El Colegio de la Frontera Sur

Espionaje por estímulos feromonales en la abeja sin aguijón mexicana Guérin (, Meliponini)

TESIS presentada como requisito parcial para optar al grado de Maestría en Ciencias en Recursos Naturales y Desarrollo Rural

por

Erik de Jesús Solórzano Gordillo

2015

DEDICATORIA

A Dios

Por permitirme tiempo y salud para cumplir mis metas, por indicarme el camino cuando me sentía perdido

A mi padre

Alberto de Jesús Solórzano Magaña por el apoyo incondicional, por el cariño y por enseñarme que la perseverancia y el esfuerzo son el mejor camino para lograr todo aquello que quieres

AGRADECIMIENTOS

A El Colegio de la Frontera Sur Unidad Tapachula, por permitirme realizar mis estudios de posgrado.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca de maestría otorgada.

Al Dr. Daniel Sánchez Guillén por guiarme, por el apoyo incondicional y la sabiduría brindada durante mi estancia en el proyecto Abejas de Chiapas.

A los Dres. Julio Cesar Rojas León y Leopoldo C. Cruz López por el apoyo otorgado en la realización de este proyecto.

A los Dres. José Pablo Liedo Fernández, Ariane Liliane Jeanne Dor Roques y M. en C.

Miguel Ángel Guzmán Díaz por sus valiosos comentarios y observaciones al escrito.

A la Dra. Lislie por los consejos brindados durante el proceso de la realización de este proyecto.

A mis compañeros y amigos del proyecto de abejas Leonardo, Andy, Ricardo, Jovani y

Augusto por su apoyo en la parte experimental.

A mis compañeros de la maestría generación 2014-2015, por ser mi familia durante esta etapa de mi vida.

Al M. en C. Oscar Fernando Mikery Pacheco por su amistad y apoyo incondicional.

A Hernán Villatoro Moreno y Ana Karen Serrano Domínguez por haberme brindado su amistad durante todo este tiempo y apoyarme en todo momento incondicionalmente.

Esta investigación fue financiada por los proyectos: “Evolución de la cleptobiosis en

Lestrimelitta” Consejo de Ciencia y Tecnología (No.128702). Responsable Dr. Daniel

Sánchez Guillén; “Efecto del uso del suelo en la conservación de la biodiversidad de las abejas” Consejo de Ciencia y Tecnología (No.106043); “Espionaje olfativo en contra de un cleptoparitismo, Lestrimelitta niitkib” UC-MEXUS.

ÍNDICE

ÍNDICE DE FIGURAS ...... I

I. INTRODUCCIÓN ...... 1

II. CAPITULO Eavesdropping between colonies of the Scaptotrigona mexicana Guérin (Apidae, Meliponini) during foraging ...... 7

III. CONCLUSIONES ...... 25

IV. REFERENCIAS CITADAS ...... 26

V. Anexo 1. Distribución geográfica de S. mexicana en la República Mexicana.

(fuente: Discover life, Ascher et al., 2007)...... 31

VI. Anexo 2. Dispositivo de marcaje de abejas...... 32

VII. Anexo 3. Experimento 1, marcas de olor en condiciones de campo...... 33

VIII. Anexo 4. Experimento 2, bioensayo glándulas labiales y mandibulares.. .. 34

ÍNDICE DE FIGURAS

1. Proporción de abejas forrajeras (± error estándar) colectadas en cada alimentador

en experimento 1. Letras diferentes muestran diferencia significativa (Prueba de

comparaciones múltiples de Tukey, α =

0.05).…………...……………..…………………………………...………………….....…23

2. Proporción de abejas forrajeras (± error estándar) visitando los alimentadores con

extractos de glándulas de obreras del mismo nido, diferente nido o alimentador

limpio (control) en experimento 2. Letras diferentes muestran diferencia significativa

(Prueba de comparaciones múltiples de Nemenyi, α =

0.05)..…………….……………………………………………………………………....…. 24

I

I. INTRODUCCIÓN

La mayoría de las especies de abejas sin aguijón (, Apidae,

Meliponini) utilizan señales químicas, auditivas, visuales, táctiles y térmicas para reclutar a otras abejas de su misma colonia a fuentes de alimento, proceso denominado reclutamiento (Nieh, 2004). Este es un mecanismo que permite a las abejas sin aguijón encontrar la ubicación específica del alimento con una alta precisión, incluso más eficiente que la danza realizada por Apis mellifera (Sánchez et al., 2004). De todos los canales sensoriales usados durante el reclutamiento, se ha planteado que es la señalización química, por ejemplo el uso de feromonas, la información más importante utilizada por las abejas reclutadas (Nieh, 2004; Sánchez et al., 2011).

Dependiendo de la especie, las abejas sin aguijón pueden utilizar una o varias estrategias para depositar feromonas: (1) a través de rastros de olor depositados sobre diferentes sustratos (por ejemplo piedras y hojas) de regreso a su nido, (2) del marcaje de la propia fuente de alimentación y, (3) la liberación de feromonas en el aire durante su camino de regreso a la colonia (Lindauer y Kerr, 1960; Schmidt et al., 2003; Nieh,

2004; Sánchez y Vandame, 2013). Sin embargo, estas señales pueden ser interceptadas por otros individuos a los que no se tenía la intención de comunicar; este fenómeno es conocido como espionaje (Slaa y Hughes, 2009).

Se pueden distinguir dos formas de espionaje, el social y el interceptivo. El espionaje social ocurre cuando se recopila información sobre otros individuos con la finalidad de establecer un rango de dominancia relativa; este tipo de espionaje se presenta en algunas especies de peces y aves territoriales (Peake, 2005).

1

El espionaje social podria ser importante en la organización colonial de algunos insectos sociales (en hormigas y avispas) con determinada dominancia jerárquica (Slaa y Hughes, 2009). Por ejemplo, la hormiga Cephalotes specularis “hormiga-tortuga- espejo” espía y copia los movimientos de la hormiga Crematogaster ampla con mayor dominancia jerárquica por ser hiper-agresiva y pasa desapercibida evitando el ataque y aprovechando los recursos defendidos por C. ampla (Powell et al., 2014). Por lo tanto, es poco probable que el espionaje social sea relevante en el forrajeo de insectos sociales debido a que éstos ocupan preferentemente otros canales de comunicación

(Slaa y Hughes, 2009).

