Conformal Beam Steering Antenna Array for 5G Mobile Applications

Total Page:16

File Type:pdf, Size:1020Kb

Conformal Beam Steering Antenna Array for 5G Mobile Applications Millimeter-Wave Wide Band Antenna Array for 5G Mobile Applications by Lixia Chen A thesis submitted to the Ottawa Carleton Institute for Electrical and Computer Engineering in partial fulfillment to the thesis requirement for the degree of MASTER OF APPLIED SCIENCE in ELECTRICAL ENGINEERING University of Ottawa Ottawa, Ontario, Canada © Lixia Chen, Ottawa, Canada, 2019 ABSTRACT The thesis presents a compact, miniature, and low cost antenna array designed for millimeter- wave frequencies for future 5th generation (5G) mobile applications. The proposed antenna array is a geometrically modified structure of the Franklin array, which allowed to transform a conventional narrowband array into a wideband antenna array. It is composed of five millimetre- wave circular patch radiation elements with phasing stubs. The designed array, fabricated on the commercial Rogers RO3003 substrate with small form factor of 8x25x0.5 mm3, covers the upcoming 5G band of 23.6-30.3 GHz, with peak gain as 10.8 dB, and high radiation efficiency over the whole operating band. In addition, with frequency sweeping, the proposed antenna array radiation pattern is directive and offers beam steering at the desired angles, acting similarly as a leaky-wave antenna. Keywords— 5G, Franklin array, Beam steering, Millimeter wave, Phased array, Patch array. Page | ii ACKNOWLEDGEMENTS First of all, I would like to thank my supervisor Dr. Mustapha C.E. Yagoub for offering me the opportunity to work in his research group and to explore this interesting 5G topic. Professor Yagoub provided me constructive support and guidance during the research and the writing of this thesis. I would also like to thank Dr. Mourad Nedil for providing partial funding support from University of Quebec during the early stages of my studies. I also need to express my thanks to our lab coordinator Alain Le Hénaff for all the help he provided for antenna fabrication as well as to my colleague Neil Mcgowan for helping and coordinating me the test fixture and lab measurement equipment. Besides, Neil extended his help on valuable discussions and suggestions for the antenna design and tests. Last, but not least, I do appreciate my husband and kids for always being there for me, with solid supporting on my graduate studies from the beginning till the end. You made all this possible. Page | iii Contents ABSTRACT .........................................................................................................................................ii ACKNOWLEDGEMENTS ................................................................................................................... iii List of Figures ................................................................................................................................. vii List of Tables ................................................................................................................................... ix List of Variables ................................................................................................................................ x List of Acronyms ............................................................................................................................. xii Chapter 1. Introduction .............................................................................................................. 1 1.1 Technologies Evolution .................................................................................................... 1 1.2 5G Technologies ............................................................................................................... 3 1.3 Research Motivations ....................................................................................................... 5 1.4 Research Objectives ......................................................................................................... 7 1.5 Thesis Outlines ................................................................................................................. 8 Chapter 2. State of the Art ........................................................................................................ 10 2.1 Introduction to Antennas .................................................................................................... 10 2.2 Literature Review- Antenna for 5G ................................................................................ 13 2.3 Requirements for mobile antennas .................................................................................... 20 2.3.1 Operating Frequency Bandwidth ................................................................................. 20 2.3.2 Gain ............................................................................................................................... 23 2.3.3 Efficiency ....................................................................................................................... 25 2.3.4 Radiation Pattern .......................................................................................................... 26 2.3.5 Directivity ...................................................................................................................... 27 2.3.6 Polarization ................................................................................................................... 28 2.4 Typical Antenna types for mobile devices .......................................................................... 30 2.4.1 Dipoles and Monopoles ................................................................................................ 30 Page | iv 2.4.2 Loops and slots ............................................................................................................. 31 2.4.3 Planar antennas ............................................................................................................ 31 2.4.4 Microstrip antennas ..................................................................................................... 32 2.4.5 Bowtie antenna ............................................................................................................ 33 2.4.6 Log periodic antenna .................................................................................................... 33 2.4.7 Leak Wave Antenna (LWA) ........................................................................................... 