Patient Drug Locker Procedures

Total Page:16

File Type:pdf, Size:1020Kb

Patient Drug Locker Procedures STANDARD OPERATING PROCEDURE Title: Procedure Document Version RECYCLING AND DISPOSAL OF MEDICATION ON No: Replaced: WARDS/DEPARTMENTS 20 N/A 2 Procedure Written By: Procedure Approved By: Approved Review Page: Sarah-Louise Walton Gurj Bhella, Date: Date: 1 of 3 01/09/2017 01/09/2019 Pharmacy Technician Chief Pharmacist Objective: To provide a standard procedure for the recycling of unused medication and the disposal of medicines across all BCPFT Hospital sites. Scope: All Black Country Partnership Foundation Trust (BCPFT) Pharmacy staff Medicines no longer required which have been dispensed by the SLA Pharmacy provider and transferred with the patient, not leaving hospital premises, and still in date, may be recycled. Any medicines that are no longer required and cannot be recycled MUST be disposed of in the appropriate pharmacy waste bin – (Please see the Trust’s up to date waste policy for the appropriate coloured lidded bin. Appendix A is a list of Hazardous medicines that extra care is needed with). This includes Patient’s Own Drugs (PODs) only after completion of Patients Own Medicines Destruction Consent Form. See Standard Operating Procedure No.2 – Procedure using Patients own Drugs. Procedure: 1. At each trolley/caddy check, medicines no longer required which have been supplied by BCPFT, must be removed from either the patient caddy or the medicines trolley. If this medication has not left the hospital premises and been supplied by the SLA Pharmacy Provider, it may be recycled for use by another patient, if found in suitable condition. Check that the medication is in date and suitable for use. Put into pharmacy pre-integrity checking box/drawer in pharmacy for later use and do not remove the dispensed label. The box/drawer containing the drugs for recycling in pharmacy needs to be emptied on a regular basis. Each medicine needs to be integrity checked by a band 5 technician or above (checking the medicine is in date and establishing its safety and suitability for re-use). Once the integrity check has been completed the medicine can then be placed into the post integrity checked receptacle/drawer and the medicines can then be accessed by the band 3 pharmacy assistant and booked into the folder and secured in the medicine cupboards for future use. STANDARD OPERATING PROCEDURE Title: Procedure Document Version RECYCLING AND DISPOSAL OF MEDICATION ON No: Replaced: WARDS/DEPARTMENT 20 N/A 2 Procedure Written By: Procedure Approved By: Approved Review Page: Sarah-Louise Walton Gurj Bhella, Date: Date: 2 of 3 01/09/2017 01/09/2019 Pharmacy Technician Chief Pharmacist 2. Enter the following details in the Stock Control folder on the appropriate alphabetised sheet:- Date The ward the medicine has been returned from (if available) Drug name (including strength and form) Quantity Batch number and expiry date 3. After booking in, store the medication in alphabetical order in the cupboard (all medication must be stored in the lockable medicine cupboard and not left in the office). Medicines must be used in date order. 4. When re-issuing medication, find the correct entry in the Stock Control folder and book out the item by completing the ‘Date and issued to’ box on the log sheet. 5. If and when this item of medication is required for use for another patient or for ward use then apply a new label over the old label before issuing to the ward (apply new label without covering the name and address of original provider) 6. Any out of date medicines, medicines not suitable for use and PODs no longer required by the patient should be disposed of on the wards/department by placing in their original packaging into the appropriate pharmacy waste bin. 7. Make sure hazardous medicines go into the appropriate waste bin. 8. Patient’s own medication no longer required may be disposed of after completion of Disposal of Patient’s own Medicines Form (Refer to Sop No 2 Procedure using Patients Own Drugs). The completed form must then be filed in the patient’s notes, or in the pharmacy if notes have been filed. 9. At the end of each month the costing for all medicines recycled needs to be totalled. This establishes the savings the pharmacy department have made. Working through the recycling folder a list can be made of each medication recycled and the quantity recycled. 10. Once the list of names of medication and quantities have been logged down on a piece of paper somewhere then you need to access the Drug Tariff on line. STANDARD OPERATING PROCEDURE Title: Procedure Document Version RECYCLING AND DISPOSAL OF MEDICATION ON No: Replaced: WARDS/DEPARTMENT 20 N/A 2 Procedure Written By: Procedure Approved By: Approved Review Page: Sarah-Louise Walton Gurj Bhella, Date: Date: 3 of 3 01/09/2017 01/09/2019 Pharmacy Technician Chief Pharmacist To access the Drug Tariff online you need to open the following link http://www.nhsbsa.nhs.uk/PrescriptionServices/4940.aspx and scroll down to the appropriate month. Open up the Adobe PDF file and on the left hand side of page and scroll down to the link Part VIIIA Basic Prices of Drugs. Expand the link. Once the page has opened scroll down to your required medication – the price quoted will be for an original pack size – so take precaution to work out the sum if a part pack was recycled. For example – Lansoprazole 30mg for a pack of 28 is £3.48 so if 21 was recycled you would use the sum 3.48 ÷ 28 = 0.124 x 21 = £2.60 Appendix A. Taken from the Safe Management of Healthcare Waste Version 1 www.dh.gov.uk This list is not exhaustive and may not include all very new, unlicensed or trial medicines List of Hazardous medicines. Aldesleukin Dactinomycin Alemtuzumab Danazol Alitretinoin Daunorubicin Hcl Altretamine Dasatinib Amsacrine Denileukin Anastrazole Dienestrol Arsenic trioxide Diethylstilbestrol Asparaginase Dinoprostone Azacitidine Dithranol Azathioprine Docetaxel Bacillus Calmette-Guerin Vaccine Doxorubicin Bexarotene Dutasteride Bicalutamide Epirubicin Bleomycin Ergometrine/methylergometrine Bortezomib Estradiol Busulfan Estramustine phosphate sodium Capecitabine Estrogen-progestin combinations Carboplatin Estrogens, conjugated Carmustine Estrogens, esterified Cetuximab Estrone Cetrorelix Acetate Estropipate Chlorambucil Etoposide Chloramphenicol Exemestane Chlormethine hydrochloride Finasteride Choriogonadotropin alfa Floxuridine Cidofovir Fludarabine Coal tar containing preps Fluorouracil Cisplatin Fluoxymesterone Cladribine Flutamide Colchicine Fulvestrant Ciclosporin Ganciclovir Cyclophosphamide Ganirelix acetate Cytarabine Gemcitabine Dacarbazine Gemtuzumab ozogamicin Goserelin Hydroxcarbamide Cont……. Ibritumomab tiuxetan Raloxifene Idarubicin Raltitrexed Ifosfamide Ribavirin Imatinib mesilate Rituximab Interferon containing products (including peginterferon) Sirolimus Irinotecan HCL Streptozocin Leflunomide Tacrolimus Letrozole Tamoxifen Leuprorelin acetate Temozolomide Lomustine Teniposide Megestrol Testolacton Menotropins Testosterone Mercaptopurine Thalidomide Melphalan Tioguanine Methotrexate Thiotepa Methyltestosterone Toremifene citrate Mifepristone Topotecan Mitomycin Tositumomab Mitotane Tretinoin Mitoxantrone HCL Trifluridine Mycophenolate mofetil Trimetrexate glucuronate Nafarelin Triptorelin Nilutamide Uramustine Oestrogen containing products Valganciclovir Oxaliplatin Valrubicin Oxytocin Vidarabine Paclitaxel Vinblastine sulphate Pegaspargase Vincristine sulphate Pentamidine isethionate Vindesine Pentostatin Vinorelbine tartrate Perphosphamide Zidovudine Pipobroman Piritrexim isethionate Plicamycin Podoflilox Podophyllum resin Prednimustine Procarbazine Progesterone Progestins .
