Distribution, Abundance and Adaptations of Three Species of Actiniidae (Cnidaria, Actiniaria) on an Intertidal Beach Rock in Carneiros Beach, Pernambuco, Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Distribution, Abundance and Adaptations of Three Species of Actiniidae (Cnidaria, Actiniaria) on an Intertidal Beach Rock in Carneiros Beach, Pernambuco, Brazil Miscel.lania Zoologica 21.2 (1998) 65 Distribution, abundance and adaptations of three species of Actiniidae (Cnidaria, Actiniaria) on an intertidal beach rock in Carneiros beach, Pernambuco, Brazil P. B. Gomes, M. J. Belém & E. Schlenz Gornes, P. B., Belérn, M. J. & Schlenz, E., 1998. Distribution, abundance and adaptations of three species of Actiniidae (Cnidaria, Actiniaria) on an intertidal beach rock in Carneiros beach, Pernarnbuco, Brazil. Misc. Zool., 21.2: 65-72. Distribution, abundance and adaptations of three species of Actiniidae (Cnidaria, Actiniaria) on an intertidal beach rock in Carneiros beach, Pernambuco, Brazi1.- Bunodosoma cangicum Correa in Belém & Preslercravo, 1973; Actinia bermudensis (McMurrich, 1889) and Anthopleura krebsi Duchassaing & Michelotti, 1860 were studied in an intertidal beach rock at Carneiro's beach, Pernambuco, Brazil. According to the environrnental factors five rnicrohabitats occupied by the species were identified. Randorn surveys were made and a framework was used to calculate the mean specific density of each species in the different habitats. Ten specirnens of each species were rneasured. The Mann-Whitneytest was used to compare size and density of B. cangicum frorn different habitats. Specirnens of B. cangicum were found in three different habitats, with the lowest density (1.1 ind/m2) and the lowest size (1.2x3.8 cm, diam x height) in pools on the flats of the beach rock, exposed to the sun and to the rainfall. In this habitat, there was an increase in the ternperature and salinity of water during dry seasons and the species was almost absent during rainy seasons. In habitats 4 and 5, which were more protected, the mean density was 6.0 and 6.4 and the mean size of 4.5x6.3 cm and 5.3x6.4 cm, respectively. A. krebsi was present in two habitats with high density (24.5 ind/m2)in the habitat with longest air exposure time and this density seerns to be associated with asexual reproduction.A. bermudensis was present in only one habitat with low density (1.4 ind/rn2)and size of 2.0x2.2 cm. No differences were observed in the statistical cornparison of the density of B. cangicum in two protected zones (P > 0.05) which were thus used as one and cornpared with another unprotected zone. The resulfs showed significant differences (P 10.05). The comparison of size showed differences among the three zones (P 10.05). Key words: Actiniaria, Ecology, Pernambuco. Brazil (Rebut: 14 X 97; Acceptació condicional: 27 IV 98; Acc. definitiva: 1 XII 98) Paula Braga Gomes, Laboratório de Biología de Cnidarios, Depto. Cs. Mar, Fac. Cs. Ex. y Nat., UNMdfj Funes 3250-7600, Mar del Plata, Argentina (Argentine).- Maria Julia da Costa Belém, Retired ProfessorlUFRl, Caixa Postal 24.030, CEP20.522-970, Rio de Janeiro-RI, Brasil (BrazilJ. - Erika Schlenz, Depto. de Zoologia, Inst. de Bioci@ncias,USP Caixa Postal 1 1.461, CEP05422-970, Sáo Paulo-Sfj Brasil (Braziu. ISSN: 021 1-6529 O 1998 Museu de Zoologia Gomes et al. lntroduction ered during low tide, five zones were identi- fied, according to environmental conditions, Benthic organisms like sea-anemones are sub- forming different microhabitats. These zones mitted to environmental factors that influence did not represent the total area of the beach or determine their distribution, such as the rock but the more conspicuous habitats oc- type of substrate and competitivity for it. The cupied by sea-anemones. fluctuation of tides is also important because The study area was located on the south it influences food availability, gamets and lar- coast of the State of Pernambuco, which has val dispersion and some adaptation is required warm humid weather with temperatures vary- to resist or avoid wave and current action ing from 25°C to 30°C with an average about WAINWRIGH& KOEHL, 1976). Several studies have 26OC; two defined seasons throughout the year. evaluated the actions of these factors. STOTZ one dry (September-February) and one rainy (1979) analysed the zonation of three species (March-August) and a high mean annual rain- of sea-anemones correlating with their mor- fall of about 2,500 mm. The water temperature phological adaptations. HARRIS(1991) consid- varied from 25°C to 32°C reaching 34°C in sum- ered that water flow is a factor of speciation mer in the shallow rock pool in the flats of in some populations of Metridíum senile beach rock. and salinity fluctuated in the ap- Linneus, 1767. These studies were intensified proximate range of 36.4%~- 37%~. on organisms of the intertidal zone, which present higher stress dueto desiccation than those that are submerged (BARNESet al., 1963). Material and methods The intertidal zone is a special place because the intertidal organisms need to develop mor- On the basis of previous work (COMES& MAYAL, phological, physiological and behavioural ad- 1997) and according to observations of envi- aptations to survive in this environment. The ronmental factors, five zones were identified principal adaptations developed by intertidal during low tides representing different sea-anemones are related to: 1. Reproductive microhabitats on the beach rock. The char- biology with different reproductive patterns acteristics of each microhabitat were ana- (SHICKet al, 1979); 2. Different strategies for lysed and correlated with the species presents colonization (SEBENS,1982); 3. lntra and and their size and density. interspecific aggression generally associated to Three species were studied: Bunodosoma the presence of marginal spherulae (BIGGER, cangicum Correa in Belém & Preslercravo, 1980; BRACE,1981); 4. The search for new 1973; Anthopleura krebsi Duchassaing & habitats by displacernent capacity (FUJII, 1985; Michelotti, 1860 and Actinia bermudensis WILLIAMS,1992) and 5. Several mechanisms to (McMurrich, 1889). decrease the wave and desiccation action Randorn surveys were carried out in the (OTTAWAY,1973; ZAMPONI,1981 ). study area on the following dates: 3 Vlll93, The present paper examines how envi- 18 IX 93, 14 X 93 and 12 1 94. The tempera- ronmental conditions influence the distribu- ture and salinity of water were rneasured in tion of three intertidal species of sea-anemo- August 93 (rainy season) and January 94 (dry nes from a beach rock at Carneiros beach season). The following measurements were (State of Pernarnbuco, Brazil) and the adap- made at each time point and in each of the tations developed by each species in differ- five microhabitats: ent microhabitats. 1. The diameter just above the pedal disk and the height of ten specimens of each species was measured. The specimens were Study area randomly selected among sea anemones with common aspect, avoiding specimens con- The area studied was an intertidal beach rock tracted or with distended column. (sensu GUILCHER,1985) at Carneiros beach 2. A framework (50x50 cm) was randomly (8"45' S 35'05' W), State of Pernambuco, Bra- positioned ten times and al1 sea anemones zil. It was 46 m long, 11 m wide and 0.60 m present were counted. high (maximum height). It was submerged al1 For each species in each microhabitat, the year round during high tide. When uncov- specific density (De) was calculated, accord- Miscel.lania Zoologica 21.2 (1998) 67 ing to ODUM(1959). Only the mean specific posed for two or three hours, but sea- density is presented since the seasonal fluc- anemones were permanently submerged in tuations are usually caused by varied repro- the pools, not suffering desiccation. These ductive patterns or different mechanisms of pools had the temperature and salinity of settlement of larvas and juveniles. water affected by exposure to the sun and Finally, a Mann-Whitney test (SOKAL& ROHLF, rainfall, during low tides. 1981) was applied with a significant level of Species present: B. cangicum (De = 1.1 ind/m2). 0.05 to compare the size and density of B. Observations: during rainy seasons the cangicum in different microhabitats at each mean temperature in these pools was 32OC time point. when sea water was 29°C. During dry sea- This was done to determine whether there sons there was an increase in water tempera- were differences between the protected and ture (34OC in pools and 32°C in sea-water) unprotected zone. B. cangicum was the only with a slight increase in salinity in the pools species used because of its distribution in from 36.7%0to 36.9%~.The number of sea- three habitats. A. krebsi was present in two anemones in this habitat decreased during habitats but the density and size of this spe- the rainy season. cies is influenced by its capacity for asexual reproduction. For the comparison of size, Habitat 3 only diameter was used since it is more sta- ble than the height of the sea-anemone. Characteristicr: horizontal crevices on the lateral wall on the shore side. Wave action: no wave action in this habitat. Results Time of air exposure: very prolonged; this was the last sector to be submerged. According to environmental conditions, Species present: A. krebsi (De = 24.5 ind/m2). five different microhabitats occupied by sea Observations: density of this anemone was anemones were identified on the beach high, forming a gregarious population in rock. the crevices with 0.40-0.50 m high. Habitat 1 Habitat 4 Characteristics: small caverns in the lateral Characteristics: great crevice of 0.60 m deep wall on the sea side. perpendicular to the ocean. The sea-anemo- Wave action: very strong during the rise nes were low on the lateral walls. of the tide, but the caverns provided protec- Wave action: very little; there was a small tion for sea-anemones. channel at low tide and rising tide. Time of air exposure: short, as it was the Time of air exposure: individuals located first sector of the beach rock covered by at the bottom of the crevice were covered by water.
Recommended publications
  • Characterization of Translationally Controlled Tumour Protein from the Sea Anemone Anemonia Viridis and Transcriptome Wide Identification of Cnidarian Homologues
    G C A T T A C G G C A T genes Article Characterization of Translationally Controlled Tumour Protein from the Sea Anemone Anemonia viridis and Transcriptome Wide Identification of Cnidarian Homologues Aldo Nicosia 1,* ID , Carmelo Bennici 1, Girolama Biondo 1, Salvatore Costa 2 ID , Marilena Di Natale 1, Tiziana Masullo 1, Calogera Monastero 1, Maria Antonietta Ragusa 2, Marcello Tagliavia 1 and Angela Cuttitta 1,* 1 National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy; [email protected] (C.B.); [email protected] (G.B.); [email protected] (M.D.N.); [email protected] (T.M.); [email protected] (C.M.); [email protected] (M.T.) 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy; [email protected] (S.C.); [email protected] (M.A.R.) * Correspondence: [email protected] (A.N.); [email protected] (A.C.); Tel.: +39-0924-40600 (A.N. & A.C.) Received: 10 November 2017; Accepted: 5 January 2018; Published: 11 January 2018 Abstract: Gene family encoding translationally controlled tumour protein (TCTP) is defined as highly conserved among organisms; however, there is limited knowledge of non-bilateria. In this study, the first TCTP homologue from anthozoan was characterised in the Mediterranean Sea anemone, Anemonia viridis. The release of the genome sequence of Acropora digitifera, Exaiptasia pallida, Nematostella vectensis and Hydra vulgaris enabled a comprehensive study of the molecular evolution of TCTP family among cnidarians.
    [Show full text]
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • MARINE FAUNA and FLORA of BERMUDA a Systematic Guide to the Identification of Marine Organisms
    MARINE FAUNA AND FLORA OF BERMUDA A Systematic Guide to the Identification of Marine Organisms Edited by WOLFGANG STERRER Bermuda Biological Station St. George's, Bermuda in cooperation with Christiane Schoepfer-Sterrer and 63 text contributors A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTHOZOA 159 sucker) on the exumbrella. Color vari­ many Actiniaria and Ceriantharia can able, mostly greenish gray-blue, the move if exposed to unfavorable condi­ greenish color due to zooxanthellae tions. Actiniaria can creep along on their embedded in the mesoglea. Polyp pedal discs at 8-10 cm/hr, pull themselves slender; strobilation of the monodisc by their tentacles, move by peristalsis type. Medusae are found, upside­ through loose sediment, float in currents, down and usually in large congrega­ and even swim by coordinated tentacular tions, on the muddy bottoms of in­ motion. shore bays and ponds. Both subclasses are represented in Ber­ W. STERRER muda. Because the orders are so diverse morphologically, they are often discussed separately. In some classifications the an­ Class Anthozoa (Corals, anemones) thozoan orders are grouped into 3 (not the 2 considered here) subclasses, splitting off CHARACTERISTICS: Exclusively polypoid, sol­ the Ceriantharia and Antipatharia into a itary or colonial eNIDARIA. Oral end ex­ separate subclass, the Ceriantipatharia. panded into oral disc which bears the mouth and Corallimorpharia are sometimes consid­ one or more rings of hollow tentacles. ered a suborder of Scleractinia. Approxi­ Stomodeum well developed, often with 1 or 2 mately 6,500 species of Anthozoa are siphonoglyphs. Gastrovascular cavity compart­ known. Of 93 species reported from Ber­ mentalized by radially arranged mesenteries.