El espionaje interceptivo se refiere a la intercepción de señales destinadas a otros receptores (Peake, 2005), y se piensa que es más probable que ocurra en insectos sociales (Slaa y Hughes, 2009). Por ejemplo, es común que varias colonias de insectos sociales colecten recursos en un área común, surgiendo entonces la posibilidad que las forrajeras de estas colonias se encuentren con las señales dejadas por individuos de la misma especie pero de diferente colonia (intercepción conespecífica) o de colonias de diferente especie (intercepción heterospecífica), usando esta información para decidir su patrón de forrajeo (Slaa y Hughes, 2009).

El espionaje recopila información a un costo relativamente bajo comparado con los costos asociados a la comunicación de manera directa, ya que no se invierte ni tiempo ni energía en la búsqueda de recursos, además que el espionaje brinda información de mejor calidad que la señalización absoluta entre los individuos, debido a que este permite la comparación simultánea de al menos dos individuos en un contexto competitivo, ya que estas señales reflejan fielmente recursos rentables a pesar de la

2 competencia (McGregor, 1993). La competencia por recursos es muy frecuente entre colonias de insectos sociales por lo que el espionaje es considerado una estrategia ventajosa para encontrar nuevas fuentes de alimento ya que el esfuerzo de búsqueda se incrementa sustancialmente (Slaa y Hughes, 2009).

El espionaje juega un papel importante en la evolución de las complejas y sofisticadas redes de comunicación en los animales (Peake et al., 2002), y es un elemento clave en la comunicación de las abejas (Nieh, 1999; Nieh, 2004). Mientras algunas especies de abejas sin aguijón utilizan el espionaje olfativo interceptivo (Peake,

2005) para detectar fuentes de alimento descubiertos por otras abejas (Kerr et al., 1963; kerr et al., 1981; Kerr, 1994), otras especies pueden detectar las feromonas de especies agresivas para evitar conflictos costosos con sus competidores (Lichtenberg et al., 2011).

Algunas abejas sin aguijón viven en ambientes donde los recursos alimenticios son escasos, por lo tanto es imprescindible reclutar otros individuos de la misma colonia para explotar estos recursos (Roubik y Aluja, 1993; Liow et al., 2001). Muchas especies de abejas sin aguijón extienden su zona de alimentación cientos de metros, por ejemplo

Trigona amalthea deja un rastro de olor que se extiende aproximadamente 900 m

(Roubik y Aluja, 1993; Van Nieuwstadt y Ruano, 1996). Estos rastros de olor crean una larga ruta pero con un alcance relativamente corto en el canal de comunicación que puede ser detectado por otras abejas forrajeras que entrelazan sus rutas de búsqueda de alimento (Nieh, 2004).

Varios estudios han mostrado que las forrajeras de los géneros Trigona y

Scaptotrigona secretan feromonas de reclutamiento almacenadas en glándulas labiales

3 y mandibulares (Lindauer y Kerr, 1960; Stangler et al., 2009). Sin embargo, se ha demostrado que las glándulas mandibulares poseen un efecto de alarma o repelencia en la especie de abeja sin aguijón Trigona recursa (Jarau et al., 2006), por lo tanto su papel durante el reclutamiento es controversial (Barth et al., 2008), por lo que es importante evaluar el comportamiento de espionaje de abejas con ambos tipos de glándulas por separado.

Aunque se han realizado diversos estudios enfocados en la comunicación de las abejas sin aguijón, aún se desconocen muchos aspectos relacionados con el espionaje.

Estudios realizados en Scaptotrigona mexicana muestran una alta precisión para indicar un lugar específico donde se encuentra el recurso (Sánchez et al., 2004), y que las marcas de olor y las señales visuales son fuentes de información eficientes para el reclutamiento de forrajeras (Sánchez et al., 2007; Sánchez et al., 2008). Sin embargo, la comunicación multimodal juega un papel importante en el reclutamiento de forrajeras en esta especie (Sánchez et al., 2011), ya que los diferentes canales sensoriales empleados por esta especie contribuyen a una mayor precisión, aunque algunos podrían dar información redundante. Estos mecanismos de comunicación varían entre especies de abejas, tanto en la presencia y formas que puedan adoptar, lo que determina que la precisión espacial del reclutamiento sea diferente entre las especies de meliponinos (Sánchez et al., 2004).

La mayoría de los estudios de espionaje en meliponinos se ha enfocado en evaluar el espionaje interespecífico, espionaje entre distintas especies (Nieh et al.,

2004; Lichtenberg et al., 2011), sin embargo, no se han realizados estudios que evalúen el espionaje intraespecífico (espionaje entre colonias de la misma especie). El

4 espionaje intraespecífico puede estar involucrado de manera importante en algunos procesos ecológicos, por ejemplo en la variación intraespecifica de rasgos que afectan la dinámica poblacional y competencia (Bijlsma y Loeschcke, 2005; Bolnick et al.,

2011). Estos procesos pueden contribuir a la formación de conductas novedosas como la cleptobiosis (el robo de recursos entre individuos de la misma o de diferente especie;

Hölldobler y Wilson, 1990) e incluso a la aparición de subespecies (Montresor et al.,

2003; Jacobson et al., 2015; Luo y Wei, 2015). Por lo tanto, el objetivo principal de esta investigación fue evaluar el comportamiento de espionaje intraespecífico de

Scaptotrigona mexicana. Se eligió a esta especie porque se conoce con profundidad su comportamiento de reclutamiento para colectar recursos (Sánchez et al., 2008;

Sánchez et al., 2009; Sánchez et al., 2011) y por ser exitosamente utilizada para la polinización de cultivos en la región del sureste mexicano. Esta abeja sin aguijón se distribuye de manera natural desde Chiapas y por la costa del Golfo de México hasta

Tamaulipas, tanto por tierras bajas con bosque tropical perennifolio como en las laderas de las montañas con bosques de pino y bosques mesófilos de montaña, a una altitud que oscila alrededor de los 1000 m. Se presenta también en forma discontinua al sur del Estado de México y en el extremo más oeste de la Sierra Madre del Sur en

Guerrero (Ayala, 1999) ver anexo 1. Se propusieron los siguientes objetivos específicos: (1) Evaluar la preferencia de forrajeras de Scaptotrigona mexicana hacia marcas de olor del mismo nido o de diferente y (2) evaluar la preferencia de individuos recolectores (forrajeras) de S. mexicana hacia las feromonas labiales y mandibulares de individuos del mismo o de diferente nido. La hipótesis que se plantea es que las forrajeras de una colonia de Scaptotrigona mexicana prefieren las feromonas depositadas por las forrajeras de una segunda colonia conespecífica cuando son

5 presentadas con un recurso altamente rentable debido a un proceso de asociación de las feromonas con el recurso.