34 2.4.8 Substrate Integrated Waveguide (SIW) ........................................................................ 34 2.5 Conclusion ........................................................................................................................... 35 Chapter 3. Radiating Element Design ....................................................................................... 36 3.1 Patch antenna for mobile devices ....................................................................................... 36 3.2 Patch Antenna using Rogers Substrate ............................................................................... 37 3.3 Patch Antenna Feeding Techniques .................................................................................... 40 3.3.1 Probe feed .................................................................................................................... 40 3.3.2 Microstrip feeds............................................................................................................ 41 3.3.3 Aperture coupling feed ................................................................................................. 43 3.3.4 Proximity coupling feed ................................................................................................ 44 3.4 Patch antenna models ......................................................................................................... 45 3.4.1 Transmission line model ............................................................................................... 45 3.4.2 Cavity model ................................................................................................................. 48 3.5 Antenna Quality Factor ....................................................................................................... 49 3.6 Rectangular patch and circular patch antenna comparison ............................................... 51 3.7 Circular Patch Radiation Element Design ............................................................................ 55 3.8 Linear antenna array with circular patch elements simulation .......................................... 56 3.9 Conclusion ........................................................................................................................... 61 Chapter 4. Collinear Microstrip Array with Circular Patches .................................................... 62 4.1 Franklin array with Circular patches ................................................................................... 62 Page | v 4.1.1 Why Franklin array ....................................................................................................... 62 4.1.2 Design dimensions ....................................................................................................... 62 4.2 Simulation results ................................................................................................................ 64 4.2.1 Operation bandwidth ................................................................................................... 64 4.2.2 Gain ..............................................................................................................................
Recommended publications
  • Vivaldi Antenna for Rf Energy Harvesting
    666 J. SCHNEIDER, M. MRNKA, J. GAMEC, ET AL., VIVALDI ANTENNA FOR RF ENERGY HARVESTING Vivaldi Antenna for RF Energy Harvesting Jan SCHNEIDER1, Michal MRNKA 2, Jan GAMEC1, Maria GAMCOVA1, Zbynek RAIDA2 1 Dept. of Electronics and Multimedia Communications, Technical University of Košice, Park Komenského 13, 041 20 Košice, Slovak Republic 2 Dept. of Radio Electronics, Brno University of Technology, Technická 12, 616 00 Brno, Czech Republic [email protected], [email protected], [email protected], [email protected], [email protected] Manuscript received November 13, 2015 Abstract. Energy harvesting is a future technology for capturing ambient energy from the environment to be recy- cled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB appli- cations, because it operates according to FCC regulations (3.1–10.6 GHz). The designed antenna is printed on Fig. 1. Block diagram of the energy harvesting system. ARLON 600 substrate and operates in frequency band The antennas for energy harvesting may be divided from 0.810 GHz up to more than 12 GHz. Experimental into several categories by the operating frequency band. results show good conformity with simulated performance. The 900 MHz slot-dipole antenna on a flexible substrate was discussed in [4]. In [5], the slot-dipole antenna was improved and integrated with energy harvesting circuit. Due to the narrow-band operation and the directive radia- Keywords tion, the slot-dipole antenna harvests energy from one RF energy harvesting, UWB, Vivaldi antenna source only.
    [Show full text]
  • Frequency Reconfigurable Vivaldi Antenna with Switched Resonators for Wireless Applications
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 5, 2019 Frequency Reconfigurable Vivaldi Antenna with Switched Resonators for Wireless Applications 1 4 Rabiaa Herzi , Ali Gharsallah Mohamed-Ali Boujemaa2, Fethi Choubani3 Unit of Research CSEHF Faculty of Sciences of Tunis INNOVCOM Laboratory, SUPCOM, University of El Manar, Tunis 2092, Tunisia Carthage, Tunis, Tunisia Abstract—In this paper, a frequency reconfigurable Vivaldi There are many types of frequency reconfigurable antenna with switched slot ring resonators is presented. The antennas such as switching between different narrow bands, principle of the method to reconfigure the Vivaldi antenna is wideband to notch band reconfiguration, wideband to based on the perturbation of the surface currents distribution. narrowband switching [10-11]. Switched ring resonators that act as a bandpass filter are printed in specific positions on the antenna metallization. This structure Achieving an antenna which has the capacity of wideband has the ability to reconfigurate between wideband mode and four to multi-narrow bands reconfiguration is very important and narrow-band modes which cover significant wireless essential for several applications such as a cognitive radio that applications. Combination of the bandpass filters and tapered uses wideband sensing and multi-bands communications [10, slot antenna characteristics achieve an agile antenna capable to 12, 13]. operate in UWB mode from 2 to 8 GHz and to generate multi- narrow bands at 3.5 GHz, 4GHz, 5.2 GHz, 5.5 GHz, 5.8 GHz and Because of their better radiation performances as well as 6.5 GHz. The measurement and simulation results show good Ultra-wide bandwidth, elevated gain, and compact structure agreement.
