n − x ⎟ f (x) = ⎝ ⎠⎝ ⎠ F(x) = ⎝ ⎠⎝ ⎠ ⎛M⎞ ∑ ⎛M⎞ ⎜ ⎟ i=1 ⎜ ⎟ ⎝ n ⎠ ⎝ n ⎠

Mean:

nD for M > 0 M

0 for M = 0

Variance:

nD ⎡()M − D (M − n)⎤ ⎢ ⎥ for M>1 M2 ⎣ ()M −1 ⎦

0 for M = 1

Skewness:

()M − 2D (M − 2n) M −1 for M>2, M>D>0, M>n>0 M − 2 nD()M − D (M − n)

Not Defined otherwise

Kurtosis:

M2 ()M −1 ⎡M(M +1)− 6n(M − n) 3n(M − n)(M + 6) ⎤ ⎢ + − 6⎥ n()M − 2 (M − 3)(M − n)⎣ D()M − D M2 ⎦

for M>3, M>D>0, M>n>0

Not Defined otherwise

Mode:

(bimodal) xm and xm-1 if xm is integral

(unimodal) biggest integer less than xm otherwise

()n +1 (D +1) where x ≡ m M + 2

PMF - HyperGeo(6,5,10) CDF - HyperGeo(6,5,10)

0.50 1.0

0.45

0.40 0.8

0.35

0.30 0.6

0.25

0.20 0.4

0.15

0.10 0.2

0.05

0.00 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Integer Uniform RISKIntUniform(min, max)

Parameters:

min discrete boundary parameter min < max

max discrete boundary probability

Domain:

min ≤ x ≤ max discrete integers

Mass and Cumulative Functions:

1 f (x) = max− min+1

x − min+1 F(x) = max− min+1

Mean:

min+ max

2

Variance:

∆()∆ + 2 where ∆≡(max-min) 12

Skewness:

0

Kurtosis:

⎛ 9 ⎞ ⎛ n 2 − 7 / 3⎞ ⎜ ⎟ ⋅⎜ ⎟ where n≡(max-min+1) ⎜ 2 ⎟ ⎝ 5 ⎠ ⎝ n −1 ⎠

Mode:

Not uniquely defined

PMF - IntUniform(0,8) CDF - IntUniform(0,8)

0.12 1.0

0.10 0.8

0.08 0.6

0.06

0.4 0.04

0.2 0.02

0.00 0.0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 -1 -1

Inverse Gaussian RISKInvGauss(µ, λ)

Parameters:

µ continuous parameter µ > 0

λ continuous parameter λ > 0

Domain:

x > 0 continuous

Density and Cumulative Functions:

⎡λ()x −µ 2 ⎤ −⎢ ⎥ λ ⎢ 2 ⎥ f (x) = e ⎣ 2µ x ⎦ 2π x3

⎡ λ ⎛ x ⎞⎤ 2λ µ ⎡ λ ⎛ x ⎞⎤ F(x) = Φ⎢ ⎜ −1⎟⎥ + e Φ⎢− ⎜ +1⎟⎥ ⎣ x ⎝ µ ⎠⎦ ⎣ x ⎝ µ ⎠⎦ where Φ(z) is the cumulative distribution function of a Normal(0,1), also called the Laplace-Gauss Integral

Mean:

µ

Variance:

µ3

λ

Skewness:

µ 3 λ

Kurtosis:

µ 3 +15 λ

Mode:

⎡ 9µ2 3µ ⎤ µ ⎢ 1+ − ⎥ ⎢ 2 2λ⎥ ⎣ 4λ ⎦

PDF - InvGauss(1,2) CDF - InvGauss(1,2)

1.2 1.0

0.9 1.0 0.8

0.7 0.8 0.6

0.6 0.5

0.4 0.4 0.3

0.2 0.2 0.1

0.0 0.0 5 5 0 5 0 5 0 5 0 5 0 0 5 0 5 0 5 0 5 0 . . 0. 0. 1. 1. 2. 2. 3. 3. 4. 0. 0. 1. 1. 2. 2. 3. 3. 4. -0 -0

Logistic RISKLogistic(α, β)

Parameters:

α continuous location parameter

β continuous scale parameter β > 0

Domain:

-∞ < x < +∞ continuous

Density and Cumulative Functions:

⎛ 1 ⎛ x − α ⎞⎞ 2 ⎜ ⎟ sec h ⎜ ⎜ ⎟⎟ 2 ⎝ β ⎠ f (x) = ⎝ ⎠ 4β

⎛ 1 ⎛ x − α ⎞⎞ ⎜ ⎟ 1+ tanh⎜ ⎜ ⎟⎟ 2 ⎝ β ⎠ F(x) = ⎝ ⎠ 2 where “sech” is the Hyperbolic Secant Function and “tanh” is the Hyperbolic Tangent Function.