6

II. CAPITULO Eavesdropping between colonies of the stingless bee Scaptotrigona mexicana Guérin (Apidae, Meliponini) during foraging

------Mensaje reenviado ------

Asunto: NAWI - Submission Confirmation

Fecha: 11 Nov 2015 13:32:04 -0500

De: Naturwissenschaften (NAWI)

Responder a: Naturwissenschaften (NAWI)

Para: Daniel Sánchez-Guillén

Dear Dr Sánchez-Guillén, Thank you for submitting your manuscript, Eavesdropping between colonies of the stingless bee Scaptotrigona mexicana Guérin (Apidae, Meliponini) during foraging, to The Science of Nature. During the review process, you can keep track of the status of your manuscript by accessing the following web site: http://nawi.edmgr.com/ Your username is: DSanchez Guillén-298 Your password is: available at this link http://nawi.edmgr.com/Default.aspx?pg=accountFinder.aspx&firstname=Daniel&last name=S%c3%a1nchez-Guill%c3%[email protected] Should you require any further assistance please feel free to e-mail the Editorial Office by clicking on "Contact Us" in the menu bar at the top of the screen. With kind regards, Springer Journals Editorial Office The Science of Nature Now that your article will undergo the editorial and peer review process, it is the right time to think about publishing your article as open access. With open access your article will become freely available to anyone worldwide and you will easily comply with open access mandates. Springer's open access offering for this journal is called Open Choice (find more information on www.springer.com/openchoice). Once your article is accepted, you will be offered the option to publish through open access. So you might want to talk to your institution and funder now to see how payment could be organized; for an overview of available open access funding please go to www.springer.com/oafunding. Although for now you don't have to do anything, we would like to let you know about your upcoming options.

7

1 Naturwissenschaften - Original paper

2

3

4 Eavesdropping between colonies of the stingless bee Scaptotrigona mexicana Guérin

5 (Apidae, Meliponini) during foraging

6

7 Erik Solórzano-Gordillo . Julio C. Rojas . Leopoldo Cruz-López . Daniel Sánchez*

8

9 El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto km 2.5, Tapachula, Chiapas,

10 México. C.P. 30700

11

12

13 * Author for correspondence: Daniel Sánchez, e-mail: [email protected]. Tel.: +52 01 962 62

14 89800-Ext. 5400.

15

16

17

18

19

8

20 Abstract

21 Stingless bees use chemical signals to inform nestmates the location of rich food sources.

22 However, such information can be intercepted by unintended conspecifics from another colony.

23 In this paper, we investigated if interception of chemical information occurs in the stingless bee

24 Scaptotrigona mexicana by performing two experiments. In the first experiment, foragers were

25 exposed to odor-marked feeders by nestmates and by non-nestmates and their preferences were

26 recorded. In second experiment, we marked feeders with mandibular and labial gland extracts of

27 nestmates and of non-nestmates. Our results indicate that eavesdropping is present at the

28 intraspecific level. However, we found that eavesdroppers oriented better towards non-nestmate

29 odors using odor marks than using gland extracts, due presumably to the more complex

30 composition of odor marks, which include chemicals from other parts of the bees. Thus foragers

31 exposed to pheromones from non-nestmates are able to orientate towards food sources marked

32 with these compounds. We discuss this finding within an ecological and behavioral framework.

33

34 Keywords: pheromone, recruitment, foraging, meliponine, espionage

35

36

37

38

39

40

9

41 Introduction

42 Most species of stingless bees (Apidae, Meliponini) are known to recruit nestmates to food

43 sources through spatial information encoded in chemical, sound, visual, tactile, and presumably

44 temperature related signals (Nieh 2004). Recruitment communication in stingless bees allows

45 them to find a specific food location with high precision even more efficiently than the dance of

46 the honey bee, Apis mellifera (Sánchez et al. 2004). Chemical signaling is perhaps the most

47 important information used by recruits, though visual cues can also be meaningful (Nieh 2004;

48 Sánchez et al. 2011).

49 Recent studies have shown that stingless bee species use similar hydrocarbon-based

50 compounds to recruit nestmates to food sources (Jarau et al. 2004a; Jarau et al. 2004b; Schorkopf

51 et al. 2007), so detection of these chemicals by unintended receivers can occur, leading to

52 espionage-like behavior during foraging (Goodale et al. 2010).

53 There are some studies that have shown chemical espionage between species of stingless

54 bees (Lichtenberg et al. 2011; Nieh et al. 2004). Nieh (1999) hypothesized that communication

55 inside the hive may have evolved to avoid espionage by competitors. However, all stingless bee

56 species that are known to communicate the location of food sources use in some degree chemical

57 signals in the field, so this hypothesis might not be true. These chemical signals consist of

58 pheromones secreted by either labial or mandibular glands; even though both are associated with

59 recruitment to food sources, current evidence shows that mandibular pheromones are related to

60 colony defense (Jarau et al. 2006), and to keep competitors off the food source (Jarau et al.

61 2004b; Lichtenberg et al. 2011), however, other authors still suggest that these mandibular marks

62 are indeed used to signal the location of food sources (Lindauer and Kerr 1960; Nieh et al. 2003).