Recommended publications
  • Combination of Cabazitaxel and Plicamycin Induces Cell Death in Drug Resistant B-Cell Acute Lymphoblastic Leukemia
    Clinical and Translational Science Institute Centers 9-1-2018 Combination of cabazitaxel and plicamycin induces cell death in drug resistant B-cell acute lymphoblastic leukemia Rajesh R. Nair West Virginia University Debbie Piktel West Virginia University Werner J. Geldenhuys West Virginia University Laura F. Gibson West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/ctsi Part of the Medicine and Health Sciences Commons Digital Commons Citation Nair, Rajesh R.; Piktel, Debbie; Geldenhuys, Werner J.; and Gibson, Laura F., "Combination of cabazitaxel and plicamycin induces cell death in drug resistant B-cell acute lymphoblastic leukemia" (2018). Clinical and Translational Science Institute. 34. https://researchrepository.wvu.edu/ctsi/34 This Article is brought to you for free and open access by the Centers at The Research Repository @ WVU. It has been accepted for inclusion in Clinical and Translational Science Institute by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Leuk Res Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 September 01. Published in final edited form as: Leuk Res. 2018 September ; 72: 59–66. doi:10.1016/j.leukres.2018.08.002. Combination of cabazitaxel and plicamycin induces cell death in drug resistant B-cell acute lymphoblastic leukemia Rajesh R. Naira, Debbie Piktelb, Werner J. Geldenhuysc,
    [Show full text]
  • PEMD-91-12BR Off-Label Drugs: Initial Results of a National Survey
    11 1; -- __...._-----. ^.-- ______ -..._._ _.__ - _........ - t Ji Jo United States General Accounting Office Washington, D.C. 20648 Program Evaluation and Methodology Division B-242851 February 25,199l The Honorable Edward M. Kennedy Chairman, Committee on Labor and Human Resources United States Senate Dear Mr. Chairman: In September 1989, you asked us to conduct a study on reimbursement denials by health insurers for off-label drug use. As you know, the Food and Drug Administration designates the specific clinical indications for which a drug has been proven effective on a label insert for each approved drug, “Off-label” drug use occurs when physicians prescribe a drug for clinical indications other than those listed on the label. In response to your request, we surveyed a nationally representative sample of oncologists to determine: . the prevalence of off-label use of anticancer drugs by oncologists and how use varies by clinical, demographic, and geographic factors; l the extent to which third-party payers (for example, Medicare intermediaries, private health insurers) are denying payment for such use; and l whether the policies of third-party payers are influencing the treatment of cancer patients. We randomly selected 1,470 members of the American Society of Clinical Oncologists and sent them our survey in March 1990. The sam- pling was structured to ensure that our results would be generalizable both to the nation and to the 11 states with the largest number of oncologists. Our response rate was 56 percent, and a comparison of respondents to nonrespondents shows no noteworthy differences between the two groups.
    [Show full text]
  • Drug Code List Version 11.4 Revised 5/18/18 List Will Be Updated Routinely
    Drug Code List Version 11.4 Revised 5/18/18 List will be updated routinely Disclaimer: For drug codes that require an NDC, coverage depends on the drug NDC status (rebate eligible, Non-DESI, non-termed, etc) on the date of service. Note: Physician/Facility-administered medications are reimbursed using the Centers for Medicare and Medicaid Services (CMS) Part B Drug pricing file found on the CMS website--www.cms.hhs.gov. In the absence of a fee, pricing may reflect the methodolgy used for retail pharmacies. Highlights represent updated material for each specific revision of the Drug Code List. Code Description Brand Name NDC NDC unit Category Service AC CAH P NP MW MH HS PO OPH HI IDT DC Special Instructions Requir of Limits OP OP F ed measure 90281 human ig, im Gamastan Yes ML Antisera NONE X X X X Closed 3/31/13. 90283 human ig, iv Gamimune, Yes ML Antisera NONE X X X X Closed 3/31/13. Cost invoice required with claim. Restricted to ICD-9 diagnoses codes 204.10 - 204.12, Flebogamma, 279.02, 279.04, 279.06, 279.12, 287.31, and 446.1, and must be included on claim form, effective 10/1/09. Gammagard 90287 botulinum antitoxin N/A Antisera Not Covered 90288 botulism ig, iv No ML NONE X X X X Requires documentation and medical review 90291 cmv ig, iv Cytogam Yes ML Antisera NONE X X X X Closed 3/31/13. 90296 diphtheria antitoxin No ML NONE X X X X 90371 hep b ig, im Bayhep B, Yes ML Antisera NONE X X X X Closed 3/31/13.
