Greenhouse Gas Reduction Potential of Agricultural Best Management Practices

Total Page:16

File Type:pdf, Size:1020Kb

Greenhouse Gas Reduction Potential of Agricultural Best Management Practices Climate change October 2019 Greenhouse gas reduction potential of agricultural best management practices This technical report provides a description of the methodologies used to estimate greenhouse gas emissions reduction potential from 21 practices related to changing land use, cropping practices, and nutrient reduction. Authors Peter Ciborowski, Principal Author Contributors/acknowledgements Leslie Hunter-Larson, MPCA Librarian We are grateful to the following people who reviewed the study and provided comments: Marco Graziani, Minnesota Pollution Control Agency Gregory Johnson, Minnesota Pollution Control Agency Dave Wall, Minnesota Pollution Control Agency Suzanne Rhees, Minnesota Board of Soil and Water Dan Shaw, Minnesota Board of Soil and Water Peter Gillitzer, Minnesota Department of Agriculture Brad Redlin, Minnesota Department of Agriculture Amanda Kueper, Minnesota Department of Natural Resources Joseph Fargione, Nature Conservancy Jessica Gutknecht, University of Minnesota Amy Swan, Colorado State University Tom Wirth, US Environmental Protection Agency Editing and graphic design Risikat Adesaogun Jennifer Holstad Barb Olafson Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | 651-296-6300 | 800-657-3864 | Or use your preferred relay service. | [email protected] This report is available in alternative formats upon request, and online at www.pca.state.mn.us. Document number: p-gen4-19 Table of contents Table of contents ........................................................................................................................................... i List of Tables ................................................................................................................................................ iii Executive summary ....................................................................................................................................... v Agriculture and climate change in Minnesota .............................................................................................. v What do we know? ....................................................................................................................................... v What does it mean for Minnesota? .............................................................................................................. v What impact can agricultural best practices make? .................................................................................... vi Agricultural best Practices: Terms to know ............................................................................................... viii A. Introduction and summary ................................................................................................................... 1 II. Methodology ............................................................................................................................................. 6 III. Results .................................................................................................................................................... 18 IV. Detailed results and discussion ............................................................................................................. 22 C. Shelterbelts and hedgerows ................................................................................................................... 38 D. Field borders, contour buffer strips, vegetative barriers, herbaceous wind barriers ............................ 43 E. Grassland riparian buffers ....................................................................................................................... 45 F. Forested and multispecies riparian buffers ............................................................................................ 51 G. Winter cover crop/Catch crop ................................................................................................................ 57 H. No-till tillage ........................................................................................................................................... 64 I. Reduced tillage ......................................................................................................................................... 75 J. No till: Reduced tillage counterfactual .................................................................................................... 80 K. Cropland to hayland conversion ............................................................................................................. 83 L. Perennial grass added to annual crop rotation ....................................................................................... 88 M. Corn-soybean rotation in place of continuous corn .............................................................................. 92 V. Practices for which only preliminary estimates are available ................................................................ 97 Appendix A. Constructed and restored wetlands ..................................................................................... 100 Appendix B. Biochar .................................................................................................................................. 102 Appendix C. Split fertilizer application ...................................................................................................... 104 Appendix D. Subsurface fertilizer placement ........................................................................................... 105 Appendix E. Spring fertilizer placement .................................................................................................... 106 Appendix F. Controlled release fertilizers ................................................................................................. 107 Appendix G. Nitrification and urease inhibitors ....................................................................................... 108 i Appendix H. Emissions-avoided from 15% reduction in nitrogen fertilizer use ....................................... 109 Endnotes ................................................................................................................................................... 109 Database bibliography .............................................................................................................................. 125 Database references for practices for which only preliminary results are available ............................... 197 ii List of Tables Table 1. Agricultural practices examined in this study ................................................................................. 3 Table 2. Estimated annual greenhouse gas-avoidance from agricultural practices (CO2-equivalent short tons per 100,000 acres per year) .......................................................................................................... 5 Table 3. Sources of emissions-avoidance or increase for agricultural practices .......................................... 9 Table 4. Calculative basis for emissions-avoided or emissions-increase estimates: indirect N2O, urea and liming CO2, GHGs from fuel use and agricultural chemical and fuels manufacture ........................... 16 Table 5. Fuel use changes by agricultural or land-use practice .................................................................. 17 Table 6. Assumed changes in fertilizer and agricultural chemicals use by agricultural or land-use practicea ............................................................................................................................................................ 17 Table 7. Emissions-avoided from agricultural practices (short CO2-e tons per 100,000 acres per year) ... 19 a Table 8 Emissions-avoided from agricultural practices (short CO2-e tons per 100,000 acres per year) .. 21 Table 9. Land retirement/Long-term idling - Grassland restoration: Emissions-avoided .......................... 24 Table 10. Published estimates of greenhouse gas-avoidance from cropland idling in unmanaged grassland a ........................................................................................................................................... 25 Table 11. Descriptive statistics: Land retirement/Long-term idling - Grassland restoration, carbon sequestration in soils and biomass ..................................................................................................... 28 Table 12. Descriptive statistics: Land retirement/Long-term idling - Grassland restoration, N2O ............. 30 Table 13. Descriptive statistics: Land retirement/Long-term idling - Grassland restoration, CH4.............. 31 Table 14. Land retirement/Long-term idling - Afforestation: Emissions-avoided ...................................... 32 Table 15. Descriptive statistics: Land retirement/Long-term idling - Afforestation, carbon sequestration in soils and biomass ............................................................................................................................ 35 Table 16. Descriptive statistics: Land retirement/Long-term idling - Afforestation, N2O .......................... 37 Table 17. Descriptive statistics: Land retirement/Long-term idling - Afforestation, CH4 ........................... 38 Table 18. Shelterbelts and hedgerows: Emissions-avoided ........................................................................ 40 Table 19. Descriptive statistics: Shelterbelts andhedgerows - carbon sequestration
Recommended publications
  • Soils Section
    Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7
    [Show full text]
  • Interim Soil Survey of the Gerber Block – Map Unit Descriptions 1
    300A--Norcross very cobbly loam, 0 to 10 percent slopes Map Unit Setting MLRA: 21 Landscape: Tableland Elevation: 4800 to 5400 feet Precipitation: 16 to 20 inches Air temperature: 43 to 45 degrees Fahrenheit Frost-free period: 50 to 80 days Composition Norcross very cobbly ashy loam, 0 to 10 percent slopes--85 percent Casebeer very cobbly loam, 0 to 6 percent slopes--10 percent Rock Outcrop, 15 to 40 percent slopes--5 percent Component Description Norcross and similar soils Landform: Plateaus Parent material: Volcanic ash and residuum weathered from basalt Typical vegetation: low sagebrush, bluebunch wheatgrass, onespike oatgrass, Sandberg bluegrass, Idaho fescue Typical profile: A1--0 to 3 inches; very cobbly ashy loam A2--3 to 6 inches; cobbly ashy loam Bt1--6 to 10 inches; cobbly ashy clay loam Bt2--10 to 18 inches; clay Bt3--18 to 20 inches; clay Bqm--20 to 31 inches; duripan R--31 to 35 inches; unweathered bedrock See "Chemical Properties of Soils" table and the "Physical Properties of Soils" table for more information. Component Properties and Qualities Slope: 0 to 10 percent Runoff: High Depth to Restrictive Feature: Duripan: 12 to 20 inches Bedrock (lithic): 18 to 46 inches Permeability class (root zone): Slow Available water capacity: About 3 inches Present flooding: None Natural drainage class: Well drained Interpretive Groups Nonirrigated land capability: 6e Ecological site: 021XY216OR--Stony Claypan 14-20 Pz Typical soil descriptions including ranges in characteristics are in the "Classification of the Soils" section. Contrasting
    [Show full text]
  • Greenhouse Gas Inventory a Community-Wide and Municipal Operations Greenhouse Gas Inventory for 2015
    Greenhouse Gas Inventory A community-wide and municipal operations greenhouse gas inventory for 2015 City of Lancaster Department of Public Works – Douglas Smith October 2017 Acknowledgement Thank you to all of the City Staff who helped compile data for both the greenhouse gas inventories included herein, including Charlotte Katzenmoyer (City Director of Public Works), Donna Jessup (City operations), Dave Schaffhauser (City Facilities Manager), Bryan Harner (City Wastewater), John Holden (City Water), Tim Erb (City Fire), and Maria Luciano (City Operations). Thank you to the Stormwater Bureau’s 2016-2017 F&M intern, JT Paganelli, who completed the vehicle emissions inventory, and the 2017 F&M intern, Grant Salley, for assisting with editing and research. Thank you to Barbara Baker from the Lancaster County Solid Waste Management Authority for providing data on solid waste. Additional thanks to customer service representatives at PPL and UGI, Scott Koch and Lori Pepper, respectively, for assisting with data. Recognition also goes to Warwick Township and Tony Robalik AICP who conducted the first municipal carbon audit in Lancaster County, which provided a model and helpful background information for this document. 2 Contents INTRODUCTION .........................................................................................................................................................5 1.1 Global Context .............................................................................................................................................................
    [Show full text]
  • Greenhouse Gas Emissions Inventory 2004-2005 Update
    University of New Hampshire University of New Hampshire Scholars' Repository The Sustainability Institute Research Institutes, Centers and Programs 2006 Greenhouse Gas Emissions Inventory 2004-2005 Update UNH Sustainability Institute Follow this and additional works at: https://scholars.unh.edu/sustainability Recommended Citation UNH Sustainability Institute, "Greenhouse Gas Emissions Inventory 2004-2005 Update" (2006). The Sustainability Institute. 61. https://scholars.unh.edu/sustainability/61 This Report is brought to you for free and open access by the Research Institutes, Centers and Programs at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in The Sustainability Institute by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Produced through the collaborative efforts of the UNH Office of Sustainability, the UNH Climate Education Initiative, and Clean Air - Cool Planet, this 2004 - 2005 update to UNH’s 1990 - 2003 Greenhouse Gas Emissions Inventory serves as a tool for measuring the University’s impact on regional and global climate change. The 2004-2005 Greenhouse Gas Emissions 2 004-2005 UPDATE Inventory Update summarizes UNH’s greenhouse gas emissions from all major sources, including the production of energy, transportation, and agriculture, among others. GREENHOUSE GAS EMISSIONS INVENTORY A COLL ABORATIVE PROJECT BY: Since 1991, UNH’s greenhouse gas emissions (GHGE) have continued to increase with increases in the University’s population UNH OFFICE OF SUSTAINABILITY and improvements in infrastructure. Despite a reduction in emissions between 2003 and 2005, there has been a net increase UNH CLIMATE EDUCATION INITIATIVE of 25% in GHGE from 1990 to 2005.
    [Show full text]
  • NEW JERSEY GREENHOUSE GAS INVENTORY MID-CYCLE UPDATE REPORT February 2021
    NEW JERSEY GREENHOUSE GAS INVENTORY MID-CYCLE UPDATE REPORT February 2021 Introduction New Jersey’s Global Warming Response Act (GWRA) (P.L. 2007, c.112, as amended 2019) calls for an annual compilation of statewide greenhouse gas (GHG) emissions data. This data is used to monitor and track progress towards New Jersey’s goal of reducing GHG emissions 80% from their 2006 levels by 2050 (known as the 80x50 goal).1 Since 2008, the New Jersey Department of Environmental New Jersey’s Greenhouse Gas Protection (DEP) has released a comprehensive statewide Reporting Framework GHG inventory report approximately every two years. Following the 2019 amendments to the GWRA, the DEP is also Emissions Inventory Report committed to releasing updated data annually to help inform • Full report released every two years the state’s climate mitigation planning and implementation • Includes the latest emissions estimates and projections efforts. • Includes a detailed discussion on: The DEP will therefore continue to release a full Emissions o Statewide Greenhouse Gas trends Federal and International trends Inventory Report every other year and will also provide a o and policy “Mid-Cycle Update” during the intervening years. The o Changes in methodologies Emissions Inventory Reports2 contain detailed analysis, o Adjustment of Baselines including updated emissions calculations, review of GHG trends, adjustments to baselines (when necessary), and Mid-Cycle Update • Brief summary released between discussion of any changes in emission calculation Emissions Inventory Reports methodologies. In contrast, the Mid-Cycle Update is a brief • Includes the latest emissions summary of the latest emissions data, with concise estimates and projections complementary analysis.