10

63 It is interesting to notice that no study regarding intraspecific espionage has been

64 performed in stingless bees or any other social bee. Such interaction may have special impact in

65 ecological processes, like population dynamics and intraspecific competition (Bijlsma and

66 Loeschcke 2005; Bolnick et al. 2011), since it may contribute to the formation of new behaviors

67 or even subspecies (Jacobson et al. 2015; Luo and Wei 2015; Montresor et al. 2003).

68 Thus, the main goal of this research was to determine if Scaptotrigona mexicana is able to

69 develop espionage-like behaviors intraspecifically. Thus carried out experiments to reach the

70 following specific goals: (1) determine the preference of S. mexicana foragers to odor marks of

71 the same or different nest and, (2) if S. mexicana foragers are able to develop a higher preference

72 towards the labial and mandibular pheromones of non-nestmates than to their own.

73

74 Materials and methods

75 Study site The experiments were conducted between 9:00 to 16:00h at the campus of El Colegio

76 de la Frontera Sur (ECOSUR), Tapachula (14° 53' N, 92°17' W, 75 m altitude), Chiapas, Mexico

77 from June to September 2015. We used six healthy, queenright colonies of S. mexicana housed in

78 wood boxes (20 × 20 × 40 cm), with approximately 2,500-3,000 bees and with enough food

79 reserves (Sánchez et al. 2008).

80

81 Bee training Five to ten foragers of each colony were trained to a specific feeder located at 15 m.

82 Feeders consisted of a tripod holding a square piece of cardboard (15 X 15 cm), which offered

83 2.0M sucrose solution inside a Petri dish (10 cm diameter X 1.5 cm height; appendix 2). Foragers

84 had access to the food through several holes made to the Petri dish. Since S. mexicana foragers

11

85 do not show territorial behavior when collecting food (personal observations), more than one

86 colony could visit the same feeder. Therefore we used a device to mark the thorax of the foragers

87 with a water-based paint at the colony entrance to identify the specific colony (Mikery-Pacheco

88 et al. 2013; Sánchez et al. 2009).

89

90 Experiment 1 - Odor-marking in field conditions The objective of this experiment was to

91 determine if espionage occurs under field conditions. We performed this experiment with two

92 colonies at a time and consisted in three phases. Odor-marking phase: foragers of two colonies

93 were simultaneously trained to their own feeder (appendix 3a). On top of the Petri dish a circular

94 piece of filter paper was placed so that foragers had to walk on it to mark it (appendix 3b). After

95 80 visits of bees to these feeders, the piece of paper was removed and stored in ice (appendix 3c).

96 Any forager that did not have the color of the colony under training was captured and kept in a jar

97 until the end of the experiment. Non-nestmate odor phase: in this phase we exposed foragers

98 from colony 1 (eavesdropping colony) to odor marks of colony 2 (subordinate colony) by

99 removing the feeder of colony 1, so foragers from this colony started visiting the feeder of colony

100 2 (appendix 3d). After 2 minutes of exposure, this feeder was removed and phase 3 began.

101 Espionage phase: two new feeders were placed 20 cm away from each other in a row-wise

102 fashion, each showing the piece of filter paper marked in the odor-marking phase; an additional

103 feeder showing an untouched piece of paper worked as a control (appendix 3e). For 20 min we

104 trapped and registered any bee from the two colonies (eavesdropping and subordinate colony)

105 that landed in any of the feeders to avoid pseudo-replication. In order to avoid site learning, we

106 exchanged the locations of the feeders every 5 min. Foragers were released when the experiment

107 was over. Six replicates were performed.

12

108

109 Experiment 2 - Bioassays with mandibular and labial glands In this experiment, we evaluated if

110 mandibular and labial glands are involved in recruitment, leaving aside other cues that could have

111 an effect on forager's choice behavior. We worked with one colony at a time, which was

112 simultaneously exposed to hexane extracts of labial and mandibular glands of nestmates and non-

113 nestmates (Jarau 2009; appendix 4). Gland extracts were made as described by Jarau et al.

114 (2010). In each replicate, we used 10 µl of extract, which corresponded to one-bee-equivalent

115 (Reichle et al. 2013). Five to ten foragers of one colony were trained to a feeder with 2M sucrose

116 solution at 10 m away from the colony. Once several recruits were observed (approximately 20

117 bees), we removed this feeder and placed three new ones separated 20 cm from each other: 1)

118 control feeder: a petri dish feeder with a 3 × 3 cm piece of filter paper saturated with 10 µl of

119 hexane; 2) nestmate feeder: a petri dish feeder with a piece of filter paper with 10 µl of labial

120 gland extract or mandibular gland extract from nestmates and, 3) non-nestmate feeder: a petri

121 dish feeder with a piece of filter paper with 10 µl of labial gland extract or mandibular gland

122 extract from non-nestmates. For 20 min we trapped (to avoid pseudoreplication) and recorded the

123 choices of any forager from the colony under study that landed and tried to feed. To avoid site

124 learning, we exchanged the locations of the feeders every 5 min. At the end of the experiment, all

125 captured foragers were released. In total we conducted 54 replicates.

126

127 Statistics We carried out a chi-square test to pooled data to determine if the number of foragers

128 among feeders in experiment 1 followed a uniform distribution (no preference of any cue), i.e. if

129 there were preferences for nestmate or non-nestmate odor marks. Pairwise Tukey HSD test to the

130 proportion of foragers was carried out to determine any differences in the preference by foragers

13

131 among feeders. In experiment 2 we observed several zeroes and a high variation in the number of

132 foragers recorded among replicates. Thus we analyzed the proportion of foragers that chose each

133 feeder using the Kruskal-Wallis analysis of variance to determine if foragers preferred nestmate

134 to non-nestmates gland extracts. Nemenyi's pairwise comparison test (Chi square corrected for

135 ties) was applied to the proportion of foragers to determine the source of significance of global

136 tests (Pohlert 2014). All analyses were carried out in R software (R Development Core Team

137 2012).