    [Show full text]
  • November 2015
    Autumn The Aero Aerial The Newsletter of the Aero Amateur Radio Club Middle River, MD Volume 12, Issue 11 November 2015 Editor Georgeann Vleck KB3PGN Officers Committees President Joe Miko WB3FMT Repeater Phil Hock W3VRD Jerry Cimildora N3VBJ Vice-President Bob Venanzi ND3D VE Testing Pat Stone AC3F Recording Lou Kordek AB3QK Public Service Bob Landis WA3SWA Secretary Corresponding Chuck Whittaker KB3EK Webmaster Al Alexander K3ROJ Secretary Treasurer Warren Hartman W3JDF Trustee Dave Fredrick KB3KRV Resource Ron Distler W3JEH Club Nets Joe Miko WB3FMT Coordinator Contests Bob Venanzi ND3D Website: http://w3pga.org Facebook: https://www.facebook.com/pages/Aero-Amateur-Radio-Club/719248141439348 About the Aero Amateur Radio Club Meetings The Aero Amateur Radio Club meets on the first and third Wednesdays of the month at Essex SkyPark, 1401 Diffendall Road, Essex. Meetings begin at 7:30 p.m. local time. Meetings are canceled if Baltimore County Public Schools are closed or dismiss early. Repeaters W3PGA 2 M : INPUT : 147.84 MHz, OUTPUT : 147.24 MHz W3PGA 70 Cm: INPUT : 444.575 MHz, OUTPUT : 449.575 MHz W3JEH 1.25 M: INPUT : 222.24 MHz, OUTPUT : 223.84 MHz Club Nets Second Wednesday Net – 10 Meters (28.445 MHz) @ 8 p.m. Local Time Fourth Wednesday Net – 2 Meters (147.24 MHz Repeater) @ 8 p.m. Local Time Fifth Wednesday Net – 70 Centimeters (449.575 MHz Repeater) @ 8 p.m. Local Time Radio License Exams The Aero Amateur Radio Club sponsors Amateur Radio License Exams with the ARRL VEC. Examination sessions are throughout the year. Walk-ins are welcome.
    [Show full text]
  • Amorphous Silicon Solar Vivaldi Antenna
    Technological University Dublin ARROW@TU Dublin Articles School of Electrical and Electronic Engineering 2016-3 Amorphous Silicon Solar Vivaldi Antenna Oisin O'Conchubhair Technological University Dublin Kansheng Yang Technological University Dublin Patrick McEvoy Technological University Dublin, [email protected] See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2 Part of the Electrical and Electronics Commons, Electromagnetics and Photonics Commons, and the Electronic Devices and Semiconductor Manufacturing Commons Recommended Citation O'Conchubhair, O., Yang, K, McEvoy, P & Ammann, Max. (2016) Amorphous Silicon Solar Vivaldi Antenna, IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 893-896. doi: 10.1109/LAWP.2015.2479189. This Article is brought to you for free and open access by the School of Electrical and Electronic Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Funder: Part funded by the Irish Higher Education Authority Authors Oisin O'Conchubhair, Kansheng Yang, Patrick McEvoy, and Max Ammann This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/engscheleart2/196 > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Amorphous Silicon Solar Vivaldi Antenna Oisin O’Conchubhair, Kansheng Yang, Patrick McEvoy, Senior Member, IEEE and Max J. Ammann, Senior Member, IEEE A 2.4 - 2.46 GHz Vivaldi antenna made of copper produced Abstract— An ultra-wideband solar Vivaldi antenna is a 0 dBi gain to feed a rectifier [8].