Mean:

α

Variance:

π2β2

3

Skewness:

0

Kurtosis:

4.2

Mode:

α

PDF - Logistic(0,1) CDF - Logistic(0,1)

0.30 1.0

0.9 0.25 0.8

0.7 0.20 0.6

0.15 0.5

0.4 0.10 0.3

0.2 0.05 0.1

0.00 0.0 0 1 2 3 4 5 0 1 2 3 4 5 -5 -4 -3 -2 -1 -5 -4 -3 -2 -1

Log-Logistic RISKLogLogistic(γ, β, α)

Parameters:

γ continuous location parameter

β continuous scale parameter β > 0

α continuous shape parameter α > 0

Definitions:

π θ ≡ α

Domain:

γ ≤ x < +∞ continuous

Density and Cumulative Functions:

α tα−1 f (x) = 2 β(1+ tα )

1 x − γ F(x) = with t ≡ α ⎛1⎞ β 1+ ⎜ ⎟ ⎝ t ⎠

Mean:

βθ csc()θ + γ for α > 1

Variance:

β2θ [2csc()2θ − θcsc2 (θ)] for α > 2

Skewness:

3csc()3θ − 6θcsc(2θ)csc(θ)+ 2θ2 csc3(θ) for α > 3 3 θ[]2csc()2θ − θcsc2 (θ)2

Kurtosis:

4csc()4θ −12θcsc(3θ)csc(θ)+12θ2 csc(2θ)csc2 (θ)− 3θ3 csc4 (θ) for α > 4 2 θ []2csc()2θ − θcsc2 (θ)

Mode: 1 ⎡α −1⎤ α γ + β ⎢ ⎥ for α > 1 ⎣α +1⎦

γ for α ≤ 1

PDF - LogLogistic(0,1,5) CDF - LogLogistic(0,1,5)

1.4 1.0

0.9 1.2 0.8

1.0 0.7

0.6 0.8 0.5 0.6 0.4

0.4 0.3

0.2 0.2 0.1

0.0 0.0 5 5 0 5 0 5 0 5 0 0 5 0 5 0 5 0 . . 0. 0. 1. 1. 2. 2. 3. 0. 0. 1. 1. 2. 2. 3. -0 -0

Lognormal (Format 1) RISKLognorm(µ, σ)

Parameters:

µ continuous parameter µ > 0

σ continuous parameter σ > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

2 1 ⎡ln x −µ′⎤ 1 − ⎢ ⎥ f (x) = e 2 ⎣ σ′ ⎦ x 2πσ′

⎛ ln x − µ′ ⎞ F(x) = Φ⎜ ⎟ ⎝ σ′ ⎠

⎡ 2 ⎤ ⎡ 2 ⎤ ⎢ µ ⎥ ⎛ σ ⎞ with µ′ ≡ ln and σ′ ≡ ln⎢1+ ⎜ ⎟ ⎥ ⎢ 2 2 ⎥ ⎢ µ ⎥ ⎣ σ + µ ⎦ ⎣ ⎝ ⎠ ⎦ where Φ(z) is the cumulative distribution function of a Normal(0,1) also called the Laplace-Gauss Integral.

Mean:

µ

Variance:

σ2

Skewness:

3 ⎛ σ ⎞ ⎛ σ ⎞ ⎜ ⎟ + 3⎜ ⎟ ⎝ µ ⎠ ⎝ µ ⎠

Kurtosis:

2 4 3 2 ⎛ σ ⎞ ω + 2ω + 3ω − 3 with ω ≡ 1+ ⎜ ⎟ ⎝ µ ⎠

Mode:

µ4

3 2 (σ2 + µ2 )

PDF - Lognorm(1,1) CDF - Lognorm(1,1)

1.0 1.0

0.9 0.9

0.8 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -1 -1

Lognormal (Format 2) RISKLognorm2(µ, σ)

Parameters:

µ continuous parameter

σ continuous parameter σ > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

2 1 ⎡ln x−µ ⎤ 1 − ⎢ ⎥ f (x) = e 2 ⎣ σ ⎦ x 2πσ

⎛ ln x − µ ⎞ F(x) = Φ⎜ ⎟ ⎝ σ ⎠ where Φ(z) is the cumulative distribution function of a Normal(0,1), also called the Laplace-Gauss Integral

Mean:

σ2 µ+ e 2

Variance:

2 e2µω(ω −1) with ω ≡ eσ

Skewness:

2 ()ω + 2 ω −1 with ω ≡ eσ

Kurtosis:

2 ω4 + 2ω3 + 3ω2 − 3 with ω ≡ eσ

Mode:

2 eµ−σ

PDF - Lognorm2(0,1) CDF - Lognorm2(0,1)

0.7 1.0

0.9 0.6 0.8

0.5 0.7

0.6 0.4 0.5 0.3 0.4

0.2 0.3

0.2 0.1 0.1

0.0 0.0 0 2 4 6 8 0 2 4 6 8 -2 -2 10 12 10 12

Negative Binomial RISKNegBin(s, p)

Parameters:

s the number of successes discrete parameter s ≥ 0

p probability of a single success continuous parameter 0 < p ≤ 1

Domain:

0 ≤ x < +∞ discrete integers

Density and Cumulative Functions:

⎛s + x −1⎞ s x f (x) = ⎜ ⎟p (1− p) ⎝ x ⎠

x ⎛s + i −1⎞ F(x) = ps ⎜ ⎟(1− p)i ∑⎜ i ⎟ i=0 ⎝ ⎠

Where ( ) is the Binomial Coefficient.

Mean:

s()1− p

p

Variance:

s()1− p

p2

Skewness:

2 − p for s > 0, p < 1 s()1− p

Kurtosis:

6 p2 3 + + for s > 0, p < 1 s s()1− p

Mode:

(bimodal) z and z + 1 integer z > 0

(unimodal) 0 z < 0

(unimodal) smallest integer greater than z otherwise

s()1− p −1 where z ≡ p

PDF - NegBin(3,.6) CDF - NegBin(3,.6)

0.30 1.0

0.9 0.25 0.8

0.7 0.20 0.6

0.15 0.5

0.4 0.10 0.3

0.2 0.05 0.1

0.00 0.0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 -1 -1

Normal RISKNormal(µ, σ)

Parameters:

µ continuous location parameter

σ continuous scale parameter σ > 0 *

*σ = 0 is supported for modeling convenience, but gives a degenerate distribution with x = µ.

Domain:

-∞ < x < +∞ continuous

Density and Cumulative Functions:

2 1⎛ x−µ ⎞ 1 − ⎜ ⎟ f (x) = e 2⎝ σ ⎠ 2πσ

⎛ x − µ ⎞ 1 ⎡ ⎛ x − µ ⎞ ⎤ F(x) ≡ Φ⎜ ⎟ = ⎢erf⎜ ⎟ +1⎥ ⎝ σ ⎠ 2 ⎣ ⎝ 2σ ⎠ ⎦ where Φ is called the Laplace-Gauss Integral and erf is the Error Function.

Mean:

µ

Variance:

σ2

Skewness:

0

Kurtosis:

3

Mode:

µ

PDF - Normal(0,1) CDF - Normal(0,1)

0.45 1.0

0.40 0.9

0.8 0.35 0.7 0.30 0.6 0.25 0.5 0.20 0.4 0.15 0.3 0.10 0.2

0.05 0.1

0.00 0.0 0 1 2 3 0 1 2 3 -3 -2 -1 -3 -2 -1

Pareto (First Kind) Pareto(θ, a)

Parameters:

θ continuous shape parameter θ > 0

a continuous scale parameter a > 0

Domain:

a ≤ x < +∞ continuous

Density and Cumulative Functions:

θa θ f (x) = xθ+1

θ ⎛ a ⎞ F(x) = 1− ⎜ ⎟ ⎝ x ⎠

Mean:

aθ for θ > 1 θ −1

Variance:

θa 2 for θ > 2 ()θ −1 2 (θ − 2)

Skewness:

θ +1 θ − 2 2 for θ > 3 θ − 3 θ

Kurtosis:

3()θ − 2 3θ2 + θ + 2 ( ) for θ > 4 θ()θ − 3 (θ − 4)

Mode:

a

PDF - Pareto(2,1) CDF - Pareto(2,1)

2.0 1.0

1.8 0.9

1.6 0.8

1.4 0.7

1.2 0.6

1.0 0.5

0.8 0.4

0.6 0.3

0.4 0.2

0.2 0.1

0.0 0.0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11 10 11

Pareto (Second Kind) RISKPareto2(b, q)