    [Show full text]
  • Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production Within the United States
    Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States ICF International February 2013 Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States Prepared by: ICF International 1725 I St NW, Suite 1000 Washington, DC 20006 For: U.S. Department of Agriculture Climate Change Program Office Washington, DC February 2013 Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States Preparation of this report was done under USDA Contract No. AG-3142-P-10-0214 in support of the project: Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States. This draft report was provided to USDA under contract by ICF International and is presented in the form in which it was received from the contractor. Any views presented are those of the authors and are not necessarily the views of or endorsed by USDA. For more information, contact the USDA Climate Change Program Office by email at [email protected], fax (202) 401-1176, or phone (202) 720-6699. Cover Photo Credit: (Middle Photo) California Bioenergy LLC, Dairy Biogas Project, Bakersfield, CA. How to Obtain Copies: You may electronically download this document from the U.S. Department of Agriculture’s Web site at: http://www.usda.gov/oce/climate_change/mitigation_technologies/GHGMitigationProduction_Cost.htm For Further Information Contact: Jan Lewandrowski, USDA Project Manager ([email protected])
    [Show full text]
  • Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016
    Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016 i Contents 1.0 Introduction ......................................................................................................................... 1 1.1. Purpose of This Guidance ............................................................................................... 2 1.2. Greenhouse Gas Accounting and Reporting Under Executive Order 13693 ................. 2 1.2.1. Carbon Dioxide Equivalent Applied to Greenhouse Gases .......................................... 3 1.2.2. Federal Reporting Requirements .................................................................................. 4 1.2.3. Distinguishing Between GHG Reporting and Reduction ............................................. 5 1.2.4. Opportunities, Limitations, and Exemptions under Executive Order 13693 ................ 5 1.2.5. Federal Greenhouse Gas Accounting and Reporting Workgroup ................................ 6 1.2.6. Electronic Greenhouse Gas Accounting and Reporting Capability (Annual Greenhouse Gas Data Report Workbook) .................................................................................................. 6 1.2.7. Relationship of the Guidance to Other Greenhouse Gas Reporting Requirements and Protocols ................................................................................................................................. 7 1.2.8. The Public Sector Greenhouse Gas Accounting and Reporting Protocol ..................... 8 2.0 Setting
    [Show full text]
  • EFFECT of TILLAGE on the HYDROLOGY of CLAYPAN SOILS in KANSAS by MEGHAN ELIZABETH BUCKLEY B.S., Iowa State University, 2002 M.S
    CORE Metadata, citation and similar papers at core.ac.uk Provided by K-State Research Exchange EFFECT OF TILLAGE ON THE HYDROLOGY OF CLAYPAN SOILS IN KANSAS by MEGHAN ELIZABETH BUCKLEY B.S., Iowa State University, 2002 M.S., Kansas State University, 2004 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Agronomy College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2008 Abstract The Parsons soil has a sharp increase in clay content from the upper teens in the A horizon to the mid fifties in the Bt horizon. The high clay content continues to the parent material resulting in 1.5 m of dense, slowly permeable subsoil over shale residuum. This project was designed to better understand soil-water management needs of this soil. The main objective was to determine a comprehensive hydrologic balance for the claypan soil. Specific objectives were a) to determine effect of tillage management on select water balance components including water storage and evaporation, b) to quantify relationship between soil water status and crop variables such as emergence and yield, and c) to verify balance findings with predictions from a mechanistic model, specifically HYDRUS 1-D. The study utilized three replicates of an ongoing project in Labette County, Kansas in which till and no-till plots had been maintained in a sorghum [ Sorghum bicolor (L.) Moench] – soybean [Glycine max (L.) Merr.] rotation since 1995. Both crops are grown each year in a randomized complete block design. The sorghum plots were equipped with Time Domain Reflectometry (TDR) probes to measure A horizon water content and neutron access tubes for measurement of water throughout the profile.
    [Show full text]
  • Hydraulic Properties in Different Soil Architectures of a Small Agricultural Watershed
    water Article Hydraulic Properties in Different Soil Architectures of a Small Agricultural Watershed: Implications for Runoff Generation Cuiting Dai, Tianwei Wang, Yiwen Zhou, Jun Deng and Zhaoxia Li * College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (C.D.); [email protected] (T.W.); [email protected] (Y.Z.); [email protected] (J.D.) * Correspondence: [email protected] Received: 25 October 2019; Accepted: 26 November 2019; Published: 1 December 2019 Abstract: Soil architecture exerts an important control on soil hydraulic properties and hydrological responses. However, the knowledge of hydraulic properties related to soil architecture is limited. The objective of this study was to investigate the influences of soil architecture on soil physical and hydraulic properties and explore their implications for runoff generation in a small agricultural watershed in the Three Gorges Reservoir Area (TGRA) of southern China. Six types of soil architecture were selected, including shallow loam sandy soil in grassland (SLSG) and shallow loam sandy soil in cropland (SLSC) on the shoulder; shallow sandy loam in grassland (SSLG) and shallow sandy loam in cropland (SSLC) on the backslope; and deep sandy loam in grassland (DSLG) and deep sandy loam in cropland (DSLC) on the footslope. The results showed that saturated hydraulic conductivity 1 (Ksat) was significantly higher in shallow loamy sand soil under grasslands (8.57 cm h− ) than under 1 croplands (7.39 cm h− ) at the topsoil layer. Total porosity was highest for DSLC and lowest for SSLG, averaged across all depths. The proportion of macropores under SLSG was increased by 60% compared with under DSLC, which potentially enhanced water infiltration and decreased surface runoff.
