Groundwater Terms and Definitions

Total Page:16

File Type:pdf, Size:1020Kb

Groundwater Terms and Definitions Groundwater Terms and definitions November 2015 Document Number: 2977263 Version: 8 Table of Contents 1 Groundwater occurrence .................................................................................................................... 4 1.1 Water cycle ................................................................................................................................. 4 1.2 Groundwater............................................................................................................................... 5 2 Aquifer types ...................................................................................................................................... 6 2.1 Aquifer ........................................................................................................................................ 6 2.2 Aquitard ...................................................................................................................................... 6 2.3 Unconfined aquifer ..................................................................................................................... 6 2.4 Confined aquifer ......................................................................................................................... 7 2.4.1 Deep lead .............................................................................................................................. 7 2.5 Perched aquifer .......................................................................................................................... 8 3 Aquifer properties ............................................................................................................................... 9 3.1 Hydraulic head ........................................................................................................................... 9 3.2 Hydraulic gradient .................................................................................................................... 10 3.3 Transmissivity (T) ..................................................................................................................... 11 3.4 Hydraulic conductivity (K) ......................................................................................................... 12 3.5 Storage coefficient (S) .............................................................................................................. 13 3.5.1 Unconfined aquifer .............................................................................................................. 13 3.5.2 Confined aquifer .................................................................................................................. 13 4 Groundwater flow ............................................................................................................................. 14 4.1 Groundwater flow ..................................................................................................................... 14 4.2 Recharge .................................................................................................................................. 15 4.3 Discharge ................................................................................................................................. 16 4.4 Spring ....................................................................................................................................... 17 4.5 Groundwater interaction with surface water ............................................................................. 18 4.6 Groundwater dependent ecosystem ........................................................................................ 19 5 Groundwater pumping ...................................................................................................................... 20 5.1 Pumping test ............................................................................................................................ 20 5.2 Cone of depression .................................................................................................................. 21 5.3 Bore construction ..................................................................................................................... 22 5.4 Pumping interference ............................................................................................................... 23 5.5 Entitlement ............................................................................................................................... 24 5.6 Allocation .................................................................................................................................. 24 6 Groundwater monitoring ................................................................................................................... 25 6.1 Groundwater monitoring ........................................................................................................... 25 6.2 Water measurement information system (WMIS) .................................................................... 25 6.3 Hydrograph ............................................................................................................................... 26 6.4 Recovery level .......................................................................................................................... 27 Document Number: 2977263 Version: 8 Page 2 of 34 6.5 Drawdown level ........................................................................................................................ 27 6.6 Nested monitoring bores .......................................................................................................... 28 6.7 Water table ............................................................................................................................... 30 6.8 Potentiometric surface ............................................................................................................. 31 6.9 Groundwater quality ................................................................................................................. 32 7 References ....................................................................................................................................... 