Parameters:

b continuous scale parameter b > 0

q continuous shape parameter q > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

qbq f (x) = ()x + b q+1

bq F(x) = 1− ()x + b q

Mean:

b for q > 1 q −1

Variance:

b2q for q > 2 ()q −1 2 (q − 2)

Skewness:

⎡ q +1⎤ q − 2 2 ⎢ ⎥ for q > 3 ⎣q − 3⎦ q

Kurtosis:

3()q − 2 3q2 + q + 2 ( ) for q > 4 q()q − 3 (q − 4)

Mode:

0

PDF - Pareto2(3,3) CDF - Pareto2(3,3)

1.2 1.0

0.9 1.0 0.8

0.7 0.8 0.6

0.6 0.5

0.4 0.4 0.3

0.2 0.2 0.1

0.0 0.0 0 2 4 6 8 0 2 4 6 8 -2 -2 10 12 10 12

Pearson Type V RISKPearson5(α, β)

Parameters:

α continuous shape parameter α > 0

β continuous scale parameter β > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

1 e−β x f (x) = ⋅ βΓ()α ()x β α+1

F(x) Has No Closed Form

Mean:

β for α > 1 α −1

Variance:

β2 for α > 2 ()α −1 2 (α − 2)

Skewness:

4 α − 2 for α > 3 α − 3

Kurtosis:

3()α + 5 (α − 2) for α > 4 ()α − 3 (α − 4)

Mode:

β

α +1

PDF - Pearson5(3,1) CDF - Pearson5(3,1)

2.5 1.0

0.9

2.0 0.8

0.7

1.5 0.6

0.5

1.0 0.4

0.3

0.5 0.2

0.1

0.0 0.0 5 5 0 5 0 5 0 5 0 5 0 5 0 5 . . 0. 0. 1. 1. 2. 2. 0. 0. 1. 1. 2. 2. -0 -0

Pearson Type VI

RISKPearson6(α1, α2, β)

Parameters:

α1 continuous shape parameter α1 > 0

α2 continuous shape parameter α2 > 0

β continuous scale parameter β > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

1 ()x β α1−1 f (x) = × α1+α2 βB()α1,α 2 ⎛ x ⎞ ⎜1+ ⎟ ⎝ β ⎠

F(x) Has No Closed Form. where B is the Beta Function.

Mean:

βα1 for α2 > 1 α 2 −1

Variance:

β2α ()α + α −1 1 1 2 for α > 2 2 2 ()α2 −1 (α2 − 2)

Skewness:

α 2 − 2 ⎡2α1 + α 2 −1⎤ 2 ⎢ ⎥ for α2 > 3 α1()α1 + α 2 −1 ⎣ α 2 − 3 ⎦

Kurtosis:

⎡ 2 ⎤ 3()α 2 − 2 2 ()α 2 −1 ⎢ + (α 2 + 5)⎥ for α2 > 4 ()α 2 − 3 (α 2 − 4)⎣⎢α1()α1 + α 2 −1 ⎦⎥

Mode:

β()α1 −1 for α1 > 1 α 2 +1

0 otherwise

PDF - Pearson6(3,3,1) CDF - Pearson6(3,3,1)

0.7 1.0

0.9 0.6 0.8

0.5 0.7

0.6 0.4 0.5 0.3 0.4

0.2 0.3

0.2 0.1 0.1

0.0 0.0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 -1 -1

Pert (Beta) RISKPert(min, m.likely, max)

Definitions:

min+ 4 ⋅ m.likely + max ⎡ µ − min ⎤ ⎡ max− µ ⎤ µ ≡ α1 ≡ 6 α2 ≡ 6 6 ⎣⎢max− min ⎦⎥ ⎣⎢max− min ⎦⎥

Parameters:

min continuous boundary parameter min < max

m.likely continuous parameter min < m.likely < max

max continuous boundary parameter

Domain:

min ≤ x ≤ max continuous

Density and Cumulative Functions:

()x − min α1 −1(max− x)α2 −1 f (x) = α1 +α2 −1 Β(α1,α2 )()max− min

Bz ()α1,α2 x − min F(x) = ≡ Iz (α1,α2 ) with z ≡ B(α1,α2 ) max− min where B is the Beta Function and Bz is the Incomplete Beta Function.

