Preliminary Alternatives for 30 Day Comment Period

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Environmental Assessment FOREST HEALTH INITIATIVE PROJECT December, 2017 Project Number: 47969 Mark Twain National Forest Ranger Districts: Willow Springs, Salem, Potosi, Eleven Point, Poplar Bluff Missouri Counties: Douglas, Howell, Dent, Iron, Washington, Reynolds, Shannon, Oregon, Carter, Ripley, Butler, and Wayne Mark Twain National Forest Forest Health Initiative Project Environmental Assessment In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: [email protected] . USDA is an equal opportunity provider, employer and lender. Mark Twain National Forest Forest Health Initiative Project Environmental Assessment Table of Contents CHAPTER 1 – PURPOSE AND NEED FOR ACTION ............................................................................ 1 Introduction .............................................................................................................................................. 1 Forest Health Initiative Project Location ................................................................................................. 1 Background and Project Area Setting ...................................................................................................... 3 Forest-wide Direction and Goals ............................................................................................................. 6 Forest Health Initiative Purpose and Need for the Proposed Action ....................................................... 8 Forest Health Initiative Proposed Action .............................................................................................. 10 Decision Framework .............................................................................................................................. 15 Public Involvement ................................................................................................................................ 16 Issues ...................................................................................................................................................... 17 Relationship of the Forest Health Initiative project to other documents ............................................... 18 CHAPTER 2 – ALTERNATIVES CONSIDERED .................................................................................. 21 Introduction ............................................................................................................................................ 21 Formulation of Alternatives ................................................................................................................... 21 Alternatives to be Evaluated in Detail ................................................................................................... 21 Alternatives Considered but Eliminated from Detailed Study .............................................................. 24 Comparison of Key Issues and Treatments by Alternative ................................................................... 24 Mitigation Measures Common to All Action Alternatives.................................................................... 25 CHAPTER 3 – AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES .......... 28 Background ............................................................................................................................................ 29 Physical Environment ............................................................................................................................ 33 Soils ................................................................................................................................................... 33 Hydrology Resource .......................................................................................................................... 45 Transportation .................................................................................................................................... 61 Biological Environment ......................................................................................................................... 69 Vegetation and Forest Health ............................................................................................................ 69 Wildlife Resources ............................................................................................................................. 82 Social and Economic Environments .................................................................................................... 114 Recreation ........................................................................................................................................ 114 Historic Properties ........................................................................................................................... 121 Economics ........................................................................................................................................ 127 Visuals ............................................................................................................................................. 132 Environmental Justice ...................................................................................................................... 145 CHAPTER 4 – PROJECT COORDINATION.................................................................................... 151 APPENDICES ..................................................................................................................................... 153 Appendix A: References ................................................................................................................ A-1 Appendix B: Glossary and Acronyms ............................................................................................ B-1 Appendix C: Compartment/Stand Treatment Activity Table ......................................................... C-1 Appendix D: Standards and Guidelines, Mitigation Measures and Best Management Practices . D-1 Appendix E: Oak Decline Phones .................................................................................................. E-1 Appendix F: Forest Health Initiative Project Maps ........................................................................ F-1 Mark Twain National Forest Forest Health Initiative Project Environmental Assessment (Page intentionally left blank) Mark Twain National Forest Forest Health Initiative Project Environmental Assessment CHAPTER 1 – PURPOSE AND NEED FOR ACTION Introduction The Forest Service prepared this Environmental Assessment (EA) in compliance with the National Environmental Policy Act (NEPA) and other relevant federal and state laws and regulations. This Environmental Assessment will disclose the direct, indirect, and cumulative environmental impacts that would result from the proposed action and alternatives. It also provides the supporting information for a determination to prepare either an Environmental Impact Statement or a Finding of No Significant Impact. Preliminary investigation via aerial detection flights and analysis of recent weather patterns indicate that areas of the Mark Twain National Forest (MTNF) subjected to drought events are experiencing various stages of oak decline and mortality. This proposal is based on the need to harvest the declining red oak group (red oak, black oak, scarlet oak) and white oak in specific areas before they die. Some oak sprouting occurs by cutting trees before they die, which will help retain oak in those stands. Since dead oak stumps do not stump sprout, in areas with mortality, the dead oaks may be replaced by brushy fields consisting of mixed species (including suppressed trees from the understory). The composition of the remaining species would depend on numerous variables. However, this could result
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida

    Comparative Functional Morphology of Attachment Devices in Arachnida

    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
  • Arachnid Types in the Zoological Museum, Moscow State University. I

    Arachnid Types in the Zoological Museum, Moscow State University. I

    Arthropoda Selecta 25(3): 327–334 © ARTHROPODA SELECTA, 2016 Arachnid types in the Zoological Museum, Moscow State University. I. Opiliones (Arachnida) Òèïû ïàóêîîáðàçíûõ â Çîîëîãè÷åñêîì ìóçåå ÌÃÓ. I. Opiliones (Arachnida) Kirill G. Mikhailov Ê.Ã. Ìèõàéëîâ Zoological Museum MGU, Bolshaya Nikitskaya Str. 2, Moscow 125009 Russia. E-mail: [email protected] Зоологический музей МГУ, ул. Большая Никитская, 2, Москва 125009 Россия. KEY WORDS: arachnids, harvestmen, museum collections, types, holotypes, paratypes. КЛЮЧЕВЫЕ СЛОВА: паукообразные, сенокосцы, музейные коллекции, типы, голотипы, паратипы. ABSTRACT: A list is provided of 19 holotypes pod types, as well as most of the crustacean types have and 92 paratypes belonging to 25 species of Opiliones. never enjoyed published catalogues. They represent 14 genera and 5 families (Ischyropsali- Traditionally, the following handwritten informa- dae, Nemastomatidae, Phalangiidae, Sabaconidae, tion sources are accepted in the Museum, at least so Trogulidae) and are kept in the Zoological Museum of since the 1930’s: (1) department acquisition book (Fig. the Moscow State University. Other repositories hous- 1), (2) numerous inventory books on diverse inverte- ing the remaining types of the respective species are brate groups (see Fig. 2 for Opiliones), and (3) type listed as well. cards (Fig. 3). Regrettably, only a small part of this information has been digitalized. РЕЗЮМЕ: Представлен список 19 голотипов и This paper starts a series of lists/catalogues of arach- 92 паратипов, относящихся к 25 видам сенокосцев nid types kept at the Museum. The arachnid collection (Opiliones). Они принадлежат к 14 родам и 5 семей- considered was founded in the 1860’s and presently ствам (Ischyropsalidae, Nemastomatidae, Phalangiidae, contains more than 200,000 specimens of arachnids Sabaconidae, Trogulidae) и хранятся в Зоологичес- alone, Acari excluded [Mikhailov, 2016].
  • A Stable Phylogenomic Classification of Travunioidea (Arachnida, Opiliones, Laniatores) Based on Sequence Capture of Ultraconserved Elements

    A Stable Phylogenomic Classification of Travunioidea (Arachnida, Opiliones, Laniatores) Based on Sequence Capture of Ultraconserved Elements

    A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Derkarabetian, Shahan, James Starrett, Nobuo Tsurusaki, Darrell Ubick, Stephanie Castillo, and Marshal Hedin. 2018. “A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.” ZooKeys (760): 1-36. doi:10.3897/zookeys.760.24937. http://dx.doi.org/10.3897/zookeys.760.24937. Published Version doi:10.3897/zookeys.760.24937 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298544 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A peer-reviewed open-access journal ZooKeys 760: 1–36 (2018) A stable phylogenomic classification of Travunioidea... 1 doi: 10.3897/zookeys.760.24937 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements Shahan Derkarabetian1,2,7 , James Starrett3, Nobuo Tsurusaki4, Darrell Ubick5, Stephanie Castillo6, Marshal Hedin1 1 Department of Biology, San Diego State University, San
  • American Arachnological Society

    American Arachnological Society

    American Arachnological Society The Opilionid Genera Sabacon and Tomicomerus in America (Opiliones, Troguloidea, Ischyropsalidae) Author(s): William A. Shear Source: Journal of Arachnology, Vol. 3, No. 1 (Jan., 1975), pp. 5-29 Published by: American Arachnological Society Stable URL: http://www.jstor.org/stable/3705252 Accessed: 14/10/2008 18:44 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=aas. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. American Arachnological Society is collaborating with JSTOR to digitize, preserve and extend access to Journal of Arachnology. http://www.jstor.org Shear, W.A.
  • Anatomically Modern Carboniferous Harvestmen Demonstrate Early Cladogenesis and Stasis in Opiliones

    Anatomically Modern Carboniferous Harvestmen Demonstrate Early Cladogenesis and Stasis in Opiliones

    ARTICLE Received 14 Feb 2011 | Accepted 27 Jul 2011 | Published 23 Aug 2011 DOI: 10.1038/ncomms1458 Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones Russell J. Garwood1, Jason A. Dunlop2, Gonzalo Giribet3 & Mark D. Sutton1 Harvestmen, the third most-diverse arachnid order, are an ancient group found on all continental landmasses, except Antarctica. However, a terrestrial mode of life and leathery, poorly mineralized exoskeleton makes preservation unlikely, and their fossil record is limited. The few Palaeozoic species discovered to date appear surprisingly modern, but are too poorly preserved to allow unequivocal taxonomic placement. Here, we use high-resolution X-ray micro-tomography to describe two new harvestmen from the Carboniferous (~305 Myr) of France. The resulting computer models allow the first phylogenetic analysis of any Palaeozoic Opiliones, explicitly resolving both specimens as members of different extant lineages, and providing corroboration for molecular estimates of an early Palaeozoic radiation within the order. Furthermore, remarkable similarities between these fossils and extant harvestmen implies extensive morphological stasis in the order. Compared with other arachnids—and terrestrial arthropods generally—harvestmen are amongst the first groups to evolve fully modern body plans. 1 Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK. 2 Museum für Naturkunde at the Humboldt University Berlin, D-10115 Berlin, Germany. 3 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. Correspondence and requests for materials should be addressed to R.J.G. (email: [email protected]) and for phylogenetic analysis, G.G. (email: [email protected]).
  • Hesperonemastoma Smilax, N. Sp., a Remarkable New

    Hesperonemastoma Smilax, N. Sp., a Remarkable New

    W.A. Shear – Hesperonemastoma smilax, n. sp., a remarkable new harvestman from a cave in West Virginia, with comments on other reported cave-dwelling and Hesperonemastoma species (Opiliones, Ischyropsalidoidea, Sabaconidae). Journal of Cave and Karst Studies, v. 72, no. 2, p. 105–110. DOI: 10.4311/jcks2009lsc0103 HESPERONEMASTOMA SMILAX, N. SP., A REMARKABLE NEW HARVESTMAN FROM A CAVE IN WEST VIRGINIA, WITH COMMENTS ON OTHER REPORTED CAVE-DWELLING HESPERONEMASTOMA SPECIES (OPILIONES, ISCHYROPSALIDOIDEA, SABACONIDAE) WILLIAM A. SHEAR Biology Department, Hampden-Sydney College, Hampden-Sydney, VA 23943, [email protected] Abstract: Hesperonemastoma smilax, n. sp., is a minute, highly troglomorphic harvestman described herein from a single male specimen collected in McClung’s Cave, Greenbrier County, West Virginia. Hesperonemastoma species described previously from caves are briefly discussed. H. packardi (Roewer), first collected in a shallow cave in Utah, is a widely distributed surface-dwelling species found mostly in riparian canyon habitats in northern Utah; it shows no troglomorphic adaptations. Hesperonemastoma inops (Packard), described from a cave in Kentucky, is not a species of Hesperonemastoma, but most likely a juvenile of Sabacon cavicolens (Packard), which was described from the same small cave. Hesperonemastoma pallidimaculosum (Goodnight and Goodnight) is a moderately adapted troglobiont known from two caves in Alabama. INTRODUCTION Goodnight and Goodnight (1945) described Nemastoma pallidimaculosum from Rock House Cave, Marshall Coun- Species of the harvestman (Opiliones) genus Hesper- ty, Alabama; below I report a new record from a cave in an onemastoma are distributed in three discrete regions: the adjacent Alabama county. The description of H. smilax,n. southern Appalachians of eastern North America, the sp., in this article is the first description of a new Rocky Mountains in Utah and Idaho, and the Pacific Hesperonemastoma species in 64 years.
  • Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA

    Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA

    Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state.
  • Subterranean Biodiversity of Arkansas, Part 1: Bioinventory and Bioassessment of Caves in the Sylamore Ranger District, Ozark National Forest, Arkansas G

    Subterranean Biodiversity of Arkansas, Part 1: Bioinventory and Bioassessment of Caves in the Sylamore Ranger District, Ozark National Forest, Arkansas G

    Journal of the Arkansas Academy of Science Volume 57 Article 8 2003 Subterranean Biodiversity of Arkansas, Part 1: Bioinventory and Bioassessment of Caves in the Sylamore Ranger District, Ozark National Forest, Arkansas G. O. Graening Nature Conservancy Michael E. Slay University of Arkansas, Fayetteville Karen K. Tinkle U.S. Forest Service Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Graening, G. O.; Slay, Michael E.; and Tinkle, Karen K. (2003) "Subterranean Biodiversity of Arkansas, Part 1: Bioinventory and Bioassessment of Caves in the Sylamore Ranger District, Ozark National Forest, Arkansas," Journal of the Arkansas Academy of Science: Vol. 57 , Article 8. Available at: http://scholarworks.uark.edu/jaas/vol57/iss1/8 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 57 [2003], Art. 8 Subterranean Biodiversity of Arkansas, Part 1: Bioinventory and Bioassessment of Caves in the Sylamore Ranger District, Ozark National Forest, Arkansas G.
  • Fossils – Adriano Kury’S Harvestman Overviews and the Third Edition of the Manual of Acarology for Mites

    Fossils – Adriano Kury’S Harvestman Overviews and the Third Edition of the Manual of Acarology for Mites

    A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie 1 A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Christian Bartel, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2019. A summary list of fossil spiders and their relatives. In World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch, version 19.5, accessed on {date of access}. Last updated: 02.01.2019 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current World Spider Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the fossil record of spiders – and other arachnids – and numerous new taxa have been described. For an overview see Dunlop & Penney (2012). Spiders remain the single largest fossil group, but our aim here is to offer a summary list of all fossil Chelicerata in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list for Araneae follows the names and sequence of families adopted in the previous Platnick Catalog.
  • Chapter 1: Ecoregional Planning in the Interior Low Plateau

    Chapter 1: Ecoregional Planning in the Interior Low Plateau

    1 CHAPTER 1: ECOREGIONAL PLANNING IN THE INTERIOR LOW PLATEAU 1.1. INTRODUCTION 1.2. OVERVIEW OF PLANNING 1.2.1. Developing a Plan to Plan 1.2.2. Budget and Workplan 1.3. DESCRIPTION OF THE INTERIOR LOW PLATEAU 1.3.1. Ecological Overview 1.3.2. Ecological Systems 1.3.3. Present Land Use CHAPTER 2: PLANNING TEAMS 2.1. INTRODUCTION 2.2. THE STEERING COMMITTEE 2.3. THE CORE TEAM 2.4. TECHNICAL TEAMS 2.5. DESIGN TEAM CHAPTER 3: GATHERING THE PIECES 3.1. INTRODUCTION 3.2. DATA SOURCES AND DATA MANAGEMENT 3.2.1. Conservation Target Data 3.2.2. Geographic Information Systems 3.3. IDENTIFICATION OF CONSERVATION TARGETS, SETTING CONSERVATION GOALS, AND SELECTING TARGET ELEMENT OCCURRENCES 3.3.1. General Guidelines 3.3.2. Terrestrial Natural Communities 3.3.3. Plant Species 3.3.4. Terrestrial Invertebrates 3.3.5. Terrestrial Vertebrates (other than birds) Birds 3.3.6. Aquatic Species 3.3.7. Aquatic Communities 3.3.8. The Conservation Targets CHAPTER 4: ASSEMBLING THE PORTFOLIO 4.1. INTRODUCTION 4.2. DEVELOPING A PRELIMINARY PORTFOLIO 4.3. DESIGNING AND REFINING THE PORTFOLIO 4.3.1. Assessing Preliminary Sites 4.3.2. Representing Matrix Communities CHAPTER 5: ASSESSING THE PORTFOLIO AND SETTING PRIORITES 5.1. DESCRIPTION OF THE PORTFOLIO 5.2. IDENTIFYING ACTION SITES 5.2.1. Action Sites 5.2.2. Landscape-Scale Action Sites 5.3. MEETING CONSERVATION GOALS 5.4. PATTERNS OF THREATS AND STRATEGIES IN THE PORTFOLIO 5.4.1. Stresses and Sources of Stress 5.4.2. Strategies CHAPTER 6: IMPLEMENTING THE CONSERVATION PLAN 6.1.
  • Journal of Cave and Karst Studies

    Journal of Cave and Karst Studies

    June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
  • Journal of Biogeography 44, 1665–1678 ª 2017 John Wiley & Sons Ltd Biogeographical History of Appalachian Sabacon

    Journal of Biogeography 44, 1665–1678 ª 2017 John Wiley & Sons Ltd Biogeographical History of Appalachian Sabacon

    Journal of Biogeography (J. Biogeogr.) (2017) 44, 1665–1678 ORIGINAL Biogeographical evidence for common ARTICLE vicariance and rare dispersal in a southern Appalachian harvestman (Sabaconidae, Sabacon cavicolens) Marshal Hedin1,* and Maureen McCormack1,2 1Department of Biology, San Diego State ABSTRACT University, San Diego, CA 92182-4614, USA, Aim Species or higher taxa that are obviously dispersal-limited, but which 2Wisconsin State Lab of Hygiene, University occupy large geographical distributions, represent a biogeographical paradox. of Wisconsin-Madison, Madison, WI 53706, USA Dispersal must have happened, likely under special and infrequent environ- mental conditions, but details have been lost to history. The overarching goal of our research is to understand the details of a ‘common vicariance, rare dis- persal’ biogeographical history in a widespread but habitat-specialized harvest- man species (Sabacon cavicolens) with a southern Appalachian centre of distribution. Location Eastern North America, southern Appalachians. Methods We assessed cryptic speciation using mitochondrial and nuclear gene DNA sequence data, testing alternative delimitation hypotheses using multi- species coalescent analyses. We also tested whether riverine barriers are associ- ated with mitochondrial genealogical structuring, focusing on multiple rivers in the southern Blue Ridge physiographical province. Finally, we conducted popu- lation genetic analyses to assess female-based range expansion out of the south- ern Blue Ridge. Results Genetic analyses suggest a large number of species-level lineages within S. cavicolens, although we prefer a more conservative three-species hypothesis. These putative species are geographically cohesive and allopatric (Ozarks, Cumberland Plateau, southern Blue Ridge), with the Blue Ridge spe- cies including multiple divergent mitochondrial haplogroups. Several genealogi- cal breaks in the Blue Ridge species coincide with riverine barriers, separating mostly allopatric mitochondrial lineages.