Ibioic Introduction to Bioinformatics Documentation Release
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Syntax Highlighting for Computational Biology Artem Babaian1†, Anicet Ebou2, Alyssa Fegen3, Ho Yin (Jeffrey) Kam4, German E
bioRxiv preprint doi: https://doi.org/10.1101/235820; this version posted December 20, 2017. The copyright holder has placed this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt this material for any purpose without crediting the original authors. bioSyntax: Syntax Highlighting For Computational Biology Artem Babaian1†, Anicet Ebou2, Alyssa Fegen3, Ho Yin (Jeffrey) Kam4, German E. Novakovsky5, and Jasper Wong6. 5 10 15 Affiliations: 1. Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada. [[email protected]] 2. Departement de Formation et de Recherches Agriculture et Ressources Animales, Institut National Polytechnique Felix Houphouet-Boigny, Yamoussoukro, Côte d’Ivoire. [[email protected]] 20 3. Faculty of Science, University of British Columbia, Vancouver, BC, Canada [[email protected]] 4. Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada. [[email protected]] 5. Department of Medical Genetics, University of British Columbia, Vancouver, BC, 25 Canada. [[email protected]] 6. Genome Science and Technology, University of British Columbia, Vancouver, BC, Canada. [[email protected]] Correspondence†: 30 Artem Babaian Terry Fox Laboratory BC Cancer Research Centre 675 West 10th Avenue Vancouver, BC, Canada. V5Z 1L3. 35 Email: [[email protected]] bioRxiv preprint doi: https://doi.org/10.1101/235820; this version posted December 20, 2017. The copyright holder has placed this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt this material for any purpose without crediting the original authors. -
Aacon Documentation Release 1.1
AACon Documentation Release 1.1 Agnieszka Golicz Peter V. Troshin Fábio Madeira David M. A. Martin James B. Procter Geoffrey J. Barton Jan 22, 2018 The Barton Group Division of Computational Biology School of Life Sciences University of Dundee Dow Street Dundee DD1 5EH Scotland, UK CONTENTS: 1 Getting Started 3 1.1 Benefits..................................................3 1.2 Distributions...............................................3 1.2.1 Jalview and JABAWS......................................4 1.2.2 Standalone Client........................................4 1.2.3 Web service...........................................4 2 Included Methods 7 2.1 Valdar...................................................7 2.2 SMERFS.................................................7 2.3 References................................................8 3 Standalone Client 9 3.1 Executing AACon............................................9 3.2 Input...................................................9 3.3 Output.................................................. 10 3.4 Calculating conservation......................................... 12 3.5 Custom gap character.......................................... 12 3.6 Running SMERFS with custom parameters............................... 12 3.7 Outputing to a file............................................ 13 3.8 Execution details............................................. 13 3.9 Results normalization.......................................... 14 3.10 Conservation for large alignments................................... -
Operating Systems: from Every Palm to the Entire Cosmos in the 21St Century Lifestyle 5
55 pages including cover Knowledge Digest for IT Community Volume No. 40 | Issue No. 11 | February 2017 ` 50/- Operating ISSN 0970-647X ISSN Systems COVER STORY Computer Operating Systems: From every palm to the entire cosmos in the 21st Century Lifestyle 5 TECHNICAL TRENDS SECURITY CORNER Cyber Threat Analysis with Blockchain : A Disruptive Innovation 9 Memory Forensics 17 www.csi-india.org research FRONT ARTICLE Customized Linux Distributions for Top Ten Alternative Operating Bioinformatics Applications 14 Systems You Should Try Out 20 CSI CALENDAR 2016-17 Sanjay Mohapatra, Vice President, CSI & Chairman, Conf. Committee, Email: [email protected] Date Event Details & Contact Information MARCH INDIACOM 2017, Organized by Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New 01-03, 2017 Delhi http://bvicam.ac.in/indiacom/ Contact : Prof. M. N. Hoda, [email protected], [email protected], Tel.: 011-25275055 0 3-04, 2017 I International Conference on Smart Computing and Informatics (SCI -2017), venue : Anil Neerukonda Institute of Technology & Sciences Sangivalasa, Bheemunipatnam (Mandal), Visakhapatnam, Andhra Pradesh, http://anits.edu.in/ sci2017/, Contact: Prof. Suresh Chandra Satapathy. Mob.: 9000249712 04, 2017 Trends & Innovations for Next Generation ICT (TINICT) - International Summit-2017 Website digit organized by Hyderabad Chapter http://csihyderabad.org/Contact 040-24306345, 9490751639 Email id [email protected] ; [email protected] 24-25, 2017 First International Conference on “Computational Intelligence, Communications, and Business Analytics (CICBA - 2017)” at Calcutta Business School, Kolkata, India. Contact: [email protected]; (M) 94754 13463 / (O) 033 24205209 International Conference on Computational Intelligence, Communications, and Business Analytics (CICBA - 2017) at Calcutta Business School, Kolkata, India. -
JABAWS Documentation Release 2.2