Mean:

min+ 4 ⋅ m.likely + max µ ≡ 6

Variance:

()µ − min (max− µ)

7

Skewness:

min+ max− 2µ 7

4 ()µ − min (max− µ)

Kurtosis:

()α + α +1 2(α + α )2 + α α (α + α − 6) 3 1 2 ( 1 2 1 2 1 2 ) α1α2 ()α1 + α2 + 2 (α1 + α2 + 3)

Mode:

m.likely

PDF - Pert(0,1,3) CDF - Pert(0,1,3)

0.7 1.0

0.6 0.8

0.5

0.6 0.4

0.3 0.4

0.2

0.2 0.1

0.0 0.0 5 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 . . 0. 0. 1. 1. 2. 2. 3. 3. 0. 0. 1. 1. 2. 2. 3. 3. -0 -0

Poisson RISKPoisson(λ)

Parameters:

λ mean number of successes continuous λ > 0 *

*λ = 0 is supported for modeling convenience, but gives a degenerate distribution with x = 0.

Domain:

0 ≤ x < +∞ discrete integers

Mass and Cumulative Functions:

λxe−λ f (x) = x!

x λn F(x) = e−λ ∑ n! n =0

Mean:

λ

Variance:

λ

Skewness:

1

λ

Kurtosis:

1 3 + λ

Mode:

(bimodal) λ and λ-1 (bimodal) if λ is an integer

(unimodal) largest integer less than λ otherwise

PMF - Poisson(3) CDF - Poisson(3)

0.25 1.0

0.9

0.20 0.8

0.7

0.15 0.6

0.5

0.10 0.4

0.3

0.05 0.2

0.1

0.00 0.0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 -1 -1

Rayleigh RISKRayleigh(b)

Parameters:

b continuous scale parameter b > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

2 1 ⎛ x ⎞ x − ⎜ ⎟ f (x) = e 2 ⎝ b ⎠ b2

2 1 ⎛ x ⎞ − ⎜ ⎟ F(x) = 1− e 2 ⎝ b ⎠

Mean:

π b 2

Variance:

⎛ π ⎞ b2 ⎜2 − ⎟ ⎝ 2 ⎠

Skewness:

2()π − 3 π ≈ 0.6311 ()4 − π 3 2

Kurtosis:

32 − 3π2 ≈ 3.2451 ()4 − π 2

Mode:

b

PDF - Rayleigh(1) CDF - Rayleigh(1)

0.7 1.0

0.9 0.6 0.8

0.5 0.7

0.6 0.4 0.5 0.3 0.4

0.2 0.3

0.2 0.1 0.1

0.0 0.0 5 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 . . 0. 0. 1. 1. 2. 2. 3. 3. 0. 0. 1. 1. 2. 2. 3. 3. -0 -0

Student’s “t” RISKStudent(ν)

Parameters:

ν the degrees of freedom integer ν > 0

Domain:

-∞ < x < +∞ continuous

Density and Cumulative Functions:

⎛ ν +1⎞ Γ⎜ ⎟ ν+1 1 ⎝ 2 ⎠ ⎡ ν ⎤ 2 f (x) = ⎢ ⎥ πν ⎛ ν ⎞ 2 Γ⎜ ⎟ ⎣ν + x ⎦ ⎝ 2 ⎠

1 ⎡ ⎛ 1 ν ⎞⎤ x2 F(x) = ⎢1+ Is ⎜ , ⎟⎥ with s ≡ 2 ⎣ ⎝ 2 2 ⎠⎦ ν + x2 where Γ is the Gamma Function and Ix is the Incomplete Beta Function.

Mean:

0 for ν > 1*

*even though the mean is not defined for ν = 1, the distribution is still symmetrical about 0.

Variance:

ν for ν > 2 ν − 2

Skewness:

0 for ν > 3*

*even though the skewness is not defined for ν ≤ 3, the distribution is still symmetric about 0.

Kurtosis:

⎛ ν − 2 ⎞ 3⎜ ⎟ for ν > 4 ⎝ ν − 4 ⎠

Mode:

0

PDF - Student(3) CDF - Student(3)

0.40 1.0

0.9 0.35 0.8 0.30 0.7 0.25 0.6

0.20 0.5

0.4 0.15 0.3 0.10 0.2 0.05 0.1

0.00 0.0 0 1 2 3 4 5 0 1 2 3 4 5 -5 -4 -3 -2 -1 -5 -4 -3 -2 -1

Triangular RISKTriang(min, m.likely, max)

Parameters:

min continuous boundary parameter min < max *

m.likely continuous mode parameter min ≤ m.likely ≤ max

max continuous boundary parameter

*min = max is supported for modeling convenience, but gives a degenerate distribution.