33 Document Number: 2977263 Version: 8 Page 3 of 34 1 Groundwater occurrence 1.1 Water cycle The water cycle is the perpetual movement of water on earth (Figure 1). The suns heat evaporates water from open water bodies and land. Water vapour rises into the atmosphere and condenses to form clouds with lower air temperature. Precipitation falls back down to earth under gravity as rain, hail or snow. Precipitation may: • return to the atmosphere through evaporation; • contribute directly to surface water bodies, glaciers or snow; • fall on the landscape and run-off into streams and rivers that feed into the ocean; • infiltrate the soil and be taken up by plants and returned to the atmosphere through transpiration; and • enter the ground to recharge groundwater systems. Figure 1 Water Cycle (DSE 2009) Document Number: 2977263 Version: 8 Page 4 of 34 1.2 Groundwater Groundwater is water beneath the earth’s surface in pores and fractures of soil and rocks (Figure 2). Groundwater is also water that drains through the unsaturated soil to a saturated zone where pores and fractures can store water. Groundwater supports a significant amount of agricultural activity, provides urban supplies to a number of towns across Victoria, and is an essential source of water for domestic and stock supply. Groundwater is also an important environmental asset that provides base flow to streams and supports wetlands and other groundwater dependent ecosystems (definition provided in section 4.6). Figure 2 Groundwater occurrence (Ghost Watershed Alliance Society 2015) Document Number: 2977263 Version: 8 Page 5 of 34 2 Aquifer types 2.1 Aquifer An aquifer may be broadly described as saturated fractured rock or sand from which usable volumes of groundwater can be pumped. 2.2 Aquitard An aquitard restricts the flow of water from one aquifer to another, for example a clay layer or solid rock. 2.3 Unconfined aquifer An unconfined aquifer is a section of rock or sand that does not have a confining layer (e.g. clay aquitard) on top of it (Figure 3). An unconfined aquifer is often shallow. The top of an unconfined aquifer is the watertable. An unconfined aquifer acts similar to a sponge, in that the watertable surface can fluctuate up and down depending on the recharge and discharge rate. Figure 3 Aquifer types (National Groundwater Association 2007) Document Number: 2977263 Version: 8 Page 6 of 34 2.4 Confined aquifer A confined aquifer is a section of rock or sand that is overlain by a confining layer (e.g. clay aquitard on top) that restricts movement of water into another aquifer (Figure 3) Groundwater in confined aquifers can be under high pressure because of the confining layer on top of the aquifer and the recharge zone is higher in the catchment. In a confined aquifer the water level in a bore will rise to a level higher than the top of the aquifer because of the high pressure. This is referred to as the potentiometric surface and is similar to squeezing a juice box with a straw in it, casuing the juice to rise up the straw. In some bores the water level may be above the ground surface in which case it is called artesian. 2.4.1 Deep lead A deep lead is an ancient river bed (paleochannel) that has been buried by sediment or basalt resulting from volcanic
Recommended publications
  • Hydraulic Conductivity and Shear Strength of Dune Sand–Bentonite Mixtures
    Hydraulic Conductivity and Shear Strength of Dune Sand–Bentonite Mixtures M. K. Gueddouda Department of Civil Engineering, University Amar Teledji Laghouat Algeria [email protected] [email protected] Md. Lamara Department of Civil Engineering, University Amar Teledji Laghouat Algeria [email protected] Nabil Aboubaker Department of Civil Engineering, University Aboubaker Belkaid, Tlemcen Algeria [email protected] Said Taibi Laboratoire Ondes et Milieux Complexes, CNRS FRE 3102, Univ. Le Havre, France [email protected] [email protected] ABSTRACT Compacted layers of sand-bentonite mixtures have been proposed and used in a variety of geotechnical structures as engineered barriers for the enhancement of impervious landfill liners, cores of zoned earth dams and radioactive waste repository systems. In the practice we will try to get an economical mixture that satisfies the hydraulic and mechanical requirements. The effects of the bentonite additions are reflected in lower water permeability, and acceptable shear strength. In order to get an adequate dune sand bentonite mixtures, an investigation relative to the hydraulic and mechanical behaviour is carried out in this study for different mixtures. According to the result obtained, the adequate percentage of bentonite should be between 12% and 15 %, which result in a hydraulic conductivity less than 10–6 cm/s, and good shear strength. KEYWORDS: Dune sand, Bentonite, Hydraulic conductivity, shear strength, insulation barriers INTRODUCTION Rapid technological advances and population needs lead to the generation of increasingly hazardous wastes. The society should face two fundamental issues, the environment protection and the pollution risk control.
    [Show full text]
  • Drawdown Analysis of the Local Middle and Lower Trinity Aquifers
    TECHNICAL MEMORANDUM TO: Mr. Dirk Aaron, General Manager, CUWCD FROM: Michael R. Keester, P.G. SUBJECT: Drawdown Analysis of the Local Middle and Lower Trinity Aquifers DATE: October 5, 2018 As noted in previous analyses of water level changes, District constituents have expressed concerns regarding declining water levels in the Trinity Aquifer. In addition, in response to proposed mining operations in northern Williamson County, landowners reached out to the District to better understand Trinity Aquifer conditions and how the pumping by the mine operators may affect their wells. To assess the current conditions of the aquifer, we built upon previous analyses of the changes in water levels in the Middle Trinity Aquifer in southern Bell and northern Williamson counties. As part of our analysis, we expanded our evaluation to include an assessment of the water level conditions for the Lower Trinity Aquifer. Methodology We began by assembling the most recent water level data collected in 2018. Within Bell County, we relied primarily on the water level measurements collected by District staff or from continuous monitoring wells maintained by the Texas Water Development Board. These water levels and locations were the most reliable as the water levels are collected regularly and the aquifer designation for the well has been reviewed by District staff and multiple hydrogeologists. To supplement the water level data available from the District’s database, we also collected records from the Submitted Driller’s Report database. This database provides a record of well completions as reported by licensed water well drillers. Data associated with the report includes the location of the well, the depth and completion interval of the well, and the water level in the well at the time of completion.