    [Show full text]
  • Collinear Antenna Array
    Collinear antenna array 1. Description A collinear antenna array is made up of dipole elements. These dipoles are parallel and collinear with each other. This type of antenna has an enhanced gain and directivity in E-plane. Doubling the number of dipole elements, shall double the gain. However, practically it is usually less than that due to losses. In this example, a collinear array operating at 3.2 GHz is simulated with HFWorks. Figure 1: The antenna array The antenna structure recalls the use of Franklin's principle in linking several radiating dipoles to sum up all radiations' intensities. Using 180° phase shifting between the dipoles to prevent destructive sums, the antenna can be implemented with other types of antenna dipole such as microstrip patch antenna. 2. Dimensions All dimensions are in mm. The schematic shows only the linking between two of the three dipoles: The second link being exactly built of the same manner. 3. Solids and Materials The feed of the antenna is located on the lateral face of one of its ends; the other end being an open circuit. Each dipole is treated like an insulating layer of Duroid 5880 substrate with PEC inner and outer conductor layers. All dipoles are plunged in an air box whose lateral surfaces simulate an anechoic chamber.. 4. Meshing The mesh of this example must be accurate enough on the circularly formed dipoles so that the simulator gets that the models are pretty circularly shaped. 5. Results The meshing being realized, we run an antenna simulation in the frequency range from 0.5 GHz to 3.5 GHz to precisely visualize the behavior of the antenna around the intended frequency.
    [Show full text]
  • B – Building Common Room Name: WSP Antenna Equipment Room Space Number: B4.0 Occupancy: -- Quantity: 1 Assignable SF: 80Sf D
    B – Building Common Room Name: WSP Antenna Equipment Room Space Number: B4.0 Occupancy: -- Quantity: 1 Assignable SF: 80sf Storage for WSP radio equipment and access to conduit for roof-top Description antennas. Adjacency Convenient to WSP divisions. Structure -- Finishes Floor Resilient flooring Walls Painted gypsum board Ceiling None required Ceiling Height Open to structure Plumbing -- HVAC 24/7 Cooling for electronic equipment. Lighting -- Electrical Power -- Telephone/Data Conduit pathways to roof and floor IDF. Fire Protection Sprinklered FF&E -- Furniture/Equip Tech Equip Two (2) 19” or 23” RF equipment racks for WSP radios/batteries. AV Equip -- Security High security – Card reader required Adjacent to roof and floor IDF, room could be located within the Other Requirements mechanical penthouse if it can be secure, weather tight and accessible to WSP. State of Washington 1063 Block Predesign – Section V – Design Program Room Criteria Sheets 1063 Block Replacement Project Addendum 7 - Attachment 3.1 1063 Block Project WSP Rooftop Antennas / Dishes January 20, 2014 The following outlines / clarifies the planned rooftop antennas and dishes for the rooftop by the Washington State Patrol. The following outlines the anticipated equipment. Attached to this are the specifications / cut sheets to further explain the requirements. The Washington State Patrol will furnish and install all equipment. The Design Build Proposer shall furnish conduit pathways to the Antenna Equipment room (noted below) and required power at the mounting locations and equipment room. • The current plans for Microwave (MW) into and out of the new 1063 building include the following dishes: o 1ea. SU6-107BC microwave dish. This antenna is 6 feet in diameter.
    [Show full text]
  • Miniaturized Antipodal Vivaldi Antenna with Improved Bandwidth Using Exponential Strip Arms
    electronics Article Miniaturized Antipodal Vivaldi Antenna with Improved Bandwidth Using Exponential Strip Arms Mohammad Mahdi Honari * , Mohammad Saeid Ghaffarian and Rashid Mirzavand Intelligent Wireless Technology Laboratory, Electrical and Mechanical Engineering Department, University of Alberta, 9211 116 Street NW, Edmonton, AB T6G 1H9, Canada; [email protected] (M.S.G.); [email protected] (R.M.) * Correspondence: [email protected] Abstract: In this paper, a miniaturized ultra-wideband antipodal tapered slot antenna with exponen- tial strip arms is presented. Two exponential arms with designed equations are optimized to reduce the lower edge cut-off frequency of the impedance bandwidth from 1480 MHz to 720 MHz, resulting in antenna miniaturization by 51%. This approach also improves antenna bandwidth without com- promising the radiation characteristics. The dimension of the proposed antenna structure including the feeding line and transition is 158 × 125 × 1 mm3. The results show that a peak gain more than 1 dBi is achieved all over the impedance bandwidth (0.72–17 GHz), which is an improvement to what have been reported for antipodal tapered slot and Vivaldi antennas with similar size. Keywords: antipodal Vivaldi antenna (AVA); tapered slot antenna (TSA); ultra-wideband (UWB) 1. Introduction Due to the rapid development of wireless communication, ultra-wideband anten- nas/systems are becoming highly attractive in many wideband applications, such as broad Citation: Honari, M.M.; Ghaffarian, band wireless communications, ultra-wideband interference, and imaging systems [1,2]. M.S.; Mirzavand, R. Miniaturized They can be used in electromagnetic compatibility (EMC) test and measurement of emerg- Antipodal Vivaldi Antenna with ing wireless technology devices and UWB security radar detection [3].
