Regulation of Pteridine Biosynthesis Douglas Wesley Shivvers Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methionine Synthase Supports Tumor Tetrahydrofolate Pools
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Methionine synthase supports tumor tetrahydrofolate pools Joshua Z. Wang1,2,#, Jonathan M. Ghergurovich1,3,#, Lifeng Yang1,2, and Joshua D. Rabinowitz1,2,* 1 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA 2 Department of Chemistry, Princeton University, Princeton, New Jersey, USA 3 Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA # These authors contributed equally to this work. *Corresponding author: Joshua Rabinowitz Department of Chemistry and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Rd, Princeton, NJ 08544, USA Phone: (609) 258-8985; e-mail: [email protected] Conflict of Interest Disclosure: J.D.R. is a paid advisor and stockholder in Kadmon Pharmaceuticals, L.E.A.F. Pharmaceuticals, and Rafael Pharmaceuticals; a paid consultant of Pfizer; a founder, director, and stockholder of Farber Partners and Serien Therapeutics. JDR and JMG are inventors of patents in the area of folate metabolism held by Princeton University. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl- THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR). -
L-Carnitine, Mecobalamin and Folic Acid Tablets) TRINERVE-LC
For the use of a Registered Medical Practitioner or a Hospital or a Laboratory only (L-Carnitine, Mecobalamin and Folic acid Tablets) TRINERVE-LC 1. Name of the medicinal product Trinerve-LC Tablets 2. Qualitative and quantitative composition Each film- coated tablets contains L-Carnitine…………………….500 mg Mecobalamin……………….1500 mcg Folic acid IP…………………..1.5mg 3. Pharmaceutical form Film- coated tablets 4. Clinical particulars 4.1 Therapeutic indications Vitamin and micronutrient supplementation in the management of chronic disease. 4.2 Posology and method of administration For oral administration only. One tablet daily or as directed by physician. 4.3 Contraindications Hypersensitivity to any constituent of the product. 4.4 Special warnings and precautions for use L-Carnitine The safety and efficacy of oral L-Carnitine has not been evaluated in patients with renal insufficiency. Chronic administration of high doses of oral L-Carnitine in patients with severely compromised renal function or in ESRD patients on dialysis may result in accumulation of the potentially toxic metabolites, trimethylamine (TMA) and trimethylamine-N-oxide (TMAO), since these metabolites are normally excreted in the urine. Mecobalamin Should be given with caution in patients suffering from folate deficiency. The following warnings and precautions suggested with parent form – vitamin B12 The treatment of vitamin B12 deficiency can unmask the symptoms of polycythemia vera. Megaloblastic anemia is sometimes corrected by treatment with vitamin B12. But this can have very serious side effects. Don’t attempt vitamin B12 therapy without close supervision by healthcare provider. Do not take vitamin B12 if Leber’s disease, a hereditary eye disease. -
Discovery of an Alternate Metabolic Pathway for Urea Synthesis in Adult Aedes Aegypti Mosquitoes
Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes Patricia Y. Scaraffia*†‡, Guanhong Tan§, Jun Isoe*†, Vicki H. Wysocki*§, Michael A. Wells*†, and Roger L. Miesfeld*† Departments of §Chemistry and *Biochemistry and Molecular Biophysics and †Center for Insect Science, University of Arizona, Tucson, AZ 85721-0088 Edited by Anthony A. James, University of California, Irvine, CA, and approved December 4, 2007 (received for review August 27, 2007) We demonstrate the presence of an alternate metabolic pathway We previously reported that mosquitoes dispose of toxic for urea synthesis in Aedes aegypti mosquitoes that converts uric ammonia through glutamine (Gln) and proline (Pro) synthesis, acid to urea via an amphibian-like uricolytic pathway. For these along with excretion of ammonia, uric acid, and urea (20). By studies, female mosquitoes were fed a sucrose solution containing using labeled isotopes and mass spectrometry techniques (21), 15 15 15 15 15 NH4Cl, [5- N]-glutamine, [ N]-proline, allantoin, or allantoic we have recently determined how the N from NH4Cl is acid. At 24 h after feeding, the feces were collected and analyzed incorporated into the amide side chain of Gln, and then into Pro, in a mass spectrometer. Specific enzyme inhibitors confirmed that in Ae. aegypti (22). In the present article we demonstrate that the 15 15 15 mosquitoes incorporate N from NH4Cl into [5- N]-glutamine nitrogen of the amide group of Gln contributes to uric acid and use the 15N of the amide group of glutamine to produce synthesis in mosquitoes and, surprisingly, that uric acid can be 15 labeled uric acid. -
Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific. -
Extended Spectrum Β-Lactamases and Class C Β
F1000Research 2020, 9:774 Last updated: 01 APR 2021 RESEARCH ARTICLE Extended spectrum β-lactamases and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study [version 1; peer review: 1 not approved] Dina N. Abdelrahman 1,2, Aya A. Taha2, Mazar M. Dafaallah2, Alaa Abdelgafoor Mohammed3, Abdel Rahim M. El Hussein 1, Ahmed I. Hashim 2, Yousif F. Hamedelnil2, Hisham N. Altayb 4 1Department of Virology, Central Laboratory, Khartoum, Sudan 2Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan 3Department of Pharmaceutical Biotechnology, College of Pharmacy, Ahfad University for Women, Omdurman, Khartoum, Sudan 4Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia v1 First published: 27 Jul 2020, 9:774 Open Peer Review https://doi.org/10.12688/f1000research.24818.1 Second version: 15 Sep 2020, 9:774 https://doi.org/10.12688/f1000research.24818.2 Reviewer Status Latest published: 01 Apr 2021, 9:774 https://doi.org/10.12688/f1000research.24818.3 Invited Reviewers 1 2 Abstract Background: Pseudomonas aeruginosa is a pathogenic bacterium, version 3 causing nosocomial infections with intrinsic and acquired resistance (revision) mechanisms to a large group of antibiotics, including β-lactams. This 01 Apr 2021 study aimed to determine the susceptibility pattern to selected antibiotics and to index the first reported β-lactamases gene version 2 (extended spectrum β-lactamases (ESBLs) genes and class C β- (revision) report report lactamases genes) frequency in Ps. aeruginosa in Khartoum State, 15 Sep 2020 Sudan. Methods: 121 Ps. -
(12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug
USOO9422609B2 (12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug. 23, 2016 (54) METHODS, COMPOSITIONS AND DEVICES (58) Field of Classification Search FOR MANTAINING CHEMICAL BALANCE CPC ........................ C02F 1/725; C12Y 305/01005 OF CHLORINATED WATER USPC ........................... 210/754; 435/195, 227 231 See application file for complete search history. (75) Inventor: Vivian I. Teichberg, Savyon (IL) (56) References Cited (73) Assignees: Mia Levite, Savyon (IL); Yaar Teichberg, Savyon (IL); Nof Lyle U.S. PATENT DOCUMENTS Teichberg, Savyon (IL) 4,793,935 A * 12/1988 Stillman ............... CO2F 1.5236 21Of727 (*) Notice: Subject to any disclaimer, the term of this 6,673,582 B2 * 1/2004 McTavish ..................... 435/122 patent is extended or adjusted under 35 U.S.C. 154(b) by 1044 days. (Continued) (21) Appl. No.: 12/225.18O FOREIGN PATENT DOCUMENTS y x- - - 9 AU 41971 5, 1979 (22) PCT Filed: Mar. 14, 2007 GB 2025919 1, 1980 (86). PCT No.: PCT/L2007/OOO336 (Continued) S 371 (c)(1) OTHER PUBLICATIONS (2), (4) Date: Sep. 16, 2008 Examiner's Report Dated Oct. 6, 2010 From the Australian Govern (87) PCT Pub. No.: WO2007/107.981 ment, IP Australia Re. Application No. 2007228391. (Continued) PCT Pub. Date: Sep. 27, 2007 (65) Prior Publication Data Primary Examiner — Peter Keyworth (74) Attorney, Agent, or Firm — Browdy and Neimark, US 201OfO270228A1 Oct. 28, 2010 PLLC Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 60/783,028, filed on Mar. A composition-of-matter for use in water treatment, com 17, 2006. -
DRIDIETARY REFERENCE INTAKES Thiamin, Riboflavin, Niacin, Vitamin
Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline http://www.nap.edu/catalog/6015.html DIETARY REFERENCE INTAKES DRI FOR Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline A Report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients Food and Nutrition Board Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. Copyright © National Academy of Sciences. All rights reserved. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline http://www.nap.edu/catalog/6015.html NATIONAL ACADEMY PRESS • 2101 Constitution Avenue, N.W. • Washington, DC 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was funded by the U.S. Department of Health and Human Services Office of Disease Prevention and Health Promotion, Contract No. 282-96-0033, T01; the National Institutes of Health Office of Nutrition Supplements, Contract No. N01-OD-4-2139, T024, the Centers for Disease Control and Prevention, National Center for Chronic Disease Preven- tion and Health Promotion, Division of Nutrition and Physical Activity; Health Canada; the Institute of Medicine; and the Dietary Reference Intakes Corporate Donors’ Fund. -
Structural Basis for the Inhibition of Human 5,10-Methenyltetrahydrofolate Synthetase by N10-Substituted Folate Analogues
Published OnlineFirst September 8, 2009; DOI: 10.1158/0008-5472.CAN-09-1927 Experimental Therapeutics, Molecular Targets, and Chemical Biology Structural Basis for the Inhibition of Human 5,10-Methenyltetrahydrofolate Synthetase by N10-Substituted Folate Analogues Dong Wu,1 Yang Li,1 Gaojie Song,1 Chongyun Cheng,1 Rongguang Zhang,2 Andrzej Joachimiak,2 NeilShaw, 1 and Zhi-Jie Liu1 1National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China and 2Structural Biology Center, Argonne National Laboratory, Argonne, Illinois Abstract of the one-carbon metabolic network, dihydrofolate reductase, 5,10-Methenyltetrahydrofolate synthetase (MTHFS) regulates which catalyzes the conversion of dihydrofolate to tetrahydrofolate. the flow of carbon through the one-carbon metabolic network, Similarly, colorectal and pancreatic cancers are routinely treated by which supplies essential components for the growth and administration of the pyrimidine analogue 5-fluorouracil (5-FU), proliferation of cells. Inhibition of MTHFS in human MCF-7 which inhibits thymidylate synthase (TS; ref. 6). TS converts breast cancer cells has been shown to arrest the growth of deoxyuridylate to deoxythymidylate using a carbon donated by cells. Absence of the three-dimensional structure of human 5,10-methylenetetrahydrofolate (Fig. 1). This conversion is essential MTHFS (hMTHFS) has hampered the rational design and for DNA synthesis (7). To increase the clinical efficiency of the optimization of drug candidates. Here, we report the treatment, 5-formyltetrahydrofolate is often coadministered along structures of native hMTHFS, a binary complex of hMTHFS with 5-FU. The beneficial effect of administering 5-formyltetrahy- with ADP, hMTHFS bound with the N5-iminium phosphate drofolate during the therapy with 5-FU is a consequence of the reaction intermediate, and an enzyme-product complex of 5,10-methenyltetrahydrofolate synthetase (MTHFS)–catalyzed hMTHFS. -
Biotin Fact Sheet for Consumers
Biotin Fact Sheet for Consumers What is biotin and what does it do? Biotin is a B-vitamin found in many foods. Biotin helps turn the carbohydrates, fats, and proteins in the food you eat into the energy you need. How much biotin do I need? The amount of biotin you need each day depends on your age. Average daily recommended amounts are listed below in micrograms (mcg). Life Stage Recommended Amount Birth to 6 months 5 mcg Infants 7–12 months 6 mcg Children 1–3 years 8 mcg Children 4–8 years 12 mcg Biotin is naturally present in some Children 9–13 years 20 mcg foods, such as salmon and eggs. Teens 14–18 years 25 mcg Adults 19+ years 30 mcg Pregnant teens and women 30 mcg Breastfeeding teens and women 35 mcg What foods provide biotin? Many foods contain some biotin. You can get recommended amounts of biotin by eating a variety of foods, including the following: • Meat, fish, eggs, and organ meats (such as liver) • Seeds and nuts • Certain vegetables (such as sweet potatoes, spinach, and broccoli) What kinds of biotin dietary supplements are available? Biotin is found in some multivitamin/multimineral supplements, in B-complex supplements, and in supplements containing only biotin. Am I getting enough biotin? Most people get enough biotin from the foods they eat. However, certain groups of people are more likely than others to have trouble getting enough biotin: • People with a rare genetic disorder called “biotinidase deficiency” • People with alcohol dependence • Pregnant and breastfeeding women 2 • BIOTIN FACT SHEET FOR CONSUMERS What happens if I don’t get enough biotin? Biotin and healthful eating Biotin deficiency is very rare in the United States. -
Relevance to Neurological Damage
Postgrad Med J: first published as 10.1136/pgmj.62.724.113 on 1 February 1986. Downloaded from Postgraduate Medical Journal (1986) 62, 113-123 Pteridines and mono-amines: relevance to neurological damage I. Smith, D.W. Howells and K. Hyland Institute ofChildHealth (University ofLondon), 30 Guilford Street, London WCIN2NR, UK. Summary: Patients with phenylalanine hydroxylase deficiency show increased concentrations of biopterins and neopterins, and reduced concentrations ofserotonin and catecholamines, when phenylalan- ine concentrations are raised. The pterin rise reflects increased synthesis of dihydroneopterin and tetrahydrobiopterin, and the amine fall a reduction in amine synthesis due to inhibition by phenylalanine of tyrosine and typtophan transport into neurones. The pterin and amine changes appear to be independent of each other and are present in the central nervous system as well as the periphery; they disappear when phenylalanine