138

139 Results

140 In experiment 1, the choice of 328 foragers was recorded, 163 for the eavesdropping colonies and

141 165 for the subordinate colonies. One-hundred and four eavesdropping foragers chose the feeder

142 marked with non-nestmate odors, while only 14 and 45 foragers chose the control and the feeder

143 marked by nestmates, respectively. On the other hand, 116 odor-target foragers preferred the

144 feeder marked by their nestmates, while 30 and 19 foragers were captured at the control and non-

145 nestmate marked feeders, respectively. A Pearson's Chi-squared test revealed that the number of

146 eavesdropping foragers was significantly higher than expected in the non-nestmate feeder (χ2 =

147 72.92, df = 2, p < 0.001; Fig. 1).

148 In experiment 2 with labial gland extracts we recorded 565 choices in 29 replicates: 228,

149 61 and 276 choices for the non-nestmate, the control and the nestmate marked feeders,

150 respectively, showing that foragers preferred more nestmate and non-nestemate marked feeders

151 than the control feeder (F2,84 = 10.23, p < 0.001; Fig. 2). We recorded 275 choices in 25 replicates

152 for the mandibular gland extract experiment, 120 for the nestmate feeder, 129 for the non-

153 nestmate marked feeder and 26 for the control feeder. Again, foragers prefered significantly

14

154 more non-nestmate and nestmate marked feeders than control feeder (F2,72 = 14.96, p < 0.001).

155 Post hoc test revealed that the proportion of foragers that visited the marked feeders was not

156 different in both labial gland and madibular gland experiments (Fig. 2).

157

158 Discussion

159 Olfactory signaling has been described in many species of social bees. This is used, among many

160 other things, to communicate nestmates the location of feeding sites, either newly discovered,

161 under current exploitation or reopened (Seeley 1995; Waddington and Holden 1979). To our

162 knowledge, this is the first study that shows that olfactory signaling in a highly social stingless

163 bee species, S. mexicana, provides an opportunity for intraspecific eavesdropping. Heterospecific

164 eavesdropping has been shown in stingless bee species, in which the decodification of

165 communication signals from other species provides the opportunity to locate food sources already

166 under exploitation by heterospecifics (Lichtenberg et al. 2011; Nieh et al. 2004). The first

167 experiment in our work clearly shows that foragers that were exposed to non-nestmate odors

168 preferred the feeder marked with such odors over the one marked by nestmates. Subordinate

169 foragers, on the other hand, preferred their own odors. The question here is under what

170 circumstances foragers would find non-nestmate odors. Part of the answer can be found in the

171 mode of reproduction of stingless bees. Stingless bee reproduction promotes the creation of

172 clusters of colonies since daughter colonies require the help (food reserves) of the mother colony

173 for its formation (Roubik 1989). Short spatial distance among colonies results in a high genetic

174 similitude, possibly making the colonies to have a highly similar chemical profile, which allows

175 them to share resources, since it is known that in stingless bees chemical cues allow non-

176 nestmates to be readily accepted (Nunes et al. 2008) and that chemical mismatching can take

15

177 foragers into fight from different colonies of the same specie (Buchwald and Breed 2005).

178 However it is worth mentioning that genetics seemingly plays a secondary role in nestmate

179 recognition: Katserke et al. (2006) found that nestmate recognition, measured at different levels

180 of aggressive behavior, in the ant Formica exsecta correlated significantly with the spatial

181 distance between colonies, but not with genetic distance. So it seems that exchange of cuticle

182 hydrocarbons is very important at decreasing the rejection rate of non-nestmates. Moreover,

183 during gathering of resources foragers recognize and learn locations where nestmates are

184 normally found, so it is not strange to find non-nestmate conspecifics during foraging, if colonies

185 are located nearby, ready to spy and to steal food resources (Reeve 1989).

186 In the second experiment, when S. mexicana foragers were exposed to gland extracts, we

187 found that our eavesdroppers did not prefer the feeders marked with non-nestmate labial and

188 mandibular gland extracts, which is in contrast with the results of the first experiment; a similar

189 behavior was observed with normal foragers (Fig. 2). Jarau et al. (2006) found that labial gland

190 extracts were more attractive than both mandibular extracts and non-marked feeders. Scientific

191 community has debated the role of mandibular gland scents in food location communication.

192 While some authors mention that mandibular scents are used as alarm marks to avoid competitors

193 (Jarau et al. 2004b; Lichtenberg et al. 2011), other authors suggest that these mandibular marks

194 are used to signal the location of food sources (Lindauer and Kerr 1960; Nieh et al. 2003).

195 However, these studies focused on studying the odor of nestmates or only of gland extracts,

196 limiting their relevance to our study. We think that since stingless bee foragers use multiple

197 sensory modalities (e.g., touch, vision, olfaction, and audition) to transfer information concerning

198 resource location (Nieh 2004; Sánchez et al. 2011), it was easier to the foragers in experiment

199 one to discern between own odors and that of non-nestmates, i.e. in experiment 2 we only

16

200 manipulated the olfaction signals, but it is probably that other sensory channels were participating

201 in experiment one (Nieh et al. 2003; Nieh and Roubik 1995). Additionally, Jarau et al. (2010) and

202 John (2008) found significant differences in the proportion of the compounds in the glands of

203 different colonies of stingless bee species, supposedly to decrease competition at food sources.

204 This was not the case in our study, though, since we observed foragers choosing in equal

205 proportion on both nestmate marked feeder and non-nestmate marked feeder.

206 Previous work described S. mexicana as an organism showing a highly precise food

207 communication system (Sánchez et al. 2004; Sánchez et al. 2008). Further research found that

208 some situations might yield a lower precision (Sánchez et al. 2008; Sánchez et al. 2011). In this

209 work, we found that learning of non-nestmate odors probably influences choice behavior, and

210 that preference towards own odor marks was very low in eavesdroppers. With these results we

211 are starting to better understand the dynamics of foraging in stingless bees, and that flexibility

212 seems to be the rule.

213

214 Acknowledgements We appreciate the help of the following people during field and laboratory work: Leonardo

215 Arévalo-Monterrubio, Augusto Campollo-Ovalle, Ricardo Toledo-Hernández, Andy Villarreal Cruz and Miguel

216 Guzmán. This study was possible thanks to the support of SEP-CONACYT agreement no. 128702 "Evolución de la

217 cleptobiosis en Lestrimelitta", SEP-CONACYT agreement no. 106043 “Land use effect on the conservation of bees'

218 biodiversity” and UC-MEXUS project "Olfactory eavesdropping and against a cleptoparasite, Lestrimelitta niitkib".

