E+A Galaxy and Spiral E+A Galaxy Candidates in the Hercules Supercluster

Total Page:16

File Type:pdf, Size:1020Kb

E+A Galaxy and Spiral E+A Galaxy Candidates in the Hercules Supercluster E+A galaxy and spiral E+A galaxy candidates in the Hercules supercluster by Rosemary Williams A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Geophysics (Honors Scholar) Presented March 5, 2021 Commencement June 2021 2 3 AN ABSTRACT OF THE THESIS OF Rosemary Williams for the degree of Honors Baccalaureate of Science in Geophysics presented on March 5, 2021. Title: E+A galaxy and spiral E+A galaxy candidates in the Hercules supercluster. Abstract approved:____________________________________________________ Charles Liu E+A galaxies represent an important niche in galaxy evolution as a subset of post- starburst galaxies. Set apart from other post-starburst galaxies by their rapid quenching of star formation, E+As are thought to have started their formation outside a galaxy cluster's center and have fallen inward due to gravity; the star forming gas is ram-pressure stripped from the galaxy, quenching star formation and leaving behind a post-starburst galaxy. This galaxy has a high population of older, redder stars from the pre-starburst galaxy, and also contains new, blue, A-type stars that formed during the merger. This paper investigates E+As within the Hercules supercluster, and pays particular attention to Khutulun (SDSS 2MASX J16015198+1547326), a perfect example of a barred spiral (SBb type) E+A galaxy, and the inspiration for investigating spiral E+As. Spiral E+As represent an even smaller subgroup of galaxies as they have retained their arms through starburst, and thus were most likely formed without a major galaxy merger. This research presents theories on how spiral E+As formed and supports current theories that E+As tend to be in low/medium density regions within clusters and provides evidence that perhaps the gas density region is correlated to how the galaxy underwent starburst. Key Words: galaxies, evolution, post-starburst, E+A, spiral E+A, Hercules Corresponding e-mail address: [email protected] 4 ©Copyright by Rosemary Williams March 5, 2021 5 E+A galaxy and spiral E+A galaxy candidates in the Hercules supercluster by Rosemary Williams A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Geophysics (Honors Scholar) Presented March 5, 2021 Commencement June 2021 6 Honors Baccalaureate of Science in Geophysics project of E+A galaxy and spiral E+A galaxy candidates in the Hercules supercluster presented on March 5, 2021. APPROVED: _____________________________________________________________________ Charles Liu, Mentor, representing the American Museum of Natural History _____________________________________________________________________ Randall Milstein, Committee Member, representing Physics _____________________________________________________________________ Xavier Siemens, Committee Member, representing Physics _____________________________________________________________________ Toni Doolen, Dean, Oregon State University Honors College I understand that my project will become part of the permanent collection of Oregon State University, Honors College. My signature below authorizes release of my project to any reader upon request. _____________________________________________________________________ Rosemary Williams, Author 7 I would like to thank Dr. Charles Liu for mentoring me through the research process and being one of the most understanding and caring mentors I have ever met. You supported me through the largest research project I have ever tackled, and your constant enthusiasm and encouragement was delightful. Thank you to Dr. Randall Milstein for being a mentor to me since my freshman year and pushing me to apply to so many different opportunities that I never thought I could actually get. Thank you for all your letters of recommendation and for being a member on my thesis committee and providing insightful, critical feedback. Thank you to Dr. Siemens for graciously agreeing to be on my committee without having ever even met me before, I appreciate all of the time you dedicated to this thesis especially given all of your amazing research projects you are currently juggling. I would also like to thank the Y/Dim Collaboration for being such an amazing and supportive research group. I have had such an amazing time getting to know you all and I have learned so much from you. I would also like to acknowledge the NSF REU program at the American Museum of Natural History for funding this research, and to everyone at the museum who worked tirelessly so the program could go on virtually during a pandemic. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FaST) initiative, ARC Agreement SSP483, and by NSF grants AST-1852355, 1852360, 1460939, and 1460860 to the American Museum of Natural History and CUNY College of Staten Island. 8 Table of Contents Table of Contents ....................................................................................................... 8 Chapter 1: Introduction ......................................................................................... 9 Section 1.1 Background and history ........................................................................... 9 Section 1.2 The science behind E+A galaxies ............................................................ 12 Chapter 2: Data acquisition ................................................................................. 16 Chapter 3: Results and Analysis ........................................................................... 22 Section 3.1 E+A Results and Analysis ........................................................................ 23 Section 3.2 Spiral E+A Results and Analysis .............................................................. 26 Section 3.3 Cold and hot ICM regions within Hercules ............................................. 28 Chapter 4: Discussion .......................................................................................... 30 Section 4.1 How do spiral E+As form? ...................................................................... 30 Section 4.2 ICM hot and cold gas analysis ................................................................ 33 Chapter 5: Considerations ................................................................................... 35 Chapter 6: Conclusion .......................................................................................... 37 Chapter 7: Works Cited ....................................................................................... 38 Chapter 8: Appendix ............................................................................................ 41 Section 8.1 Equivalent width code ............................................................................ 41 Section 8.2 NN code .................................................................................................. 42 Section 8.3 3D visualizations of elliptical and spiral E+A galaxies ............................ 43 Section 8.4 Example of SDSS classified E+A that is not fully E+A .............................. 44 9 Chapter 1: Introduction Section 1.1 Background and history In 1983, Dressler and Gunn identified what would become the first known 'E+A' galaxies while studying the shape of galaxy spectra in the 3C 295 cluster [1]. The spectra that caught their attention lacked star formation and seemed to contain two contradictory star populations: old, red, K-type stars and a considerable population of new, blue, A- type stars. This unlikely combination of stellar populations forced the galaxies’ apparent color into a “green valley” (see Figure 1): bluer than a typical elliptical galaxy and redder than a typical spiral galaxy. They were called “E+A” (or “K+A”) because their galaxy spectra could be modelled using typical “E”-lliptical galaxies (which contain high populations of “K”-type stars) and “A”-type stars. Figure 1: Color-mass diagram illustrating the location of the green valley from Kevin Schawinski et al [2]. 10 One explanation for how these galaxies formed is a past event triggered a starburst (a period of star formation ~10 times higher than in the average star-forming galaxy) within the galaxy that led to the formation of young, blue stars among the red stars of the host galaxy. Overtime star formation ended, most likely due to star-forming gas being blown out of the galaxy as it moved through its galaxy cluster in a process called ram-pressure stripping (RPS), leaving the galaxy quiescent and E+A. But what triggered these starbursts? In 1988, Lavery and Henry presented spectrographic and photographic evidence of galaxy-galaxy interactions at around redshift -.2 that had triggered starbursts within galaxies [3]. In 1991, Oegerle, Hill, and Hoessel identified the irregular galaxy “G515” (pictured in Figure 2), the first low-redshift E+A galaxy discovered (z = 0.0875), and an important discovery because its high luminosity (rare for elliptical galaxies) and distinct morphology suggested evidence for a recent merger [4]. Figure 2: G515 (left) was one of the first E+A galaxies studied in detail and Khutulun (right) is the spiral E+A galaxy that inspired this research. Note the faint trail of material swinging beneath G515 and the irregular shape of the center alluding to a past merger or harassment event. Images taken from SDSS. 11 While mergers had been a possibility for how E+A galaxies formed,
Recommended publications
  • Galaxy Cluster's Rotation
    Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 14 June 2018 (MN LATEX style file v2.2) Galaxy cluster's rotation M. Manolopoulou1;2?, M. Plionis2;3 1 Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK. 2 Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Greece. 3 Instituto Nacional de Astrof´ısica Optica y Electr´onica, AP 51 y 216, 72000, Puebla, M´exico. 14 June 2018 ABSTRACT We study the possible rotation of cluster galaxies, developing, testing and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algo- rithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z . 0:1 with member galaxies selected from the Sloan Digital Sky Survey (SDSS) DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure ve- locities for rotation, provided by our Monte-Carlo simulation analysis, we find that ∼ 23% of our clusters are rotating under a set of strict criteria. Loosening the strict- ness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼ 28%.
    [Show full text]
  • A New Universe to Discover: a Guide to Careers in Astronomy
    A New Universe to Discover A Guide to Careers in Astronomy Published by The American Astronomical Society What are Astronomy and Astrophysics? Ever since Galileo first turned his new-fangled one-inch “spyglass” on the moon in 1609, the popular image of the astronomer has been someone who peers through a telescope at the night sky. But astronomers virtually never put eye to lens these days. The main source of astronomical data is still photons (particles of light) from space, but the tools used to gather and analyze them are now so sophisticated that it’s no longer necessary (or even possible, in most cases) for a human eye to look through them. But for all the high-tech gadgetry, the 21st-Century astronomer is still trying to answer the same fundamental questions that puzzled Galileo: How does the universe work, and where did it come from? Webster’s dictionary defines “astronomy” as “the science that deals with the material universe beyond the earth’s atmosphere.” This definition is broad enough to include great theoretical physicists like Isaac Newton, Albert Einstein, and Stephen Hawking as well as astronomers like Copernicus, Johanes Kepler, Fred Hoyle, Edwin Hubble, Carl Sagan, Vera Rubin, and Margaret Burbidge. In fact, the words “astronomy” and “astrophysics” are pretty much interchangeable these days. Whatever you call them, astronomers seek the answers to many fascinating and fundamental questions. Among them: *Is there life beyond earth? *How did the sun and the planets form? *How old are the stars? *What exactly are dark matter and dark energy? *How did the Universe begin, and how will it end? Astronomy is a physical (non-biological) science, like physics and chemistry.
    [Show full text]
  • Curriculum Vitae John P
    Curriculum Vitae John P. Blakeslee National Research Council of Canada Phone: 1-250-363-8103 Herzberg Astronomy & Astrophysics Programs Fax: 1-250-363-0045 5071 West Saanich Road Cell: 1-250-858-1357 Victoria, B.C. V9E 2E7 Email: [email protected] Canada Citizenship: USA Education 1997 Ph.D., Physics, Massachusetts Institute of Technology (supervisor: Prof. John Tonry) 1991 B. A., Physics, University of Chicago (Honors; supervisor: Prof. Donald York) Employment History 2007 – present Astronomer, Senior Research Officer NRC Herzberg Institute of Astrophysics 2008 – present Adjunct Associate Professor Department of Physics, University of Victoria 2008 – 2013 Adjunct Professor Washington State University 2005 – 2007 Assistant Professor of Physics Washington State University 2004 – 2005 Research Scientist Johns Hopkins University 2000 – 2004 Associate Research Scientist Johns Hopkins University 1999 – 2000 Postdoctoral Research Associate University of Durham, U.K. 1996 – 1999 Fairchild Postdoctoral Scholar California Institute of Technology Fellowships and Awards 2004 Ernest F. Fullam Award for Innovative Research in Astronomy, Dudley Observatory 2003 NASA Certificate for contributions to the success of HST Servicing Mission 3B 1996 – 1999 Sherman M. Fairchild Postdoctoral Fellowship in Astronomy, Caltech Professional Service 2016 – present Canadian Large Synoptic Survey Telescope (LSST) Consortium, Co-PI 2014 – present Chair, NOAO Time Allocation Committee (TAC) Extragalactic Panel 2008 – present National Representative, Gemini International
    [Show full text]
  • 195 9Apj. . .130. .629B the HERCULES CLUSTER OF
    .629B THE HERCULES CLUSTER OF NEBULAE* .130. G. R. Burbidge and E. Margaret Burbidge 9ApJ. Yerkes and McDonald Observatories Received March 26, 1959 195 ABSTRACT The northern of two clusters of nebulae in Hercules, first listed by Shapley in 1933, is an irregular group of about 75 bright nebulae and a larger number of faint ones, distributed over an area about Io X 40'. A set of plates of parts of this cluster, taken by Dr. Walter Baade with the 200-inch Hale reflector, is shown and described. More than three-quarters of the bright nebulae have been classified, and, of these, 69 per cent are spirals or irregulars and 31 per cent elliptical or SO. Radial velocities for 7 nebulae were obtained by Humason, and 10 have been obtained by us with the 82-inch reflector. The mean red shift is 10775 km/sec. From this sample, the total kinetic energy of the nebulae has been esti- mated. By measuring the distances between all pairs on a 48-inch Schmidt enlargement, the total poten- tial energy has been estimated. From these results it is concluded that, if the cluster is to be in a stationary state, the average galactic mass must be ^1012Mo. Three possibilities are discussed: that the masses are indeed as large as this, that there is a large amount of intergalactic matter, and that the cluster is expanding. The data for the Coma and Virgo clusters are also reviewed. It is concluded that both the Hercules and the Virgo clusters are probably expanding, but the situation is uncertain in the case of the Coma cluster.
    [Show full text]
  • Radio Investigations of Clusters of Galaxies
    • • RADIO INVESTIGATIONS OF CLUSTERS OF GALAXIES a study of radio luminosity functions, wide-angle head-tailed radio galaxies and cluster radio haloes with the Westerbork Synthesis Radio Telescope proefschrift ter verkrijging van degraad van Doctor in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magnificus Or. D.J. Kuenen, hoogleraar in de Faculteit der Wiskunde en Natuurwetenschappen, volgens besluit van het College van Dekanen te verdedigen op woensdag 20 december 1978 teklokke 15.15 uur door Edwin Auguste Valentijn geboren te Voorburg in 1952 Sterrewacht Leiden 1978 elve/labor vincit - Leiden Promotor: Prof. Dr. H. van der Laan aan Josephine aan mijn ouders Cover: Some radio contours (1415 MHz) of the extended radio galaxies NGC6034, NGC6061 and 1B00+1SW2 superimposed to a smoothed galaxy distribution (number of galaxies per unit area, taken from Shane) of the Hercules Superoluster. The 90 % confidence error boxes of the Ariel VandUHURU observations of the X-ray source A1600+16 are also included. In the region of overlap of these two error boxes the position of a oD galaxy is indicated. The combined picture suggests inter-galactic material pervading the whole superaluster. CONTENTS CHAPTER 1 GENERAL INTRODUCTION AND SUMMARY 9 PART 1 OBSERVATIONS OF THE COI1A CLUSTER AT 610 MHZ 15 CHAPTER 2 COMA CLUSTER GALAXIES 17 Observation of the Coma Cluster at 610 MHz (Paper III, with W.J. Jaffe and G.C. Perola) I Introduction 17 II Observations 18 III Data Reduction 18 IV Radio Source Parameters 19 V Optical Data 20 VI The Radio Luminosity Function of the Coma Cluster Galaxies 21 a) LF of the (E+SO) Galaxies 23 b) LF of the (S+I) Galaxies 25 c) Radial Dependence of the LF 26 VII Other Properties of the Detected Cluster Galaxies 26 a) Spectral Indexes b) Emission Lines VIII The Central Radio Sources 27 a) 5C4.85 = NGC4874 27 b) 5C4.8I - NGC4869 28 c) Coma C 29 CHAPTER 3 RADIO SOURCES IN COMA NOT IDENTIFIED WITH CLUSTER GALAXIES 31 Radio Data and Identifications (Paper IV, with G.C.
    [Show full text]
  • Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a Spinning Universe
    Journal of High Energy Physics, Gravitation and Cosmology, 2021, 7, 98-122 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a Spinning Universe Puthalath Koroth Raghuprasad Independent Researcher, Odessa, TX, USA How to cite this paper: Raghuprasad, P.K. Abstract (2021) Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a This is the final article in our series dealing with the interplay of spin and Spinning Universe. Journal of High Energy gravity that leads to the generation, and continuation of celestial body mo- Physics, Gravitation and Cosmology, 7, tions in the universe. In our prior studies we focused on such interactions in 98-122. https://doi.org/10.4236/jhepgc.2021.71005 the elementary particles, and in the celestial bodies in the solar system. Fore- most among the findings was that, along with gravity, matter at all levels ex- Received: March 23, 2020 hibits axial spin. We further noted that all freestanding bodies outside our Accepted: December 19, 2020 solar system, including the largest such units, the stars and galaxies also spin Published: December 22, 2020 on their axes. Also, the axial rotation speed of planets in our solar system has Copyright © 2021 by author(s) and a linear positive relationship to their masses, thus hinting at its fundamental Scientific Research Publishing Inc. and autonomous nature. We have reported that this relationship between the This work is licensed under the Creative size of the body and its axial rotation speed extends to the stars and even the Commons Attribution International License (CC BY 4.0).
    [Show full text]
  • Interstellarum 40 Erreicht Die Heftzahl Der Neuen Folge Nun Gleich- Stand Mit Den Ausgaben Der Früheren Deep-Sky-Zeitschrift
    fokussiert Liebe Leserinnen, liebe Leser, 20 Hefte Zeitschrift für praktische Astronomie Als interstellarum sich mit der Ausgabe 20 vom »Magazin für Deep-Sky- Beobachter« zur »Zeitschrift für praktische Astronomie« wandelte, gab es nicht nur positive Kommentare, wie die Leserbriefe in Heft 21 zeigten. Mit interstellarum 40 erreicht die Heftzahl der neuen Folge nun Gleich- stand mit den Ausgaben der früheren Deep-Sky-Zeitschrift. Im Rückblick zeigt sich, wie richtig der damals auch in der Redaktion viel diskutierte Schritt war: interstellarum konnte seine Aufl age seit 2001 vervierfachen. Für Heft 40 wurde diese noch einmal erhöht – diese Ausgabe geht mit knapp 9000 Heften in den Handel. Dort ist interstellarum inzwischen in Deutschland, Österreich, der Schweiz und Italien am Kiosk erhältlich. Astrofotografen für interstellarum Einen besonderen Anteil am Erfolg von interstellarum haben die zahl- reichen Astrofotografen, die die Illustration jeder Ausgabe mit großarti- gen Fotos ermöglichen. Um ihr Engagement zu honorieren, heben wir ab sofort die Namen derjenigen Astrofotografen im Impressum (Seite 78) hervor, die interstellarum regelmäßig ihre Aufnahmen einsenden. Die Redaktion möchte damit auch andere führende Astrofotografen einla- den, ihre Bildergebnisse der Zeitschrift zur Verfügung zu stellen. Weitere Informationen zu unserem Angebot für Astrofotografen können Sie im Internet unter www.interstellarum.de nachlesen. Stefan Seip Südhimmel-Sehnsucht Das Kreuz des Südens, Omega Centauri, die Magellanschen Wolken – wer träumt nicht von einer Exkursion zu den spektakulären Zielen des südlichen Sternhimmels, die bei uns immer unsichtbar bleiben? In einem zweiteiligen Artikel huldigen wir dem Südhimmel und seinen schönsten Deep-Sky-Objekten mit Astrofotos und Zeichnungen gleichermaßen. Las- sen Sie sich vom Südhimmel-Virus anstecken und mitnehmen auf eine Reise zu Katzenpfoten, Kohlensack und Käfernebel (Seite 50).
    [Show full text]
  • Youth Capture the Colorful Cosmos Ii: Star Stories of the Dawnland
    YOUTH CAPTURE THE COLORFUL COSMOS II: STAR STORIES OF THE DAWNLAND The Abbe Museum, in association with the Smithsonian Institution, is pleased to participate in the Youth Capture the Colorful Cosmos II (YCCC II) program. By partnering with schools in the Wabanaki communities, students have the opportunity to research, learn about, and photograph the cosmos using telescopes owned and maintained by the Harvard-Smithsonian Center for Astrophysics. The MicroObservatory is a network of automated telescopes that can be controlled over the Internet. This network was developed by scientists and educators, and designed to enable youth nationwide to investigate the wonders of the deep sky. The remote observing network is composed of several three-foot-tall reflecting telescopes, each of which has a six- inch mirror to capture the light from distant objects in space. Instead of an eyepiece, the telescopes focus the collected light onto an electronic chip that records the image as a picture file. The goal of the YCCC II program is to use hands-on exercises to teach youth how to control the MicroObservatory robotic telescopes over the internet and take their own images of the universe. Here at the Abbe, the project also encouraged students to choose subjects based on Wabanaki stories about the stars. Each student had the opportunity to research traditional stories and interpret them in a modern context using 21st century technology. Originally beginning as an online exhibit featuring the Indian Township School, the Youth Capture the Colorful Cosmos exhibit features photos taken by children in the Passamaquoddy, Maliseet, Penobscot, and Micmac communities in Maine.
    [Show full text]
  • Hercules a Monthly Sky Guide for the Beginning to Intermediate Amateur Astronomer Tom Trusock - 7/09
    Small Wonders: Hercules A monthly sky guide for the beginning to intermediate amateur astronomer Tom Trusock - 7/09 Dragging forth the summer Milky Way, legendary strongman Hercules is yet another boundary constellation for the summer season. His toes are dipped in the stream of our galaxy, his head is firm in the depths of space. Hercules is populated by a dizzying array of targets, many extra-galactic in nature. Galaxy clusters abound and there are three Hickson objects for the aficionado. There are a smattering of nice galaxies, some planetary nebulae and of course a few very nice globular clusters. 2/19 Small Wonders: Hercules Widefield Finder Chart - Looking high and south, early July. Tom Trusock June-2009 3/19 Small Wonders: Hercules For those inclined to the straightforward list approach, here's ours for the evening: Globular Clusters M13 M92 NGC 6229 Planetary Nebulae IC 4593 NGC 6210 Vy 1-2 Galaxies NGC 6207 NGC 6482 NGC 6181 Galaxy Groups / Clusters AGC 2151 (Hercules Cluster) Tom Trusock June-2009 4/19 Small Wonders: Hercules Northern Hercules Finder Chart Tom Trusock June-2009 5/19 Small Wonders: Hercules M13 and NGC 6207 contributed by Emanuele Colognato Let's start off with the masterpiece and work our way out from there. Ask any longtime amateur the first thing they think of when one mentions the constellation Hercules, and I'd lay dollars to donuts, you'll be answered with the globular cluster Messier 13. M13 is one of the easiest objects in the constellation to locate. M13 lying about 1/3 of the way from eta to zeta, the two stars that define the westernmost side of the keystone.
    [Show full text]
  • Cross Identification Between X-Ray and Optical Clusters of Galaxies In
    Draft version November 8, 2018 A Preprint typeset using LTEX style emulateapj v. 5/2/11 CROSS IDENTIFICATION BETWEEN X-RAY AND OPTICAL CLUSTERS OF GALAXIES IN THE SDSS DR7 FIELD Lei Wang1, Xiaohu Yang 1, Wentao Luo1, Erwin T. Lau1,2, Yu Wang3, H.J. Mo4, Frank C. van den Bosch5, Q.D. Wang4 Draft version November 8, 2018 ABSTRACT We use the ROSAT all sky survey X-ray cluster catalogs and the optical SDSS DR7 galaxy and group catalogs to cross-identify X-ray clusters with their optical counterparts, resulting in a sample of 201 X-ray clusters in the sky coverage of SDSS DR7. We investigate various correlations between the optical and X-ray properties of these X-ray clusters, and find that the following optical properties are correlated with the X-ray luminosity: the central galaxy luminosity, the central galaxy mass, the 0.43 0.46 characteristic group luminosity (∝ LX ), the group stellar mass (∝ LX ), with typical 1-σ scatter of ∼ 0.67 in log LX. Using the observed number distribution of X-ray clusters, we obtain an unbiased scaling relation between the X-ray luminosity, the central galaxy stellar mass and the characteristic satellite stellar mass as log LX = −0.26+2.90[log(M∗,c+0.26Msat)−12.0] (and in terms of luminosities, as log LX = −0.15+2.38[log(Lc +0.72Lsat) − 12.0]). We find that the systematic difference between different halo mass estimations, e.g., using the ranking of characteristic group stellar mass or using the X-ray luminosity scaling relation can be used to constrain cosmology.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • THE OBSERVER MAY 10, 2021 NOTE from the DIRECTOR Dear
    THE OBSERVER MAY 10, 2021 NOTE FROM THE DIRECTOR Dear all, Thank you to those who attended the General Membership Meeting on Friday afternoon – and for your positive feedback! Videos and photos will be added to the list of things to carry forward from Zoom life into in-person presenting, working, and learning. For those who missed it (or who want to relive it!) we recorded the meeting and it can be watched HERE (insert link). Another reminder that registration for summer session (June 1- July 12) closes today at 5PM. All summer study groups will be held on Zoom and the fees are $125 for one study group and $200 for two or three study groups. The Summer Grid is here and Registration form here. Fall registration is open until May 14 (this Friday) for current members. The Fall Grid is here: and the Registration form here: We will inform you about which study groups will have an in-person option as soon as we have secured the classrooms with the Registrar. Thank you for your patience and flexibility as we take these next steps. While this is the last regular issue of The Observer for the semester, please keep a look out for special editions with updates. In addition to summer study groups, some programming is ongoing including the newly minted Science Series (read on for details) and workshops for coordinators. The Advisory Board and I are continuing the development of a new workshop for coordinators to provide strategies towards implementation of the program’s commitment to diversity, equity, and inclusion with the mission of fostering an environment of trust and respect while bringing to light, and more closely examining, how words and actions affect a climate of inclusion for all.
    [Show full text]