JABAWS Documentation Release 2.2 Peter Troshin Alexander Sherstnev Jim Procter Daniel Barton Fábio Madeira Alexey Drozdetskiy Suzanne Duce Geoffrey J. Barton May 26, 2017 The Barton Group Division of Computational Biology School of Life Sciences University of Dundee Dow Street Dundee DD1 5EH Scotland, UK CONTENTS: 1 Getting Started 3 1.1 JABAWS Benefits............................................3 1.2 JABAWS Distributions..........................................3 1.2.1 Jalview and the JABAWS Public Server............................4 1.2.2 Command Line Client (CLI)..................................4 1.2.3 Web Application aRchive (WAR)................................5 1.2.4 Virtual Appliance (VA).....................................6 2 Included Tools 7 2.1 Multiple Sequence Alignment......................................7 2.2 Protein Disorder Prediction.......................................7 2.3 Amino Acid Conservation........................................7 2.4 RNA Secondary Structure........................................7 3 Command Line Client (CLI)9 3.1 Installing.................................................9 3.2 Usage...................................................9 3.3 Example Usage.............................................. 10 4 Web Application Archive (WAR) 13 4.1 Installing................................................. 13 4.2 Usage................................................... 14 4.3 Troubleshooting............................................. 14 5 Virtual Appliance (VA) 15 5.1 Installing................................................ -
Efforts Towards Accessible and Reliable Bioinformatics
Efforts towards accessible and reliable bioinformatics Matúš Kalaš Dissertation for the degree of Philosophiae Doctor (PhD) Department of Informatics University of Bergen 2015 ISBN: 978-82-308-3436-7 This thesis is available under the Creative Commons Attribution-ShareAlike (CC BY-SA) 4.0 license, with exception of the enclosed articles, and Fig. 1, 2, 3, 4. 2 Scientific environment The work presented in this thesis has been carried out at the Computational Biology Unit (CBU) at the Department of Informatics (II), Faculty of Mathematics and Natural Sciences, University of Bergen. Until 2013, CBU was part of the Bergen Center for Computational Science (later renamed to Uni Computing and recently Uni Research Computing), a branch of Unifob (a research company majority-owned by the University of Bergen, later renamed to Uni Research Ltd.). For the whole duration of my PhD, I was affiliated with the Department of Informatics as my home institute. I was affiliated also with the Molecular and Computational Biology research school (MCB) at the University of Bergen. This thesis was supervised by Professor Inge Jonassen at II and CBU, and co-supervised by Dr. Kjell Petersen at CBU and II, and Dr. Pål Puntervoll at CBU (now at Uni Miljø/Uni Research Environment, Uni Research Ltd.). Parts of this work were performed in collaboration with the System administration team led by Kristoffer Rapacki at the Center for Biological Sequence Analysis (CBS), Department of Systems Biology, Technical University of Denmark (DTU); the IT department and now the -
Efforts Towards Accessible and Reliable Bioinformatics
doi: 10.5281/zenodo.33715 Efforts towards accessible and reliable bioinformatics Matúš Kalaš Dissertation for the degree of Philosophiae Doctor (PhD) Department of Informatics University of Bergen 2015 ISBN: 978-82-308-3436-7 This thesis is available under the Creative Commons Attribution-ShareAlike (CC BY-SA) 4.0 license, with exception of the enclosed articles, and Fig. 1, 2, 3, 4. 2 Scientific environment The work presented in this thesis has been carried out at the Computational Biology Unit (CBU) at the Department of Informatics (II), Faculty of Mathematics and Natural Sciences, University of Bergen. Until 2013, CBU was part of the Bergen Center for Computational Science (later renamed to Uni Computing and recently Uni Research Computing), a branch of Unifob (a research company majority-owned by the University of Bergen, later renamed to Uni Research Ltd.). For the whole duration of my PhD, I was affiliated with the Department of Informatics as my home institute. I was affiliated also with the Molecular and Computational Biology research school (MCB) at the University of Bergen. This thesis was supervised by Professor Inge Jonassen at II and CBU, and co-supervised by Dr. Kjell Petersen at CBU and II, and Dr. Pål Puntervoll at CBU (now at Uni Miljø/Uni Research Environment, Uni Research Ltd.). Parts of this work were performed in collaboration with the System administration team led by Kristoffer Rapacki at the Center for Biological Sequence Analysis (CBS), Department of Systems Biology, Technical University of Denmark (DTU); the -
Phylogenetic Inference
Phylogenetic Inference Christian M. Zmasek, PhD [email protected] https://sites.google.com/site/cmzmasek/home GABRIEL Network/J. Craig Venter Institute APPLICATIONS OF GENOMICS & BIOINFORMATICS TO INFECTIOUS DISEASES 2017-12-07 Overview • General concepts, common misconceptions • Tree of Life (Eukaryotic, Bacterial, Viral) • Homologs, gene duplications, orthologs, … • Methods • Unix command line refresher • Multiple Sequence Alignment (MAFFT) • Pairwise distance calculation (Phylip) • Distance based methods (Neighbor Joining, FastME) • Maximum Likelihood methods (RAxML, PhyML) • Bayesian methods (MrBayes, BEAST) • Visualization: Archaeopteryx • Selection Analysis ("dN/dS", Datamonkey ~ HyPhy) • Gene Duplication Inference (GSDI algorithm) • Select papers are available here for download (in zipped archive): https://goo.gl/o2NPDj Why perform phylogenetic inference? • To infer the evolutionary relationships amongst different species/classes/sub-classes/strains/… of organisms • To infer the evolutionary relationships amongst molecular sequences (genes, proteins) • To infer the functions of genes/proteins • Paper: "Eisen_1998_Phylogenomics" • To use resulting tree as basis for additional analyses Theoretical Background • A phylogeny the evolutionary history of a species or a group of species • "Lately", the term is also being applied to the evolutionary history of individual DNA or protein sequences • The evolutionary history of organisms or sequences can be illustrated using a tree-like diagram – a phylogenetic tree A phylogenetic tree proposed