    [Show full text]
  • Hydrogeology
    Hydrogeology Principles of Groundwater Flow Lecture 3 1 Hydrostatic pressure The total force acting at the bottom of the prism with area A is Dividing both sides by the area, A ,of the prism 1 2 Hydrostatic Pressure Top of the atmosphere Thus a positive suction corresponds to a negative gage pressure. The dimensions of pressure are F/L2, that is Newton per square meter or pascal (Pa), kiloNewton per square meter or kilopascal (kPa) in SI units Point A is in the saturated zone and the gage pressure is positive. Point B is in the unsaturated zone and the gage pressure is negative. This negative pressure is referred to as a suction or tension. 3 Hydraulic Head The law of hydrostatics states that pressure p can be expressed in terms of height of liquid h measured from the water table (assuming that groundwater is at rest or moving horizontally). This height is called the pressure head: For point A the quantity h is positive whereas it is negative for point B. h = Pf /ϒf = Pf /ρg If the medium is saturated, pore pressure, p, can be measured by the pressure head, h = pf /γf in a piezometer, a nonflowing well. The difference between the altitude of the well, H, and the depth to the water inside the well is the total head, h , at the well. i 2 4 Energy in Groundwater • Groundwater possess mechanical energy in the form of kinetic energy, gravitational potential energy and energy of fluid pressure. • Because the amount of energy vary from place-­­to-­­place, groundwater is forced to move from one region to another in order to neutralize the energy differences.
    [Show full text]
  • Evaluating Vapor Intrusion Pathways
    Evaluating Vapor Intrusion Pathways Guidance for ATSDR’s Division of Community Health Investigations October 31, 2016 Contents Acronym List ........................................................................................................................................................................... 1 Introduction ........................................................................................................................................................................... 2 What are the potential health risks from the vapor intrusion pathway? ............................................................................... 2 When should a vapor intrusion pathway be evaluated? ........................................................................................................ 3 Why is it so difficult to assess the public health hazard posed by the vapor intrusion pathway? .......................................... 3 What is the best approach for a public health evaluation of the vapor intrusion pathway? ................................................. 5 Public health evaluation.......................................................................................................................................................... 5 Vapor intrusion evaluation process outline ............................................................................................................................ 8 References… …......................................................................................................................................................................
    [Show full text]
  • Ground Water Introduction and Demonstration
    Ground Water Introduction and Demonstration Page Content By Kimberly Mullen, CPG http://www.ngwa.org/Fundamentals/teachers/Pages/Ground-Water-Introduction-and- Demonstration.aspx Objective Students will be able to define terms pertaining to groundwater such as permeability, porosity, unconfined aquifer, confined aquifer, drawdown, cone of depression, recharge rate, Darcy’s law, and artesian well. Students will be able to illustrate environmental problems facing groundwater, (such as chemical contamination, point source and nonpoint source contamination, sediment control, and overuse). Introduction Looking at satellite photographs of the planet Earth can illustrate the fact that the majority of the Earth’s surface is covered with water. Earth is known as the “Blue Planet.” Seventy-one percent of the Earth’s surface is covered with water. There also is water beneath the surface of the Earth. Yet, with all of the water present on Earth, water is still a finite source, cycling from one form to another. This cycle, known as the hydrologic cycle, is an important concept to help understand the water found on Earth. In addition to understanding the hydrologic cycle, you must understand the different places that water can be found—primarily above the ground (as surface water) and below the ground (as groundwater). Today, we will be starting to understand water below the ground. General definitions and discussion points “What is groundwater?” Groundwater is defined as water that is found beneath the water table under Earth’s surface. “Why is groundwater important?” Groundwater, makes up about 98 percent of all the usable fresh water on the planet, and it is about 60 times as plentiful as fresh water found in lakes and streams.
    [Show full text]
  • CPT-Geoenviron-Guide-2Nd-Edition
    Engineering Units Multiples Micro (P) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – Vvo Excess pore pressure: 'u = u2 – u0 Pore pressure ratio: Bq = 'u / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geo-Environmental Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 2nd Edition December 2008 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made.