219 The first autor was supported with a scholarship from CONACYT.

220

221

222

17

223 References

224 Bijlsma R, Loeschcke V (2005) Environmental stress, adaptation and evolution: an overview J

225 Evol Biol 18:744–749.

226 Bolnick DI, Amarasekare P, Araujo MS, Burger R, Levine JM, Novak M, Rudolf VHW,

227 Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in

228 community ecology. Trends Ecol Evol 25:183–192.

229 Buchwald R, Breed MD (2005) Nestmate recognition cues in a stingless bee, Trigona

230 fulviventris. An Behav 70:1331-1337.

231 Goodale E, Beauchamp G, Magrath RD, Nieh JC, Ruxton GD (2010) Interspecific information

232 transfer influences community structure. Trends Ecol Evol 25:354-361.

233 Jacobson B, Grant JWA, Peres-Neto PR (2015) The interaction between the spatial distribution

234 of resource patches and population density: consequences for intraspecific growth and

235 morphology. J Anim Ecol 84:934-942.

236 Jarau S (2009) Chemical communication during food exploitation in stingless bees In: Jarau S,

237 Hrncir M (eds) Food exploitation by social : ecological, behavioral, and theoretical

238 approaches. CRC Press Boca Raton (FL), 223-249.

239 Jarau S, Dambacher J, Twele R, Aguilar I, Fracke W, Ayasse M (2010) The trail pheromone of a

240 stingless bee, Trigona corvina (Hymenoptera, Apidae, Meliponini), varies between

241 populations. Chem Senses 35:593-601.

18

242 Jarau S, Hrncir M, Ayasse M, Schulz C, Francke W, Zucchi R, Barth F (2004a) A stingless bee

243 marks food sources with a pheromone from its claw retractor tendons. J Chem Ecol

244 30:793-804.

245 Jarau S, Hrncir M, Zucchi R, Barth F (2004b) A stingless bee uses labial gland secretions for

246 scent trail communication (Trigona recursa Smith 1863). J Comp Physiol A 190:223-239.

247 Jarau S, Schulz M, Hrncir M, Francke W, Zucchi R, Barth FG, Ayasse M (2006) Hexyl

248 decanoate, the first trail pheromone compound identified in a stingless bee, Trigona

249 recursa. J Chem Ecol 32:1555-1564.

250 John L (2008) Nest specificity of the trail pheromone of Trigona corvina workers (Apidae,

251 Meliponini) and its genetic context [Diploma thesis]. (Ulm Germany):University of Ulm.

252 Katzerke A, Neumann P, Pirk CWW, Bliss P, Moritz RFA (2006) Seasonal nestmate recognition

253 in the ant Formica exsecta. Behav Ecol Sociobiol 61:143-150.

254 Lichtenberg EM, Hrncir M, Turatti IC, Nieh JC (2011) Olfactory eavesdropping between two

255 competing stingless bee species. Behav Ecol Sociobiol 65:763-774.

256 Lindauer M, Kerr WE (1960) Communication between the workers of stingless bees. Bee World,

257 41: 29-41.

258 Luo C, Wei C (2015) Intraspecific sexual mimicry for finding females in a cicada: males produce

259 ‘female sounds’ to gain reproductive benefit. An Behav 102:69-76.

19

260 Mikery-Pacheco O, Solórzano-Gordillo E, Sánchez-Guillén D (2013) Método de marcaje masivo

261 de abejas Apis mellifera (Hymenoptera: Apidae) para estudios ecoetológicos. Acta Zool

262 Mex ns 29:248-251.

263 Montresor M, Sgrosso S, Procaccini G, Kooistra W (2003) Intraspecific diversity in Scrippsiella

264 trochoidea (Dinopbyceae): evidence for cryptic species. Phycologia 42:56-70.

265 Nieh J, Barreto L, Contrera F, Imperatriz-Fonseca V (2004) Olfactory eavesdropping by a

266 competitively foraging stingless bee, Trigona spinipes. Proc Roy Soc B 271:1633–1640.

267 Nieh JC (1999) Stingless-bee communication Am Sci 87:428–435.

268 Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae,

269 Meliponini). Apidologie 35:159-182.

270 Nieh JC, Contrera FAL, Rangel J, Imperatriz-Fonseca VL (2003) Effect of food location and

271 quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and

272 Melipona bicolor Behav Ecol Sociobiol 55:87-94.

273 Nieh JC, Roubik DW (1995) Potential mechanisms for the communication of height and distance

274 by a stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:387-399.

275 Nunes TM, Nascimento FS, Turatti IC, Lopes NP, Zucchi R (2008) Nestmate recognition in a

276 stingless bee: does the similarity of chemical cues determine guard acceptance?. An

277 Behav 75:1165-1171.

278 Pohlert T (2014) The pairwise multiple comparison of mean ranks package (PMCMR) R package

20

279 R Development Core Team (2012) R: A language and environment for statistical computing.

280 Vienna, Austria.

281 Reeve HK (1989) The evolution of conspecific acceptance thresholds. Am Nat 133:407-435.

282 Reichle C, Aguilar I, Ayasse M, Twele R, Francke W, Jaraua S (2013) Learnt information in

283 species-specific ‘trail pheromone’ communication in stingless bees. An Behav 85:225-

284 232.

285 Roubik D (1989) Ecology and Natural History of Tropical Bees. Cambridge University Press,

286 Cambridge. 526pp.

287 Sánchez D, Nieh JC, Hénaut Y, Cruz L, Vandame R (2004) High precision during food

288 recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona

289 mexicana (Apidae, Meliponini). Naturwissenschaften 91:346-349.

290 Sánchez D, Nieh JC, León A, Vandame R (2009) Food recruitment information can spatially

291 redirect employed stingless bee foragers .Ethology 115:1175-1181.

292 Sánchez D, Nieh JC, Vandame R (2008) Experience-based interpretation of visual and chemical

293 information at food sources in the stingless bee Scaptotrigona mexicana. An Behav

294 76:407-414.

