Quantification of Ebola virus replication kinetics in vitro Laura E. Liaoa,1 Jonathan Carruthersb,1 Sophie J. Smitherc CL4 Virology Teamc,2 Simon A. Wellerc Diane Williamsonc Thomas R. Lawsc Isabel Garc´ıa-Dorivald Julian Hiscoxd Benjamin P. Holdere Catherine A. A. Beaucheminf,g Alan S. Perelsona Mart´ın L´opez-Garc´ıab Grant Lytheb John Barrh Carmen Molina-Par´ısb,3 a Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA 87545 b Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK c Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK d Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK e Department of Physics, Grand Valley State University, Allendale, MI, USA 49401 f Department of Physics, Ryerson University, Toronto, ON, Canada M5B 2K3 g Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Research Program at RIKEN, Wako, Saitama, Japan, 351-0198 h School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK 1 These authors contributed equally to this work. 2 Membership list can be found in the Acknowledgments section. 3
[email protected] Abstract Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation.