Role of Voltage-Gated Sodium Channels in the Mechanism of Ether-Induced Unconsciousness

Total Page:16

File Type:pdf, Size:1020Kb

Role of Voltage-Gated Sodium Channels in the Mechanism of Ether-Induced Unconsciousness 1521-0081/71/4/450–466$35.00 https://doi.org/10.1124/pr.118.016592 PHARMACOLOGICAL REVIEWS Pharmacol Rev 71:450–466, October 2019 Copyright © 2019 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: LORI L. ISOM Role of Voltage-Gated Sodium Channels in the Mechanism of Ether-Induced Unconsciousness Nicholas Denomme, Jacob M. Hull, and George A. Mashour Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan Abstract ...................................................................................450 I. Introduction . ..............................................................................450 A. Scope and Relevance . ..................................................................450 B. Historical Background and Clinical Use of the Halogenated Ethers. ...................451 II. Basic Pharmacology and Physicochemical Properties of the Halogenated Ethers .............452 III. Basic Overview of Voltage-Gated Sodium Channel Biology . ...............................452 A. Neuromodulation of Voltage-Gated Sodium Channels ...................................455 IV. Molecular Interactions of Halogenated Ethers with Voltage-Gated Sodium Channels . .......456 V. Structural and Computational Studies Using Prokaryotic Voltage-Gated Sodium Downloaded from Channels ..................................................................................459 VI. Presynaptic Voltage-Gated Sodium Channel Inhibition Leads to Depressed Neurotransmission. ........................................................................460 VII. In Vivo Modulation of Halogenated Ether Anesthesia. .....................................461 A. Modulation of Anesthetic Sensitivity Mediated by Pharmacological Manipulation of by guest on September 28, 2021 Voltage-Gated Sodium Channels. ......................................................461 1. Overlap with Local Anesthetic Mechanism of Action . ...............................461 B. Modulation of Anesthetic Sensitivity Mediated by Genetic Manipulation of Voltage- Gated Sodium Channels................................................................462 VIII. Conclusion. ..............................................................................463 References . ..............................................................................464 Abstract——Despite continuous clinical use for for a mechanistic interaction between halogenated more than 170 years, the mechanism of general anes- ethers and sodium channels in the induction of thetics has not been completely characterized. In this unconsciousness. We conclude with a more integrative review, we focus on the role of voltage-gated sodium perspective of how voltage-gated sodium channels channels in the sedative–hypnotic actions of halogenated might provide a critical link between molecular ethers, describing the history of anesthetic mechanisms actions of the halogenated ethers and the more research, the basic neurobiology and pharmacology distributed network-level effects associated with of voltage-gated sodium channels, and the evidence the anesthetized state across species. I. Introduction both clinical and basic science. From a clinical perspective, there are more than 300 million major surgeries around A. Scope and Relevance the world each year, which typically occur under general Despitemorethan170yearsofclinicaluseand anesthesia (Weiser et al., 2015). Understanding the scientific study, the molecular mechanism of action of structure–activity relationships of anesthetic action can ether anesthesia remains incompletely understood. Char- potentially lead to the development of safer and more acterizing the molecular events by which anesthetic efficacious anesthetic drugs. In addition to the practical agents lead to the loss of consciousness is important for applications, elucidating the molecular mechanisms of Address correspondence to: Dr. George A. Mashour, Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, 1500 E. Medical Center Drive, 1H247 University Hospital, SPC-5048, Ann Arbor, MI, 48109-5048. E-mail: [email protected] https://doi.org/10.1124/pr.118.016592. 450 Sodium Channels and General Anesthesia 451 anesthetic-induced unconsciousness has implications for As halogen chemistry developed, it was found that pharmacology as well as the neurobiology of consciousness a halogenated derivative would greatly reduce the itself. flammability of diethyl ether. In the 1930s, chemists The clinical state of general anesthesia is character- Harold Booth and E. Max Bixby were the first to try ized by the pharmacological induction of amnesia, un- synthesizing a fluorinated anesthetic. Although they consciousness, analgesia, and immobility. General failed with their compound monochlorodifluoromethane, anesthesia is reversible and can be induced by a struc- Booth and Bixby (1932) recognized the importance of turally diverse range of molecules administered either fluorine substitutions in developing a noncombusti- intravenously or by inhalation. A large body of evidence ble volatile anesthetic. Thorough analysis of organic now supports inhaled anesthetics acting on diverse fluoride-based compounds led them to the observation anatomic sites and molecular targets within the ner- that fluorination would improve molecular stability vous system to produce the array of clinical endpoints and toxicity. seen during general anesthesia. This review will focus Earl McBee directed a Manhattan Project initiative to on the class of inhaled anesthetics known as the refine 235U by first converting it to the uranium halogenated ethers and the role that voltage-gated hexafluoride intermediate. His expertise in fluorination sodium channels (VGSCs) play in their mechanism of ultimately resulted in a grant from Mallinckrodt Chem- sedative–hypnotic action. ical Works to produce new fluorinated hydrocarbons as potential anesthetics (Whalen et al., 2005). The McBee group synthesized dozens of compounds, none of which B. Historical Background and Clinical Use of the displayed anesthetic properties. Vanderbilt Pharmacol- Halogenated Ethers ogist Ben Robbins tested the fluorinated hydrocarbons. In 1540, German botanist and physician Valerius Although none succeeded, his analysis was optimistic, Cordus heated a mixture of triply-distilled wine (ethanol) and he encouraged further exploration in the area with vitriol (sulfuric acid) (Cordus, 1561). Cordus named (Robbins, 1946). the sweet-smelling remains “oleum dulci vitrioli,” which is A University of Maryland pharmacology group led by Latin for the sweet oil of vitriol. Cordus’ssweetoilwas John Krantz published dozens of articles in The Journal diethyl ether, commonly referred to as ether. of Pharmacology & Experimental Therapeutics, and For the following three centuries after Cordus’s initial Anesthesiology from 1940 to 1961, investigating the discovery, ether was primarily used recreationally. properties of hundreds of ethers and hydrocarbons Although not made public, Dr. Crawford Long performed (Calverley, 1986). The 40th study in their series surgeries under ether at his private practice in Jefferson, reported the effects of trifluoroethyl vinyl ether Georgia, from 1842 to 1846. He did not publish his (Krantz et al., 1953). In 1954, the Ohio Chemical and findings until 1849 (Long, 1849). The widespread use of Surgical Company introduced trifluoroethyl vinyl ether as a general anesthetic was ushered in on October ether (fluroxene) into clinical use as the first halogenated 16, 1846 in the first successful public demonstration of ether for general anesthesia (Calverley, 1986). Al- surgery under diethyl ether anesthesia by dentist William though much safer than ether, fluroxene was poten- T. G. Morton (Bigelow, 1846). Morton’snew“miracle” gas tially flammable at supraclinical concentrations. Letheon enabled renowned American surgeon John Col- Additionally, it caused severe nausea and vomiting. lins Warren to remove a neck tumor from a patient In 1974, after 20 years on the market, fluroxene was without any pain or knowledge of the operation at a time withdrawn. This came shortly after it was discovered when, without such interventions, surgical patients could that fluroxene was metabolized into multiple toxic be completely conscious of these major traumatic inter- metabolites, including trifluoroethanol (Cascorbi and ventions (Fenster, 2001). Singh-Amaranath, 1972). Methoxyflurane was intro- Subsequently, diethyl ether was used to achieve duced in 1960, sustaining popularity for a decade general anesthesia for over 75 years. Ether had many (Artusio et al., 1960). Its high lipid solubility caused shortcomings, notably its flammable and explosive long postoperative recovery times. Reports of methoxy- properties. The dangerous properties of diethyl ether flurane causing dose-related nephrotoxicity due to arise from a combination of factors, including its low inorganic fluoride began to emerge (Crandell et al., boiling point, high vapor pressure, and tendency to form 1966). It too was withdrawn from the market. explosive peroxides. The necessity for a safer and non- Throughout the 1960s and 1970s, the chemistry group flammable alternative led to a wealth of research into led by Ross Terrell synthesized hundreds of fluori- general anesthetics in the first
Recommended publications
  • Callistephin Enhances the Protective Effects of Isoflurane on Microglial Injury Through Downregulation of Inflammation and Apoptosis
    802 MOLECULAR MEDICINE REPORTS 20: 802-812, 2019 Callistephin enhances the protective effects of isoflurane on microglial injury through downregulation of inflammation and apoptosis LILI ZHAO, SHIBIAO CHEN, TIANYIN LIU, XIUHONG WANG, HAIJIN HUANG and WEICHENG LIU Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China Received June 18, 2018; Accepted March 15, 2019 DOI: 10.3892/mmr.2019.10282 Abstract. Microglia are the major immune cells in the central enhanced the effects of isoflurane. Callistephin may therefore nervous system. Microglial activation can be beneficial or constitute a candidate drug agent that may target inflammatory detrimental depending on the stimuli and the physiopathological and growth regulatory signaling pathways, thus ameliorating environment. Microglial activation is involved in a variety certain aspects of neurodegenerative diseases. of neurodegenerative disorders. Different anesthetic agents have exhibited diverse effects on microglial activation and Introduction the engulfment process. The anthocyanin callistephin has been demonstrated to have antioxidant and anti‑inflammatory Microglial cells are the major immune cell in the central properties, and these were assessed in the present study, with a nervous system (CNS), responding against types of endog- focus on its effect on microglial activation. Mouse microglial enous and exogenous stimuli, including infection by bacteria, cells C8-4B were treated with 100 ng/µl lipopolysaccharide viruses, prions and β-amyloid plaques (1). Microglia are (LPS) and 1 ng/µl interferon-γ. Cells were subsequently treated activated upon exposure to different stimuli and, depending with 2% isoflurane, 100 µM callistephin or both. LPS promoted on the environmental context, this may be beneficial or detri- apoptosis in C8-B4 cells, and this was reduced following mental to the functionality and physiology of the CNS (2).
    [Show full text]
  • Veratridine Product Number V5754 Storage Temperature
    Veratridine Product Number V5754 Storage Temperature -0 °C Product Description Precautions and Disclaimer Molecular Formula: C36H51NO11 For Laboratory Use Only. Not for drug, household or Molecular Weight: 673.8 other uses. CAS Number: 71-62-5 Melting Point: 180 °C Preparation Instructions lmax: 262 nm (ethanol) Veratridine is soluble in ethanol or DMSO (50 mg/m), Specific Rotation: +4.9° (25 mg/ml, ethanol, 25 °C)1 and is freely soluble in chloroform. The solubility in water is dependent on pH. The free base form is very Veratridine is one of several alkaloids isolated from the slightly soluble in water, but dissolves easily at seeds of Schoenocaulon officinale and from the 50 mg/ml in 1 M HCl. rhizome of Veratrum album. The crude extract is called veratrine or sabadilla, and contains cevadine, Storage/Stability veratridine, cevadilline, sabadine, and cevine. It has Solutions of veratridine in chloroform are stable for at been used as an insecticide, acting as a paralytic least 6 months stored at -20 °C. agent with higher toxicity to insects than to mammals.2 However, purified veratridine is highly toxic to all References animals tested. Sabadilla has an LD50 of 5000 mg/kg, 1. McKinney, L. C. et al., Purification, solubility and but veratridine has an LD50 of 1350 mg/kg. pKa of veratridine. Anal. Biochem., 153(1), 33-38 (1986). In cells, veratridine acts to open voltage-dependent 2. Bloomquist, J. R. Ion channels as targets for Na+ channels and prevents their inactivation. This, in insecticides. Ann. Rev. Entomol., 41, 163-190 (1996). turn, opens voltage-activated calcium channels, 2+ increasing intracellular calcium content and inducing 3.
    [Show full text]
  • Pharmacology – Inhalant Anesthetics
    Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers.
    [Show full text]
  • An Overview on “Stages of Anesthesia and Some Novel General Anesthetics Drug”
    Rohit Jaysing Bhor. et al. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 5(4), 2017, 132-140. Review Article ISSN: 2349 – 7106 Asian Journal of Research in Chemistry and Pharmaceutical Sciences Journal home page: www.ajrcps.com AN OVERVIEW ON “STAGES OF ANESTHESIA AND SOME NOVEL GENERAL ANESTHETICS DRUG” Rohit Jaysing Bhor *1 , Bhadange Shubhangi 1, C. J. Bhangale 1 1* Department of Pharmaceutical Chemistry, PRES’s College of Pharmacy Chincholi, Tal-Sinner, Dist-Nasik, Maharashtra, India. ABSTRACT Anesthesia is a painless performance of medical producers. There are both major and minor risks of anesthesia. Anesthesia is a state of temporary induced loss of sensation or awareness. It gives analgesia i.e. relief from pain or prevention of pain and paralysis. General anaesthesia is a medically induced state of unconsciousness. It gives loss of protective reflux. It is carried out to allow medical procedures or medical surgery. It can be classified into 3 types like Intravenous Anesthetics Drug; Miscellaneous Drug; and Inhalational anesthetic Drug. Sodium thiopental is an ultra-short-acting barbiturate and has been used commonly in the induction phase of anesthesia. Methohexital is an example of barbiturates derivatives. It is classified as short-acting, and has a rapid onset of action. KEYWORDS Anesthesia, Sodium thiopental, Methohexital and Propofol. Author for Correspondence: INTRODUCTON Anesthesia is a state of temporary induced loss of sensation or awareness. It gives analgesia i.e. relief 1 Rohit Jaysing Bhor, from pain or prevention of pain and paralysis . A patient under the effects of anesthetic drug is known Department of Pharmaceutical Chemistry, as anesthetized.
    [Show full text]
  • Visualizing Anesthesia-Induced Vasodilation of Cerebral Vasculature Using Multi-Exposure Speckle Imaging
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.174227; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Visualizing anesthesia-induced vasodilation of cerebral vasculature using multi-exposure speckle imaging Colin T. Sullendera, Lisa M. Richardsa, Fei Heb, Lan Luanb,c, Andrew K. Dunna,* aDepartment of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, Texas, 78712, United States bDepartment of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, United States cDepartment of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, United States Abstract. Anesthetized animal models are used extensively during neurophysiological and behavioral studies despite systemic effects from anesthesia that undermine both accurate interpretation and translation to awake human physi- ology. In this paper, we characterize the impact of isoflurane on cerebral blood flow (CBF) during the induction of general anesthesia in awake mice using multi-exposure speckle imaging (MESI). We highlight the large anatomical changes caused by the vasodilatory inhalant with wide-field imagery and quantify the cortical hemodynamics with MESI across multiple subjects and imaging sessions. Compared to the awake state, we measured, on average, an 18% increase in surface vessel diameter accompanied by a 135% increase in vascular flux and 92% increase in parenchyma perfusion. These large alterations to the cortical vasculature and CBF are unrepresentative of normal physiology and provide further evidence that neuroscience experiments would benefit from transitioning to un-anesthetized awake animal models.
    [Show full text]
  • Pharmacological Classification of the Abuse-Related Discriminative
    Ashdin Publishing Journal of Drug and Alcohol Research ASHDIN Vol. 3 (2014), Article ID 235839, 10 pages publishing doi:10.4303/jdar/235839 Research Article Pharmacological Classification of the Abuse-Related Discriminative Stimulus Effects of Trichloroethylene Vapor Keith L. Shelton and Katherine L. Nicholson Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298, USA Address correspondence to Keith L. Shelton, [email protected] Received 10 December 2013; Revised 2 January 2014; Accepted 27 January 2014 Copyright © 2014 Keith L. Shelton and Katherine L. Nicholson. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Inhalants are distinguished as a class primarily based upon common means of administration suggests a homogeneity of a shared route of administration. Grouping inhalants according to mechanism and behavioral effects that may be scientifically their abuse-related in vivo pharmacological effects using the drug unwarranted. As an illustration of the inadequacy of this discrimination procedure has the potential to provide a more relevant classification scheme to the research and treatment community. simplistic taxonomic approach, consider the fact that if a Mice were trained to differentiate the introceptive effects of the similar system was applied to other common drugs of abuse, trichloroethylene vapor from air using an operant procedure. then tobacco, crack cocaine, and marijuana would be treated Trichloroethylene is a chlorinated hydrocarbon solvent once used as a single category. Instead, other classes of abused drugs as an anesthetic as well as in glues and other consumer products.
    [Show full text]
  • Relation Between Veratridine Reaction Dynamics and Macroscopic Na Current in Single Cardiac Cells
    Relation between Veratridine Reaction Dynamics and Macroscopic Na Current in Single Cardiac Cells XIAN-GANG ZONG, MARTIN DUGAS, and PETER HONERJ,~GER From the Institut fiir Pharmakologie und Toxikologie der Technischen Universit~it Miinchen, W-8000 Miinchen 40, Germany Downloaded from http://rupress.org/jgp/article-pdf/99/5/683/1250012/683.pdf by guest on 02 October 2021 ABSTRACT Veratridine modification of Na current was examined in single dissociated ventricular myocytes from late-fetal rats. Extracellularly applied veratri- dine reduced peak Na current and induced a noninactivating current during the depolarizing pulse and an inward tail current that decayed exponentially (~ = 226 ms) after repolarization. The effect was quantitated as tail current amplitude, /tail (measured 10 ms after repolarization), relative to the maximum amplitude induced by a combination of 100 IzM veratridine and 1 ~M BDF 9145 (which removes inactivation) in the same cell. Saturation curves for Itail were predicted on the assumption of reversible veratridine binding to open Na channels during the pulse with reaction rate constants determined previously in the same type of cell at single Na channels comodified with BDF 9145. Experimental relationships between veratridine concentration and Itau confirmed those predicted by showing (a) haft- maximum effect near 60 ~M veratridine and no saturation up to 300 ~M in cells with normally inactivating Na channels, and (b) haft-maximum effect near 3.5 p,M and saturation at 30 ~M in cells treated with BDF 9145. Due to its known suppressive effect on single channel conductance, veratridine induced a progressive, but partial reduction of noninactivating Na current during the 50-ms depolariza- tions in the presence of BDF 9145, the kinetics of which were consistent with veratridine association kinetics in showing a decrease in time constant from 57 to 22 and 11 ms, when veratridine concentration was raised from 3 to 10 and 30 I.LM, respectively.
    [Show full text]
  • Veratridine Modification of the Sodium Channel A-Polypeptide from Eel Electroplax Purified
    Veratridine Modification of the Purified Sodium Channel a-Polypeptide from Eel Electroplax DANIEL S. DUCH, ESPERANZA RECIO-PINTO, CHRISTIAN FRENKEL, S. R. LEVINSON, and BERND W. URBAN Downloaded from http://rupress.org/jgp/article-pdf/94/5/813/1249318/813.pdf by guest on 02 October 2021 From the Departments of Anesthesiology and Physiology, Cornell University Medical Col- lege, New York, New York 10021; and the Department of Physiology, University of Colorado Medical College, Denver, Colorado 80206 ABSTRACT In the interest of continuing structure-function studies, highly puri- fied sodium channel preparations from the eel electroplax were incorporated into planar lipid bilayers in the presence of veratridine. This lipoglycoprotein originates from muscle-derived tissue and consists of a single polypeptide. In this study it is shown to have properties analogous to sodium channels from another muscle tis- sue (Garber, S. S., and C. Miller. 1987. J0urna/ of General Physiology. 89:459-480), which have an additional protein subunit. However, significant qualitative and quantitative differences were noted. Comparison of veratridine-modified with batrachotoxin-modified eel sodium channels revealed common properties. Tetro- dotoxin blocked the channels in a voltage-dependent manner indistinguishable from that found for batrachotoxin-modified channels. Veratridine-modified chan- nels exhibited a range of single-channel conductance and subconductance states. The selectivity of the veratridine-modified sodium channels for sodium vs. potas- sium ranged from 6-8 in reversal potential measurements, while conductance ratios ranged from 12-15. This is similar to BTX-modified eel channels, though the latter show a predominant single-channel conductance twice as large. In con- trast to batrachotoxin-modified channels, the fractional open times of these chan- nels had a shallow voltage dependence which, however, was similar to that of the slow interaction between veratridine and sodium channels in voltage-clamped bio- logical membranes.
    [Show full text]
  • The Cardiovascular and Respiratory Effects of Isoflurane-Nitrous Oxide Anaesthesia
    THE CARDIOVASCULAR AND RESPIRATORY EFFECTS OF ISOFLURANE-NITROUS OXIDE ANAESTHESIA WILLIAM M. DOLAN, M.D.S, WENDELL C. STEVENS, M.D.,O EDMOND I. EGER, II, M.D.,* TnOlX~AS H. CROMWELL, M.D,, c* MICHAEL J. HALSEY, PH.D.,C* THOMAS F. SHAKESPEAlqE, Ik~.D.,c* AND RONALD D. MILLER, M.D. c* INTRODUCTION ISOFLURAnE (Forane| 1 chloro-2-2-2 trifluoroethyl, difluoromethyl ether), is a halogenated ether currently being evaluated for use as an inhalational anaesthetic. Its favourable properties include non-flammability, 1 relatively low blood and fat solubilities (blood-gas and oil-gas partitions of 1.4 and 99, respectively), 1,2 mole- cular stability resulting in resistance to dehydrohalogenation and hepatic meta- bolism, 1,~ lack of sensitization of the heart to catecholamines, 4 and favourable depression of neuromuscular function and potentiation of muscle relaxants. ~ However, isoflurane can produce profound depression of ventilation and blood pressure. ~ Since the concurrent use of nitrous oxide with halothane attenuates the hypotension and ventilatory depression caused by halothane, s,'~,l~ we asked whether nitrous oxide would produce similar changes towards awake values dur- ing isoflurane anaesthesia. METHODS We studied the cardiovascular and respiratory effects of anaesthesia with iso- flurane and 70 per cent nitrous oxide in eight healthy, unpremedicated volun- teers. The volunteers were 25 --4- 1 (SD) years of age and were informed of the purposes, procedures, and hazards of the study. The protocol was approved by the Committee on Human Experimentation of the University of California, San Francisco. A normal medical history, physical examination, chest roentgenogram, complete blood count, serum glutamic oxaloacetic transanainase and lactic de- hydrogenase were required before a volunteer was accepted for anaesthesia.
    [Show full text]
  • Synthetic Method for Fluoromethylation Of
    Europäisches Patentamt *EP001286941B1* (19) European Patent Office Office européen des brevets (11) EP 1 286 941 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07C 43/12, C07C 41/16, of the grant of the patent: C07C 41/22, C07C 41/28, 20.07.2005 Bulletin 2005/29 C07C 41/52, C07C 43/313 (21) Application number: 01939633.2 (86) International application number: PCT/US2001/017348 (22) Date of filing: 30.05.2001 (87) International publication number: WO 2001/092193 (06.12.2001 Gazette 2001/49) (54) SYNTHETIC METHOD FOR FLUOROMETHYLATION OF HALOGENATED ALCOHOLS VERFAHREN ZUR FLUORMETHYLIERUNG VON HALOGENIERTEN ALKOHOLEN PROCEDE DE SYNTHESE DE FLUOROMETHYLATION D’ALCOOLS HALOGENES (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU • BIENIARZ, Christopher MC NL PT SE TR Highland Park, IL 60035 (US) Designated Extension States: • RAMAKRISHNA, Kornepati, V. RO SI Libertyville, IL 60048 (US) (30) Priority: 01.06.2000 US 587421 (74) Representative: Modiano, Guido, Dr.-Ing. et al Modiano, Josif, Pisanty & Staub, (43) Date of publication of application: Baaderstrasse 3 05.03.2003 Bulletin 2003/10 80469 München (DE) (73) Proprietor: Abbott Laboratories (56) References cited: Abbott Park, IL 60064-6050 (US) EP-A- 0 822 172 GB-A- 1 250 928 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement.
    [Show full text]
  • Delivery of Carbon Monoxide Via Halogenated Ether Anesthetics
    Nitric Oxide 89 (2019) 93–95 Contents lists available at ScienceDirect Nitric Oxide journal homepage: www.elsevier.com/locate/yniox T Delivery of carbon monoxide via halogenated ether anesthetics ARTICLE INFO Keywords: Anesthetics CORM Carbon monoxide Heme oxygenase Desflurane Sevoflurane Organ transplantation Letter to the Editor across preclinical models. Whereas preclinical models have experi- mental flexibility, stringent safety constraints have prevented physi- The therapeutic potential of carbon monoxide (CO) has been well- cians from attaining high COHb levels in humans. Interestingly, a characterized over the past decades [1]. Organ transplantation is an widely used general anesthetic, desflurane, has been associated with exemplary unmet medical need where CO has emerged as a protective significantly increased intraoperative COHb levels ranging between 7% agent [2]. Translational efforts have focused on CO inhalation proto- and 36% when administered through dried carbon dioxide absorbents cols, carboxyhemoglobin infusion, heme oxygenase (HO) induction, [18]. Though 36% COHb is an extraordinary case, it seems possible that and local delivery of CO-releasing molecules (CORMs); however, a anesthesia protocols utilizing HEAs can be optimized to deliver a CO clinical breakthrough has yet to emerge [3]. Interestingly, halogenated payload to achieve high COHb levels in a clinical setting. ether anesthetics (HEAs) (Fig. 1) have been linked to elevated in- The phenomenon of CO being liberated from HEAs within an an- traoperative carboxyhemoglobin (COHb) levels [4,5]. A recent rando- esthesia machine apparatus has been well-documented [4]. The pro- mized clinical trial indicated patients receiving HEAs have demon- posed mechanism for desflurane is specifically dependent upon are- strated improved graft survival prognosis relative to patients receiving action with partially dried carbon dioxide absorbents (< 4.8% water a different anesthetic.
    [Show full text]
  • Toxicological Profile for 1,1-Dichloroethene
    1,1-DICHLOROETHENE 125 CHAPTER 8. REFERENCES *ACGIH. 2001. Documentation of the TLVs and BEIs for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists. May 3, 2017. *ACGIH. 2016. TLVs and BEIs based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists. May 3, 2017. Adeniji SA, Kerr JA, Williams MR. 1981. Rate constants for ozone-alkene reactions under atmospheric conditions. Int J Chem Kinet 13:209-217. *Aelion CM, Conte BC. 2004. Susceptibility of residential wells to VOC and nitrate contamination. Environ Sci Technol 38(6):1648-1653. *Andersen ME, Jenkins J. 1977. Oral toxicity of 1,1-dichloroethylene in the rat: Effects of sex, age, and fasting. Environ Health Perspect 21:157-163. *Andersen ME, Jones RA, Jenkins LJ. 1978. The acute toxicity of single, oral doses of 1,1-dichloro- ethylene in the fasted male rat: Effect of induction and inhibition of microsomal enzyme activities on mortality. Toxicol Appl Pharmacol 46:227-234. Andersen ME, Thomas OE, Gargas ML, et al. 1980. The significance of multiple detoxification pathways for reactive metabolites in the toxicity of 1,1-dichloroethylene. Toxicol Appl Pharmacol 52:422-432. +*Anderson D, Hodge MCE, Purchase IFH. 1977. Dominant lethal studies with the halogenated olefins vinyl chloride and vinylidene dichloride in male CD-1 mice. Environ Health Perspect 21:71-78. Apfeldorf R, Infante PF. 1981. Review of epidemiologic study results of vinyl chloride-related compounds. Environ Health Perspect 41:221-226.
    [Show full text]