    [Show full text]
  • Redescription and Notes on the Reproductive Biology of the Sea Anemone Urticina Fecunda (Verrill, 1899), Comb
    Zootaxa 3523: 69–79 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:142C1CEE-A28D-4C03-A74C-434E0CE9541A Redescription and notes on the reproductive biology of the sea anemone Urticina fecunda (Verrill, 1899), comb. nov. (Cnidaria: Actiniaria: Actiniidae) PAUL G. LARSON1, JEAN-FRANÇOIS HAMEL2 & ANNIE MERCIER3 1Department of Evolution, Ecology and Organismal Biology, The Ohio State University (Ohio) 43210 USA [email protected] 2Society for the Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Philips (Newfoundland and Labrador) A1M 2B7 Canada [email protected] 3Department of Ocean Sciences (OSC), Memorial University, St. John’s (Newfoundland and Labrador) A1C 5S7 Canada [email protected] Abstract The externally brooding sea anemone Epiactis fecunda (Verrill, 1899) is redescribed as Urticina fecunda, comb. nov., on the basis of preserved type material and anatomical and behavioural observations of recently collected animals. The sea- sonal timing of reproduction and aspects of the settlement and development of brooded offspring are reported. Precise locality data extend the bathymetric range to waters as shallow as 10 m, and the geographical range east to the Avalon Peninsula (Newfoundland, Canada). We differentiate it from other known northern, externally brooding species of sea anemone. Morphological characters, including verrucae, decamerous mesenterial arrangement, and non-overlapping sizes of basitrichs in tentacles and actinopharynx, agree with a generic diagnosis of Urticina Ehrenberg, 1834 rather than Epi- actis Verrill, 1869. Key words: Brooding, Epiactis, Epigonactis Introduction Since its original description in 1899 based on two preserved specimens, no subsequent collection of the species currently known as Epiactis fecunda (Verrill, 1899) has been reported in the literature, nor have details of its life history nor descriptions of the live animal.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Neighbours at War : Aggressive Behaviour and Spatial
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. NEIGHBOURS AT WAR: AGGRESSIVE BEHAVIOUR AND SPATIAL RESPONSIVENESS IN THE ANEMONE, ACTINIA TENEBROSA. __________________________________________________________________________________ This thesis is completed in part of a Masters of Conservation Biology Degree. Georgia Balfour | Masters of Conservation Biology | July 27, 2017 1 | Page ACKNOWLEDGEMENTS “Ehara taku toa it te toa takitahi, engari he toa takimano. My success is not that of my own, but the success of many” Firstly, I would like to acknowledge my supervisors Dianne Brunton and David Aguirre. Thank you for all of your guidance, for taking an idea that I had and helping make a project out of it. Thank you for giving up your time to read and analyse my work and for always keeping me on point. For helping me to define what I really wanted to study and trekking all over Auckland to find these little blobs of jelly stuck to the rocks. David, your brilliant mathematical and analytical mind has enhanced my writing, so thank you, without you I would have been lost. This would never have been finished without both of your input! Secondly, I would like to acknowledge my parents, Georgina Tehei Pourau and Iain Balfour. Your endless support, strength and enormous belief in what I do and who I am has guided me to this point. Thank you for scouting prospective sites and getting up early to collect anemones with me.
    [Show full text]
  • Resultados - Capítulo 2 120
    Resultados - Capítulo 2 120 Resultados - Capítulo 2 121 Figure 32 – Electrophysiological screening of BcsTx1 (0.5 µM) on several cloned voltage–gated potassium channel isoforms belonging to different subfamilies. Representative traces under control and after application of 0.5 µM of BcsTx1 are shown. The asterisk indicates steady-state current traces after toxin application. The dotted line indicates the zero-current level. This screening shows that BcsTx1 selectively blocks KV1.x channels at a concentration of 0.5 µM. Resultados - Capítulo 2 122 Resultados - Capítulo 2 123 Figure 33 – Inhibitory effects of BcsTx2 (3 µM) on 12 voltage-gated potassium channels isoforms expressed in X. laevis oocytes. Representative whole-cell current traces in the absence and in the presence of 3 µM BcsTx2 are shown for each channel. The dotted line indicates the zero-current level. The * indicates steady state current traces after application of 3 µM BcsTx2. This screening carried out on a large number of KV channel isoforms belonging to different subfamilies shows that BcsTx2 selectively blocks Shaker channels subfamily. In order to characterize the potency and selectivity profile, concentration- response curves were constructed for BcsTx1. IC50 values yielded 405 ± 20.56 nanomolar (nM) for rKv1.1, 0.03 ± 0.006 nM for rKv1.2, 74.11 ± 20.24 nM for hKv1.3, 1.31 ± 0.20 nM for rKv1.6 and 247.69 ± 95.97 nM for Shaker IR (Figure 34A and Table 7). A concentration–response curve was also constructed to determine the concentration at which BcsTx2 blocked half of the channels. The IC50 values calculated are 14.42 ± 2.61 nM for rKV1.1, 80.40 ± 1.44 nM for rKV1.2, 13.12 ± 3.29 nM for hKV1.3, 7.76 ± 1.90 nM for rKV1.6, and 49.14 ± 3.44 nM for Shaker IR (Figure 34B and Table 7).
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
    English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project ..............................................................................................
    [Show full text]
  • Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans
    biology Review Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans Maria Giovanna Parisi 1,* , Daniela Parrinello 1, Loredana Stabili 2 and Matteo Cammarata 1,* 1 Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; [email protected] 2 Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; [email protected] * Correspondence: [email protected] (M.G.P.); [email protected] (M.C.) Received: 10 August 2020; Accepted: 4 September 2020; Published: 11 September 2020 Abstract: Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal’s health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process.
    [Show full text]
  • Stylohates: a Shell-Forming Sea Anemone (Coelenterata, Anthozoa, Actiniidae)1
    Pacific Science (1980), vol. 34, no. 4 © 1981 by The University Press of Hawaii. All rights reserved Stylohates: A Shell-Forming Sea Anemone (Coelenterata, Anthozoa, Actiniidae) 1 DAPHNE FAUTIN DUNN,2 DENNIS M. DEVANEY,3 and BARRY ROTH 4 ABSTRACT: Anatomy and cnidae distinguish two species of deep-sea ac­ tinians that produce coiled, chitinous shells inhabited by hermit crabs of the genus Parapagurus. The actinian type species, Stylobates aeneus, first assigned to the Mollusca, occurs around Hawaii and Guam with P. dofleini. Stylobates cancrisocia, originally described as Isadamsia cancrisocia, occurs off east Africa with P. trispinosus. MANY MEMBERS OF THE ORDER Actiniaria pedal disk secretes a chitinous cuticle over attach obligately or facultatively to gas­ the small mollusk shell which the pagurid tropod shells inhabited by hermit crabs. had initially occupied and to which the small Some of these partnerships seem to be actinian had first attached, often extending strictly phoretic, the normally sedentary sea the cuticular material beyond the lip of the anemone being transported by the motile shell (Balss 1924, Faurot 1910, Gosse 1858). hermit crab (Ross 1971, 1974b). The re­ This arrangement affords the crab mainly lationships between other species pairs are mechanical protection (Ross 1971). mutualistic, the anemone gaining motility Carlgren (I928a) described as a new genus while protecting its associate from predation and species Isadamsia cancrisocia (family (Balasch and Mengual 1974; Hand 1975; Actiniidae), an actinian attached to a shell McLean and Mariscal 1973; Ross 1971, occupied by a hermit crab, from four speci­ 1974b; Ross and von Boletsky 1979). As the mens collected by the Deutschen Tiefsee­ crustacean grows, it must move to increas­ Expedition (1898-1899) at 818 m in the ingly larger shells.
    [Show full text]
  • Asexual Reproduction and Molecular Systematics of the Sea Anemone Anthopleura Krebsi (Actiniaria: Actiniidae)
    Rev. Biol. Trop. 51(1): 147-154, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Asexual reproduction and molecular systematics of the sea anemone Anthopleura krebsi (Actiniaria: Actiniidae) Paula Braga Gomes1, Mauricio Oscar Zamponi2 and Antonio Mateo Solé-Cava3 1. LAMAMEBEN, Departamento de Zoologia-CCB, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, Recife-Pe, 50670-901, Brazil. [email protected] 2. Laboratorio de Biología de Cnidarios, Depto. Cs. Marinas, FCEyN, Funes, 3250 (7600), Mar del Plata - Argentina. CONICET Research. 3. Molecular Biodiversity Lab. Departamento de Genética, Instituto de Biologia, Bloco A, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil and Port Erin Marine Laboratory, University of Liverpool, Isle of Man, IM9 6JA, UK. Received 26-VI-2001. Corrected 02-V-2002. Accepted 07-III-2003. Abstract: In this paper we use allozyme analyses to demonstrate that individuals in Anthopleura krebsi aggre- gates are monoclonal. Additionally, sympatric samples of the red and the green colour-morphs of A. krebsi from Pernambuco, Brazil were genetically compared and no significant differences were observed between them (gene identity= 0.992), indicating that they do not belong to different biological species. All individuals within aggregates of the green colour-morph were found to be identical over the five polymorphic loci analysed. Such results would be extremely unlikely (P<10-11) if the individuals analysed had been generated through sexual reproduction, thus confirming the presence of asexual reproduction in this species. Key words: Cnidaria, allozymes, clones, fission, molecular systematics.
    [Show full text]