Domain:

min ≤ x ≤ max continuous

Density and Cumulative Functions:

2()x − min f (x) = min ≤ x ≤ m.likely (m.likely − min)(max− min)

2()max− x f (x) = m.likely ≤ x ≤ max (max− m.likely)(max− min)

()x − min 2 F(x) = min ≤ x ≤ m.likely (m.likely − min)(max− min)

()max− x 2 F(x) = 1− m.likely ≤ x ≤ max (max− m.likely)(max− min)

Mean:

min+ m.likely + max

3

Variance:

min2 + m.likely2 + max2 − (max)(m.likely) − (m.likely)(min) − (max)(min)

18

Skewness:

2 2 f f 2 − 9 2(m.likely − min) ( ) where f ≡ −1 5 3 2 max− min (f 2 + 3)

Kurtosis:

2.4

Mode:

m.likely

PDF - Triang(0,3,5) CDF - Triang(0,3,5)

0.45 1.0

0.40

0.8 0.35

0.30 0.6 0.25

0.20 0.4 0.15

0.10 0.2

0.05

0.00 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 -1 -1

Uniform RISKUniform(min, max)

Parameters:

min continuous boundary parameter min < max *

max continuous boundary parameter

*min = max is supported for modeling convenience, but gives a degenerate distribution.

Domain:

min ≤ x ≤ max continuous

Density and Cumulative Functions:

1 f (x) = max− min

x − min F(x) = max− min

Mean:

max− min

2

Variance:

()max− min 2

12

Skewness:

0

Kurtosis:

1.8

Mode:

Not uniquely defined

PDF - Uniform(0,1) CDF - Uniform(0,1)

1.2 1.0

1.0 0.8

0.8 0.6

0.6

0.4 0.4

0.2 0.2

0.0 0.0 2 2 0 2 4 6 8 0 2 0 2 4 6 8 0 2 . . 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. -0 -0

Weibull RISKWeibull(α, β)

Parameters:

α continuous shape parameter α > 0

β continuous scale parameter β > 0

Domain:

0 ≤ x < +∞ continuous

Density and Cumulative Functions:

αxα−1 α f (x) = e−(x β) βα

α F(x) = 1− e−(x β)

Mean:

⎛ 1 ⎞ βΓ⎜1+ ⎟ ⎝ α ⎠ where Γ is the Gamma Function.

Variance:

2 ⎡ ⎛ 2 ⎞ 2 ⎛ 1 ⎞⎤ β ⎢Γ⎜1+ ⎟ − Γ ⎜1+ ⎟⎥ ⎣ ⎝ α ⎠ ⎝ α ⎠⎦ where Γ is the Gamma Function.

Skewness:

⎛ 3 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ Γ⎜1+ ⎟ − 3Γ⎜1+ ⎟Γ⎜1+ ⎟ + 2Γ3⎜1+ ⎟ α α α α ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 3 2 ⎡ ⎛ 2 ⎞ 2 ⎛ 1 ⎞⎤ ⎢Γ⎜1+ ⎟ − Γ ⎜1+ ⎟⎥ ⎣ ⎝ α ⎠ ⎝ α ⎠⎦ where Γ is the Gamma Function.

Kurtosis:

⎛ 4 ⎞ ⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ Γ⎜1+ ⎟ − 4Γ⎜1+ ⎟Γ⎜1+ ⎟ + 6Γ⎜1+ ⎟Γ2 ⎜1+ ⎟ − 3Γ4 ⎜1+ ⎟ α α α α α α ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 2 ⎡ ⎛ 2 ⎞ 2 ⎛ 1 ⎞⎤ ⎢Γ⎜1+ ⎟ − Γ ⎜1+ ⎟⎥ ⎣ ⎝ α ⎠ ⎝ α ⎠⎦ where Γ is the Gamma Function.

Mode: 1 α ⎛ 1 ⎞ β⎜1− ⎟ for α >1 ⎝ α ⎠

0 for α ≤ 1

PDF - Weibull(2,1) CDF - Weibull(2,1)

0.9 1.0

0.8 0.9

0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2

0.1 0.1

0.0 0.0 0 5 0 5 0 5 0 5 0 5 0 5 5 5 . . 0. 0. 1. 1. 2. 2. 0. 0. 1. 1. 2. 2. -0 -0