    [Show full text]
  • Hydraulic Conductivity of Composite Soils
    This is a repository copy of Hydraulic conductivity of composite soils. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/119981/ Version: Accepted Version Proceedings Paper: Al-Moadhen, M orcid.org/0000-0003-2404-5724, Clarke, BG orcid.org/0000-0001-9493-9200 and Chen, X orcid.org/0000-0002-2053-2448 (2017) Hydraulic conductivity of composite soils. In: Proceedings of the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2). 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), 06-07 Sep 2017, Leeds, UK. This is an author produced version of a paper presented at the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), Leeds, UK 2017. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Proceedings of the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), Leeds, UK 2017 Hydraulic conductivity of composite soils Muataz Al-Moadhen, Barry G.
    [Show full text]
  • A New Approach to the Step-Drawdown Test
    A new approach to the step-drawdown test Dr. Gianpietro Summa Ph.D. in Environmental and Applied Geology Monticchio Bagni 85028 Rionero in Vulture (Potenza), Italy e-mail: [email protected] Abstract In this paper a new approach to perform step-drawdown tests in presented. Step-drawdown tests known so far are performed strictly keeping the value of the pumping rates constant through all the steps of the test. Current technology allows us to let the submerged electric pumps work at a specific revolution per minute (rpm) and allows us to suitably modify the rotation velocity at every step. Our approach is based on the idea of keeping the value of rpm fixed at every step of the test, instead of keeping constant the value of the discharge. Our technique has been experimentally applied to a well and a description of the operations and results are thoroughly presented. Our approach, in this peculiar case, has made possible to understand how actually the discharge Q varies in function of the drawdown sw . It has also made possible to monitor the approaching of the equilibrium between Q and sw , using both the variation of Q and that of sw with time. Moreover, we have seen that for the well studied in this paper the ratio Q/ sw remains almost constant within each step. Keywords characteristic curve - pumping test - equipment/field techniques - hydraulic testing Introduction Step-drawdown tests are nowadays quite popular: they are the most frequently performed tests in the case of single well (Kawecki 1995). There are various reasons why they are performed: in the case of exploration wells, they allow to determine the proper discharge rate for the subsequent aquifer test; in the case of exploitation wells they allow, among other things, to understand the behavior of the well during the pumping, to determine the optimum production capacity and to analyze the well performance over time (Boonstra and Kselik 2001).
    [Show full text]
  • Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico
    Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico Vincente Ruiz WP 2016.05 Suggested citation: V. Ruiz (2016). Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico. FAERE Working Paper, 2016.05. ISSN number: 2274-5556 www.faere.fr Groundwater Overdraft, Electricity, and Wrong Incentives: Evidence from Mexico by Vicente Ruiz⇤ Last version: January 2016 Abstract Groundwater overdraft is threatening the sustainability of an increasing number of aquifers in Mexico. The excessive amount of groundwater ex- tracted by irrigation farming has significantly contributed to this problem. The objective of this paper is to analyse the effect of changes in ground- water price over the allocation of different production inputs. I model the technology of producers facing groundwater overdraft through a Translog cost function and using a combination of multiple micro-data sources. My results show that groundwater demand is inelastic, -0.54. Moreover, these results also show that both labour and fertiliser can act as substitutes for groundwater, further reacting to changes in groundwater price. JEL codes:Q12,Q25 Key words: Groundwater, Electricity, Subsidies, Mexico, Translog Cost ⇤Université Paris 1 - Panthéon Sorbonne, Paris School of Economics (PSE). Centre d’Économie de la Sorbonne, 106-112 Boulevard de l’Hopital, 75647, Paris Cedex 13, France. Email: [email protected] Introduction The high rate of groundwater extraction in Mexico is threatening the sustainability of an increasing number of aquifers in the country. Today in Mexico 1 out of 6aquifersisconsideredtobeoverexploited(CONAGUA, 2010). Groundwater overdraft is not only an important cause of major environmental problems, but it also has a direct impact on economic activities and the wellbeing of a high share of the population.