295 Sánchez D, Nieh JC, Vandame R (2011) Visual and chemical cues provide redundant

296 information in the multimodal recruitment system of the stingless bee Scaptotrigona

297 mexicana (Apidae, Meliponini). Insec Soc 58:575-579.

21

298 Schorkopf DLP et al. (2007) Spitting out information: Trigona bees deposit saliva to signal

299 resource locations. Proc Roy Soc B 274:895-898.

300 Seeley TD (1995) The wisdom of the hive: the social physiology of honeybee colonies.

301 Cambridge, MA: Harvard University Press.

302 Waddington KD, Holden LR (1979) Optimal foraging: on flower selection by bees. Am Nat 114:

303 179–196.

304

305

306

22

307 Fig. 1 Average proportion of foragers (± EE) collected at each feeder in the six replicates of experiment 1.

308 Different letters indicate significant difference (Tukey Posthoc test, α = 0.05)

Propotion foragersof

NESTMATE-ODOR NON-NESTMATE CONTROL 309 EAVESDROPPER SUBORDINATE

310

23

311 Fig. 2 Average proportion of foragers (± SE) visiting the feeders baited with nestmate gland extract, non-

312 nestmate gland extract, or clean feeder (control) in experiment 2. Different letters indicate significant

313 difference (Nemenyi's pairwise comparison test, α = 0.05)

314

Propotion foragersof

NESTMATE-ODOR NON-NESTMATE CONTROL 315 EAVESDROPPER SUBORDINATE

316

24

III. CONCLUSIONES

Se observó que las forrajeras de S. mexicana pudieron asociar las marcas depositadas por forrajeras de otra colonia con un recurso rentable cuando estuvieron previamente en contacto con estas marcas de olor depositadas en el alimento, e incluso preferirlas sobre las marcas depositadas por abejas de su propia colonia. Sin embargo, este no fue el caso con los extractos de glándulas labiales o mandibulares, en donde las abejas

únicamente pudieron distinguir el control y no los dos tratamientos con extractos glandulares de abejas de su propia colonia o de otra. Esto puede ser debido a que en el experimento con marcas de olores tenían más compuestos presentes que facilitan diferenciar una marca de olor de otra. Es posible entonces que la aparición de espionaje químico, y el consiguiente desarrollo de la cleptobiosis tenga lugar en situaciones como las de nuestros experimentos, en donde varias colonias comparten recursos que se agotan eventualmente. El siguiente paso es determinar como la repartición de recursos ocurre en condiciones naturales, y si existe algún factor que permite que algunas colonias con mayor similitud genética sean más propensas a desarrollar espionaje que las más alejadas, o viceversa.

25

IV. REFERENCIAS CITADAS

Ascher, S., Rozen J.G., Schuh, T., Goelet, R.G., Pickering, J., 2007. Discover life

Apoidae species guide. American Museum of Natural History,

en http://www.discoverlife.org/mp/20m?kind=Scaptotrigona+mexicana. [Acceso

03 de Diciembre de 2015].

Ayala, R., 1999. Revisión de las abejas sin aguíjon de México (Hymenoptera: Apidae,

Melliponini). Folia Entomologica Mexicana, 106, pp. 1-123.

Barth, F.G., Hrncir, M. y Jarau, S., 2008. Signals and cues in the recruitment behavior of

stingless bees (Meliponini). Journal of Comparative Physiology A, 1994, pp. 313-

327.

Bijlsma, R. y Loeschcke, V., 2005. Environmental stress, adaptation and evolution:

an overview. Journal of Evolutionary Biology,18, pp. 744–749.

Bolnick, D.I., Amarasekare, P., Araujo, M.S., Burger, R., Levine, J.M., Novak, M.,

Rudolf, V. H. W.,Schreiber, S.J., Urban, M.C y Vasseur, D.A., 2011. Why

intraspecific trait variation matters in community ecology. Trends in Ecology and

Evolution, 26, pp. 183–192.

Hölldobler, B. y Wilson E.O., 1990.The Ants. Springer-Verlag, Berlin. 732 pp.

Jacobson, B., Grant, J. W. A., y Peres-Neto, P. R., 2015. The interaction between the

spatial distribution of resource patches and population density: consequences for

intraspecific growth and morphology. Journal of Animal Ecology, 84, pp. 934-942.

26

Jarau, S., Schulz, M., Hrncir, M., Francke, W., Zucchi, R., Barth, FG. y Ayasse, M.,

2006. Hexyl decanoate, the first trail pheromone compound identified in a

stingless bee, Trigona recursa. Journal Chemical of Ecology, 32, pp. 1555-1564.

Kerr, W.E., Ferreira, A. y Simões de Mattos, N., 1963. Communication among stingless

bees: additional data (Hymenoptera: Apidae). Journal of the New York

Entomological Society, 71, pp. 80–90.

Kerr, W.E., Blum, M. y Fales, H.M., 1981. Communication of food sources between

workers of Trigona (Trigona) spinipes. Revista Brasileira de biologia, 41, pp. 619-

623.

Kerr, W.E., 1994. Communication among Melipona workers (Hymenoptera: Apidae).

Journal of Behavior, 7, pp. 123-128.

Lichtenberg, E.M., Hrncir, M., Turatti, I.C. y Nieh, J.C., 2011. Olfactory eavesdropping

between two competing stingless bee species. Behavioral Ecology and

Sociobiology, 65, pp. 763-774.

Lindauer, M., y Kerr, W.E., 1958. Die gegenseitige Verständigung bei den stachellosen

Bienen. Zeitschrift für Vergleichende Physiologie, 41, pp. 405–434.

Lindauer, M., y Kerr, W.E., 1960. Communication between the workers of stingless

bees. Bee World, 41, pp. 29-41.

27

Liow, L.H.,. Sodha, N.S. y Elmqvist.T., 2001. Bee diversity along a disturbance gradient

in tropical lowland forests of southeast Asia. Journal of Applied Ecology, 38, pp.

180-192.

Luo, C. y Wei, C., 2015. Intraspecific sexual mimicry for finding females in a cicada:

males produce ‘female sounds’ to gain reproductive benefit. Animal Behaviour,

102, pp. 69-76.