concentrations are reduced to normal. Patients with arginase deficiency show a similar amine disturbance but have normal pterin levels. The amine changes probably contribute neurological symptoms but pterin disturbance is not known to affect brain function. Patients with defective biopterin metabolism exhibit severely impaired amine synthesis due to tetrahydrobiopterin deficiency. Pterin concentrations vary with the site of the defect. Symptoms include profound hypokiesis and other features of basal ganglia disease. Neither symptoms nor amine changes are relieved by controlling phenylalanine concentrations. Patients with dihydropteridine reductase (DHPR) deficiency accumulate dihydrobiopterins and develop secondary folate deficiency which resembles that occurring in patients with defective 5,10-methylene tetrahydrofolate reductase activity. The latter disorder is also associated writh Parkinsonisn and defective amine and pterin turnover in the and a occurs in In central nervous system, demyelinating illness both disorders. -
COMPARISON of the WHO ATC CLASSIFICATION & Ephmra/Intellus Worldwide ANATOMICAL CLASSIFICATION
COMPARISON OF THE WHO ATC CLASSIFICATION & EphMRA/Intellus Worldwide ANATOMICAL CLASSIFICATION: VERSION June 2019 2 Comparison of the WHO ATC Classification and EphMRA / Intellus Worldwide Anatomical Classification The following booklet is designed to improve the understanding of the two classification systems. The development of the two systems had previously taken place separately. EphMRA and WHO are now working together to ensure that there is a convergence of the 2 systems rather than a divergence. In order to better understand the two classification systems, we should pay attention to the way in which substances/products are classified. WHO mainly classifies substances according to the therapeutic or pharmaceutical aspects and in one class only (particular formulations or strengths can be given separate codes, e.g. clonidine in C02A as antihypertensive agent, N02C as anti-migraine product and S01E as ophthalmic product). EphMRA classifies products, mainly according to their indications and use. Therefore, it is possible to find the same compound in several classes, depending on the product, e.g., NAPROXEN tablets can be classified in M1A (antirheumatic), N2B (analgesic) and G2C if indicated for gynaecological conditions only. The purposes of classification are also different: The main purpose of the WHO classification is for international drug utilisation research and for adverse drug reaction monitoring. This classification is recommended by the WHO for use in international drug utilisation research. The EphMRA/Intellus Worldwide classification has a primary objective to satisfy the marketing needs of the pharmaceutical companies. Therefore, a direct comparison is sometimes difficult due to the different nature and purpose of the two systems. -
The Vitamin B Complex and Ascorbic Acid
C H A P T E R 63 The Vitamin B Complex and Ascorbic Acid Robert Marcus and Ann M. Coulston This chapter provides a summary of physiological and therapeutic roles of members of the vitamin B complex and of vitamin C. The vitamin B complex comprises a large number of compounds that differ extensively in chemical structure and biological action. They were grouped in a single class because they originally were isolated from the same sources, notably liver and yeast. There are traditionally eleven members of the vitamin B complex— namely, thiamine, riboflavin, nicotinic acid, pyridoxine, pantothenic acid, biotin, folic acid, cyanocobalamin, choline, inositol, and paraaminobenzoic acid. Paraaminobenzoic acid is not considered in this chapter, as it is not a true vitamin for any mammalian species but is a growth factor for certain bacteria, where it is a precursor for folic acid synthesis. Although not a traditional member of the group, carnitine also is considered in this chapter because of its biosynthetic relationship to choline and the recent recognition of deficiency states. Folic acid and cyanocobalamin are considered in Chapter 54 because of their special function in hematopoiesis. Vitamin C is especially concentrated in citrus fruits and thus is obtained mostly from sources differing from those of members of the vitamin B complex. CHAPTER 63 WATER-SOLUBLE VITAMINS: THE VITAMIN B COMPLEX AND ASCORBIC ACID 1767 II. ASCORBIC ACID (VITAMIN C) History. Scurvy, the deficiency disease caused by lack of vi- tamin C, has been known since the time of the Crusades, es- pecially among northern European populations who subsisted on diets lacking fresh fruits and vegetables over extensive pe- riods of the year.