    [Show full text]
  • Basic Elements of Ground-Water Hydrology with Reference to Conditions in North Carolina by Ralph C Heath
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Basic Elements of Ground-Water Hydrology With Reference to Conditions in North Carolina By Ralph C Heath U.S. Geological Survey Water-Resources Investigations Open-File Report 80-44 Prepared in cooperation with the North Carolina Department of Natural^ Resources and Community Development Raleigh, North Carolina 1980 United States Department of the Interior CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. W. Menard, Director For Additional Information Write to: Copies of this report may be purchased from: GEOLOGICAL SURVEY U.S. GEOLOGICAL SURVEY Open-File Services Section Post Office Box 2857 Branch of Distribution Box 25425, Federal Center Raleigh, North Carolina 27602 Denver, Colorado 80225 Preface Ground water is one of North Carolina's This report was prepared as an aid to most valuable natural resources. It is the developing a better understanding of the primary source-of water supplies in rural areas ground-water resources of the State. It and is also widely used by industries and consists of 46 essays grouped into five parts. municipalities, especially in the Coastal Plain. The topics covered by these essays range from However, its use is not increasing in proportion the most basic aspects of ground-water to the growth of the State's population and hydrology to the identification and correction economy. Instead, the present emphasis in of problems that affect the operation of supply water-supply development is on large regional wells. The essays were designed both for self systems based on reservoirs on large streams. study and for use in workshops on ground- The value of ground water as a resource not water hydrology and on the development and only depends on its widespread occurrence operation of ground-water supplies.
    [Show full text]
  • Transmissivity, Hydraulic Conductivity, and Storativity of the Carrizo-Wilcox Aquifer in Texas
    Technical Report Transmissivity, Hydraulic Conductivity, and Storativity of the Carrizo-Wilcox Aquifer in Texas by Robert E. Mace Rebecca C. Smyth Liying Xu Jinhuo Liang Robert E. Mace Principal Investigator prepared for Texas Water Development Board under TWDB Contract No. 99-483-279, Part 1 Bureau of Economic Geology Scott W. Tinker, Director The University of Texas at Austin Austin, Texas 78713-8924 March 2000 Contents Abstract ................................................................................................................................. 1 Introduction ...................................................................................................................... 2 Study Area ......................................................................................................................... 5 HYDROGEOLOGY....................................................................................................................... 5 Methods .............................................................................................................................. 13 LITERATURE REVIEW ................................................................................................... 14 DATA COMPILATION ...................................................................................................... 14 EVALUATION OF HYDRAULIC PROPERTIES FROM THE TEST DATA ................. 19 Estimating Transmissivity from Specific Capacity Data.......................................... 19 STATISTICAL DESCRIPTION ........................................................................................
    [Show full text]
  • American Water Works Association California-Nevada Section Annual Fall Conference 2015 Las Vegas, Nevada – October 27, 2015 1
    Russell J. Kyle, MS, PG, CHG Associate Hydrogeologist Wood Rodgers, Inc. American Water Works Association California-Nevada Section Annual Fall Conference 2015 Las Vegas, Nevada – October 27, 2015 1. Basics of Pumping Wells 2. Types of Pumping Tests 3. Test Procedures 4. Data Analysis 5. Summary Basics of a Pumping Well Discharge Ground Surface Static Water Level Aquifer Loss Cone of Depression Well Loss Pumping Water Level Aquifer Cone of Depression Pumping Depression (1 Well) Specific Capacity Discharge Rate (gpm) Ground Surface Static Water Level Aquifer Loss Drawdown (ft) Well Loss Aquifer Specific Capacity (gpm/ft) = Discharge Rate / Drawdown Specific Capacity Specific capacity (Q/s) defines the relationship between drawdown in the well and its discharge rate. gallons per minute per foot (gpm/foot) of drawdown Often used as a metric of well performance Varies with both time and flow rate. Lower specific capacities will result in deeper pumping water levels, resulting in higher energy costs to pump. Example Calculation Q = 1,793 gpm Static water level = 114.07 feet Pumping water level = 160.3 feet Q/s = 1,793 gpm / (160.3 ft – 114.07 ft) = 39 gpm/ft Well Efficiency Discharge Rate (gpm) Ground Surface Static Water Level Aquifer Loss Drawdown (ft) Well Loss Aquifer Well Efficiency (%) = Aquifer Loss / Total Drawdown Well Interference Discharge Ground Surface Static Water Level Cone of Depression Interference Aquifer Well Interference Coalescing Pumping Depressions (2 Wells) 1. 2. Types of Pumping Tests 3. 4. 5. Typical Pumping
    [Show full text]