    [Show full text]
  • A Compact High-Gain Vivaldi Antenna with Improved Radiation Characteristics
    Progress In Electromagnetics Research Letters, Vol. 68, 127–133, 2017 A Compact High-Gain Vivaldi Antenna with Improved Radiation Characteristics Jingya Zhang, Shufang Liu*, Fusheng Wang, Zhanbiao Yang, and Xiaowei Shi Abstract—In this paper, a miniaturized Vivaldi antenna for C- to X-bands is proposed and fabricated. An H-Shaped Resonator (HSR) and transverse slot structures are employed in this design, which improve the gain through the entire band, especially at the high frequency band. These simulated results show that the modified Vivaldi antenna has a maximum gain increment of 4 dBi and peak gain of 9.9 dBi. Furthermore, the modified Vivaldi antenna has narrower half-power beam width (HPBW), higher front- to-back ratio (FBR) and better radiation characteristics. The measured results are in good agreement with the simulated ones. 1. INTRODUCTION Vivaldi antenna, a broadband antenna that was originally introduced by Gibson in 1979, not only satisfies the requirement of UWB, but also has a planar structure, low profile and high efficiency in contrast to other UWB antennas [1]. However, the most referenced antennas are relatively large in size [2], which cannot fit our need for the limited space. In recent years, with the miniaturization of the Vivaldi antenna, the gain decreases sharply [3, 4]. In [3], the small antipodal Vivaldi antenna has a wide bandwidth from 3.1 to 10.6 GHz, but this design is at the cost of low gain, whose gain is only 5.2 dBi. In order to improve the gain, some approaches have been proposed. Using array of Vivaldi antenna [5] is the conventional way to obtain high gain, but it is complicated and bulky for compact wireless systems.
    [Show full text]
  • Ultra-Wideband Diversity MIMO Antenna System for Future Mobile Handsets
    sensors Article Ultra-Wideband Diversity MIMO Antenna System for Future Mobile Handsets Naser Ojaroudi Parchin 1,* , Haleh Jahanbakhsh Basherlou 2 , Yasir I. A. Al-Yasir 1 , Ahmed M. Abdulkhaleq 1,3 and Raed A. Abd-Alhameed 1,4 1 Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, UK; [email protected] (Y.I.A.A.-Y.); [email protected] (A.M.A.); [email protected] (R.A.A.-A.) 2 Bradford College, West Yorkshire, Bradford BD7 1AY, UK; [email protected] 3 SARAS Technology Limited, Leeds LS12 4NQ, UK 4 Department of Communication and Informatics Engineering, Basra University College of Science and Technology, Basra 61004, Iraq * Correspondence: [email protected]; Tel.: +44-734-143-6156 Received: 12 March 2020; Accepted: 14 April 2020; Published: 22 April 2020 Abstract: A new ultra-wideband (UWB) multiple-input/multiple-output (MIMO) antenna system is proposed for future smartphones. The structure of the design comprises four identical pairs of compact microstrip-fed slot antennas with polarization diversity function that are placed symmetrically at different edge corners of the smartphone mainboard. Each antenna pair consists of an open-ended circular-ring slot radiator fed by two independently semi-arc-shaped microstrip-feeding lines exhibiting the polarization diversity characteristic. Therefore, in total, the proposed smartphone antenna design contains four horizontally-polarized and four vertically-polarized elements. The characteristics of the single-element dual-polarized UWB antenna and the proposed UWB-MIMO smartphone antenna are examined while using both experimental and simulated results.