    [Show full text]
  • Earthworms by Clarence Chavez
    Of all the members of the soil food web, earthworms need the least introduction Charles Darwin wrote: “It may be doubted whether there are many other animals which have played so important a part in the history of the world, as have these lowly organized creatures.” Earthworms By Clarence Chavez Where and how many? Count and Sort Dig a hole 1’ X 1’ x 1’ Add Mustard Solution (optional): about 1/2 cup of mustard to 3 or 4 gallons of water. Stir well so that the solution is thoroughly mixed. Pour into the hole. Interpretation of earthworms Earthworm populations may vary with site characteristics (food availability and soil conditions), season, and species. Note: About 10 earthworms per square foot of soil (100 worms/m2) is generally considered a good, higher counts are better. Earthworms - reproduction Earthworms are hermaphrodites, meaning that they exhibit both male and female characteristics. But you still need two to start a colony. Earthworm Cocooning Young worms hatch from their cocoons in three weeks to five months as the gestation period varies for different species of worms. Conditions like temperature and soil moisture factor in here...if conditions are not great then hatching is delayed The ideal temperature is around fifty-five degrees, allowing earthworms to mate in the spring or fall. Earthworms - decomposers Soil and Water Management Research Unit Management Research and Water Soil Earthworms derive their nutrition from dead and decomposing organic matter. Things like decaying roots and leaves, and living organisms such as nematodes, protozoan's, rotifers, bacteria, fungi. They fragment organic matter and make major contributions to recycling the nutrients it contains.
    [Show full text]
  • Greenhouse Gas and Global Warming Potential Excerpt from U.S. National Emissions Inventory
    GREENHOUSE GASES AND GLOBAL WARMING POTENTIAL VALUES EXCERPT FROM THE INVENTORY OF U.S. GREENHOUSE EMISSIONS AND SINKS: 1990-2000 U.S. Greenhouse Gas Inventory Program Office of Atmospheric Programs U.S. Environmental Protection Agency April 2002 Greenhouse Gases and Global Warming Potential Values Original Reference All material taken from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2000, U.S. Environmental Protection Agency, Office of Atmospheric Programs, EPA 430-R-02- 003, April 2002. <www.epa.gov/globalwarming/publications/emissions> How to Obtain Copies You may electronically download this document from the U.S. EPA’s Global Warming web page on at: www.epa.gov/globalwarming/publications/emissions For Further Information Contact Mr. Michael Gillenwater, Office of Air and Radiation, Office of Atmospheric Programs, Tel: (202)564-0492, or e-mail [email protected] Acknowledgments The preparation of this document was directed by Michael Gillenwater. The staff of the Climate and Atmospheric Policy Practice at ICF Consulting, especially Marian Martin Van Pelt and Katrin Peterson deserve recognition for their expertise and efforts in supporting the preparation of this document. Excerpt from Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2000 Page 2 Greenhouse Gases and Global Warming Potential Values Introduction The Inventory of U.S. Greenhouse Gas Emissions elements of the Earth’s climate system. Natural and Sinks presents estimates by the United States processes such as solar-irradiance variations, government of U.S. anthropogenic greenhouse variations in the Earth’s orbital parameters, and gas emissions and removals for the years 1990 volcanic activity can produce variations in through 2000.
    [Show full text]
  • Greenhouse Gas Reduction Strategies in Utah: an Economic and Policy Analysis Executive Summary
    Greenhouse Gas Reduction Strategies in Utah: An Economic and Policy Analysis Prepared for: The U.S. Environmental Protection Agency Prepared by: The Utah Department of Natural Resources Office of Energy and Resource Planning Table of Contents Executive Summary .....................................................ES-1 I. Background ................................................ES-1 Table 1. Fossil Fuel GHG Emissions Baseline in Tons CO2, 1990-2010 ......ES-1 II. Major Findings ................................................ES-1 A. Baseline ................................................ES-1 Figure 1. Fossil Fuel GHG Emissions Baseline 1990-2010 ............. ES-2 B. Mitigation Strategies ............................................ES-2 Table 2. GHG Cost and Reduction - Summary by Sector ..............ES-3 Table 3. Fossil Fuel Mitigation Strategies Ranked By Feasible $/ton .....ES-3 Figure 2. Cost vs. Reduction S Feasible ............................ES-4 Figure 3. Cost vs. Reduction S Potential ...........................ES-5 C. Economic Impact ...............................................ES-6 Table 4. Estimated Average Annual Changes in Earnings and Employment ES-6 Part One: Introduction ..................................................... 1-1 I. Background ................................................. 1-1 II. Scope of Research ................................................. 1-2 III. Methodology 1-2 IV. Report Structure ................................................. 1-4 Part Two: The Greenhouse Effect and Global Initiatives
    [Show full text]