McGregor, P.K., 1993. Signalling in territorial systems: A context for individual

identification, ranging and eavesdropping. Philosophical Transactions- Royal

Society B, 340, pp. 237-244.

Montresor, M., Sgrosso S., Procaccini, G. y W. Kooistra. 2003. Intraspecific diversity in

Scrippsiella trochoidea (Dinopbyceae): evidence for cryptic species. Phycologia,

42, pp. 56-70.

Nieh, J. C., 1999. Stingless-bee communication. American Scientifist, 87, pp.428–435.

Nieh, J.C., 2004. Comunicación reclutamiento en las abejas sin aguijón (Hymenoptera,

Apidae, Meliponini). Apidologie, 35, pp. 159-182.

Nieh, J.C., Barreto, L.S., Contrera, F.A.L., e Imperatriz-Fonseca, V.L., 2004. Olfactory

eavesdropping by a competitively foraging stingless bee, Trigona spinipes.

Proceedings of the Royal Society B, 271, pp. 1633-1640.

Peake, T., Terry, A.M.R., McGregor, P.K. y Dabels-Teen, T., 2002. Do great tits assess

rivals by combining direct experience with information gathered by

eavesdropping?. Proceedings of the Royal Society B, 269, pp. 1925-1929. 28

Peake, T., 2005. Eavesdropping in communication networks. En P.K McGregor., eds.

Animal Communication Networks. Cambridge: Cambridge University Press. pp.

13-37.

Powell, S., Del-Claro, K., Feitosa, R.M. y Brandão, C.R.F., 2014. Mimicry and

eavesdropping enable a new form of social parasitism in ants. The American

Naturalist, 184, pp. 500-509.

Roubik, D.W. y Aluja. M., 1993. Flight ranges of Melipona and Trigona in tropical forest.

Journal of the Kansas Entomological Society, 56, pp. 217-222.

Sánchez, D., Nieh J.C, Hénaut, Y., Cruz, L. y Vandame, R., 2004. High precision during

food recruitment of experienced (reactivated) foragers in the stingless bee

Scaptotrigona mexicana (Apidae, Meliponini). Naturwissenschaften, 91, pp. 346-

349.

Sánchez, D., Kraus, F.B., Hernández, M.J. y Vandame, R., 2007. Experience, but not

distance, influences the recruitment precision in the stingless bee Scaptotrigona

mexicana. Naturwissenschaften, 94, pp. 567-573.

Sánchez, D., Nieh, J.C. y Vandame, R., 2008. Experience-based interpretation of visual

and chemical information at food sources in the stingless bee Scaptotrigona

mexicana. Animal Behaviour, 76, pp. 407-414.

Sánchez, D., Nieh, J.C., León, A. y Vandame, R., 2009. Food recruitment information

can spatially redirect employed stingless bee foragers. Ethology, 115, pp. 1175-

1181. 29

Sánchez, D., Nieh, J.C. y Vandame, R., 2011. Visual and chemical cues provide

redundant information in the multimodal recruitment system of the stingless bee

Scaptotrigona mexicana (Apidae, Meliponini). Insectes Sociaux, 58, pp. 575-579.

Sánchez, D. y Vandame, R., 2013. Stingless bee food location communication: from the

flowers to the honey pots. En Vit, P., Pedro S.R.M. y Roubik, D., eds. Pot-Honey.

Springer, New York. pp. 187–199.

Schmidt , V.M., Zucchi, R. y Barth, F.G., 2003. A stingless bee marks the feeding site in

addition to the scent path (Scaptotrigona aff. depilis). Apidologie, 34, pp. 237-248.

Slaa, E.J. y Hughes W.O.H. 2009. Local enhancement, local inhibition, eavesdropping,

and the parasitism of social insect communities. En: Jarau, S. y Hrncir, M., eds.

Food Exploitation by Social Insects: Ecological, Behavioral, and Theoretical

Approaches.CRC Press, Boca Raton, pp. 147-164.

Stangler, S., Jarau S., Hrncir, M., Zucchi, R y Ayasse M., 2011. Identification of trail

pheromone compounds from the labial glands of the stingless bee Geotrigona

mombuca. Chmoecology, 19, pp. 13-19

Van Nieuwstadt, M.G.L. y Ruano I.C.E., 1996. Relation between size and foraging range

in stingless bees (Apidae,Meliponinae). Apidologie, 27, pp. 219–228.

30

V. Anexo 1. Distribución geográfica de S. mexicana en la República Mexicana. Los

puntos amarillos indican un registro (fuente: Discover life, Ascher et al., 2007).

31

VI. Anexo 2. Dispositivo de marcaje de abejas. A) Abeja de S. mexicana marcada

en el tórax de acuerdo al color de su colonia (verde). B) Abeja (sobrevolando)

con el tórax marcado de color blanco cerca del dispositivo de marcaje de las

abejas de colonia de color verde. C) abeja de color anaranjado en la entrada de

la colonia marcada con color verde.

32

VII. Anexo 3. Experimento 1, marcas de olor en condiciones de campo. A)

Entrenamiento de colonias con alimentadores colocados a 15 m de distancia (2

m de distancia entre alimentadores). B) Colocación de alimentadores limpios

para el marcaje de feromonas de las 2 colonias. C) Obtención de alimentadores

marcados por 80 abejas de una misma colonia. D) Eliminación de un

alimentador y exposición de feromonas de la otra colonia. E) Fase de espionaje

(bioensayo).

33

VIII. Anexo 4. Experimento 2, bioensayo glándulas labiales y mandibulares. A)

Entrenamiento de colonias con alimentadores colocados a 10 m de distancia. B)

Eliminación del alimentador cuando se observaron aproximadamente 20

forrajeras. C) Bioensayo, se colocaron 3 alimentadores con un algodón con

sacarosa 2M separados a 20 cm uno del otro: el alimentador 1 contenía extracto

glandular de su misma colonia, el alimentador 2 extracto glandular de la otra

colonia, y el alimentador control sin extractos.

10 m

20 cm 20 cm

Alimentador 1 Alimentador 2 Control

34

35