    [Show full text]
  • A Wideband End-Fire Conformal Vivaldi Antenna Array Mounted on a Dielectric Cone Zengrui Li Communication University of China
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical & Computer Engineering, Department of Electrical and Computer Engineering 2016 A Wideband End-Fire Conformal Vivaldi Antenna Array Mounted on a Dielectric Cone Zengrui Li Communication University of China Xiaole Kang Communication University of China, [email protected] Jianxun Su Communication University of China Qingxin Guo Communication University of China Yaoqing (Lamar) Yang University of Nebraska - Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons Li, Zengrui; Kang, Xiaole; Su, Jianxun; Guo, Qingxin; Yang, Yaoqing (Lamar); and Wang, Junhong, "A Wideband End-Fire Conformal Vivaldi Antenna Array Mounted on a Dielectric Cone" (2016). Faculty Publications from the Department of Electrical and Computer Engineering. 498. https://digitalcommons.unl.edu/electricalengineeringfacpub/498 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Zengrui Li, Xiaole Kang, Jianxun Su, Qingxin Guo, Yaoqing
    [Show full text]
  • A Small UWB Tapered Slot Antenna Design for Microwave Imaging System
    International Journal of Latest Engineering and Management Research (IJLEMR) ISSN: 2455-4847 www.ijlemr.com || Volume 06 - Issue 03 || March 2021 || PP. 01-06 A Small UWB Tapered Slot Antenna Design for Microwave Imaging System Swathiga Guruswamy1, Ramya Chinniah2, Kesavamurthy Thangavelu3 1(Research Scholar, ECE Department, PSG College of Technology, India) 2,3(Associate Professor, ECE Department, PSG College of Technology, India) Abstract: The main challenge present in microwave imaging applications is to retrieve the information that a sensitive microwaves carry. The characteristics of the antenna is known to have a direct impact on the imaging system’s performance. In this manuscript, a novel UWB Vivaldi Antenna embedded with rectangular,semicircular slots and a sequence of director elements is designed. Theproposed antenna is designed with the optimized size of 50×48.23mm2 to achievesatisfactory impedance matchingand good radiation characteristics in the frequency band from 2.9 GHz- 11 GHz. The loading of slots and passive directors helps to concentrate the field towards the radiation aperture and thereby helps in increasing the gain. The antenna exhibits a stable radiation pattern and the gain between 2-7.8 dB in the operating frequency band. Besides, the time domain analysis shows the proposed antenna exhibits a flat group delay and a high-fidelity factor. Keywords: Vivaldi Antenna, Microwave Imaging, Ultra-Wide Bandwidth I. INTRODUCTION The MicrowaveImaging (MWI) system consists of transmitting and receiving antennas that surrounds the object of interest. The antennas are the ultimate part of the system and therefore have a huge impact on the resulting image quality [1]. The type of antenna used in the imaging system is deeply impacted by the frequency range, dielectric characteristics, target, and the immersion medium.
    [Show full text]
  • Wide Band Embedded Slot Antennas for Biomedical, Harsh Environment, and Rescue Applications
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2015 Wide Band Embedded Slot Antennas for Biomedical, Harsh Environment, and Rescue Applications Yun Seo Koo University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biomedical Commons, and the Electromagnetics and Photonics Commons Recommended Citation Koo, Yun Seo, "Wide Band Embedded Slot Antennas for Biomedical, Harsh Environment, and Rescue Applications. " PhD diss., University of Tennessee, 2015. https://trace.tennessee.edu/utk_graddiss/3379 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yun Seo Koo entitled "Wide Band Embedded Slot Antennas for Biomedical, Harsh Environment, and Rescue Applications." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Electrical Engineering. Aly E. Fathy, Major Professor We have read this dissertation and recommend its acceptance: Syed K. Islam, Seddik M. Djouadi, Seung J. Baek Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Wide Band Embedded Slot Antennas for Biomedical, Harsh Environment, and Rescue Applications A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Yun Seo Koo May 2015 Copyright © 2015 by Yun Seo Koo.
    [Show full text]