    [Show full text]
  • Isolation and Characterization of a Chinese Hamster Ovary Cell Line Resistant to Bifunctional Nitrogen Mustards1
    [CANCER RESEARCH 46, 6290-6294, December 1986] Isolation and Characterization of a Chinese Hamster Ovary Cell Line Resistant to Bifunctional Nitrogen Mustards1 Craig N. Robson, Janice Alexander, Adrian L. Harris, and Ian D. Hickson2 Departmem of Clinical Oncology, University of Newcastle upon Tyne, The Royal Victoria Infirmary, Newcastle upon Tyne, NEI 4LP, United Kingdom ABSTRACT mustards, is collaterally sensitive to nitrosoureas (10), despite the fact that both these classes of agent generate DNA inter- A drug-resistant derivative of a Chinese hamster ovary cell line has strand cross-links. been generated by chronic exposure to progressively higher concentra Although chlorambucil is widely used in the curative therapy tions of chlorambucil. The cells exhibit greater than 20-fold resistance of Hodgkin's disease (11), in modified cyclophosphamide-meth- to the cytotoxic effects of chlorambucil and comparable levels of cross- resistance to mechlorethamine and melphalan. These drugs all belong to otrexate-5-fluorouracil protocols for breast cancer (12), in ovar a class of bifunctional alkylating agents which generate DNA cross-links ian cancer (13), and in small cell lung cancer (14), cell lines by reaction at the N-7 position of guanine. However, no resistance is isolated on the basis of chlorambucil resistance have rarely been observed to several other drugs which possess a similar mechanism of reported (15). action, to en-platinum (Mamminedichloride or to bischloroethylnitrosou- Here, we describe the isolation of a CHO3 cell line which rea and mitomycin C, which cross-link DNA via the O6 position of exhibits elevated levels of resistance to the cytotoxic effects of guaninc.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Section B Changed Classes/Guidelines Final
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2019 Section B Changed Classes/Guidelines Final Version Date of issue: 24th December 2018 1 A3 FUNCTIONAL GASTRO-INTESTINAL DISORDER DRUGS R2003 A3A PLAIN ANTISPASMODICS AND ANTICHOLINERGICS R1993 Includes all plain synthetic and natural antispasmodics and anticholinergics. A3B Out of use; can be reused. A3C ANTISPASMODIC/ATARACTIC COMBINATIONS This group includes combinations with tranquillisers, meprobamate and/or barbiturates except when they are indicated for disorders of the autonomic nervous system and neurasthenia, in which case they are classified in N5B4. A3D ANTISPASMODIC/ANALGESIC COMBINATIONS R1997 This group includes combinations with analgesics. Products also containing either tranquillisers or barbiturates and analgesics to be also classified in this group. Antispasmodics indicated exclusively for dysmenorrhoea are classified in G2X1. A3E ANTISPASMODICS COMBINED WITH OTHER PRODUCTS r2011 Includes all other combinations not specified in A3C, A3D and A3F. Combinations of antispasmodics and antacids are classified in A2A3; antispasmodics with antiulcerants are classified in A2B9. Combinations of antispasmodics with antiflatulents are classified here. A3F GASTROPROKINETICS r2013 This group includes products used for dyspepsia and gastro-oesophageal reflux. Compounds included are: alizapride, bromopride, cisapride, clebopride, cinitapride, domperidone, levosulpiride, metoclopramide, trimebutine. Prucalopride is classified in A6A9. Combinations of gastroprokinetics with other substances
    [Show full text]
  • Identification of Inhibitors of Ovarian Cancer Stem-Like Cells by High-Throughput Screening Roman Mezencev, Lijuan Wang and John F Mcdonald*
    Mezencev et al. Journal of Ovarian Research 2012, 5:30 http://www.ovarianresearch.com/content/5/1/30 RESEARCH Open Access Identification of inhibitors of ovarian cancer stem-like cells by high-throughput screening Roman Mezencev, Lijuan Wang and John F McDonald* Abstract Background: Ovarian cancer stem cells are characterized by self-renewal capacity, ability to differentiate into distinct lineages, as well as higher invasiveness and resistance to many anticancer agents. Since they may be responsible for the recurrence of ovarian cancer after initial response to chemotherapy, development of new therapies targeting this special cellular subpopulation embedded within bulk ovarian cancers is warranted. Methods: A high-throughput screening (HTS) campaign was performed with 825 compounds from the Mechanistic Set chemical library [Developmental Therapeutics Program (DTP)/National Cancer Institute (NCI)] against ovarian cancer stem-like cells (CSC) using a resazurin-based cell cytotoxicity assay. Identified sets of active compounds were projected onto self-organizing maps to identify their putative cellular response groups. Results: From 793 screening compounds with evaluable data, 158 were found to have significant inhibitory effects on ovarian CSC. Computational analysis indicates that the majority of these compounds are associated with mitotic cellular responses. Conclusions: Our HTS has uncovered a number of candidate compounds that may, after further testing, prove effective in targeting both ovarian CSC and their more differentiated progeny. Keywords: High-throughput screening, Ovarian cancer, Cancer stem cells Background alternative strategies. One approach has been to evaluate Ovarian cancer is the most lethal of gynecological can- molecules known to be inhibitory against pathways cers [1] despite its typically high initial response rate to believed to be deregulated in CSC (e.g., the Hedgehog, chemotherapy [2].
    [Show full text]
  • Prevalence and Safety of Off-Label Use of Chemotherapeutic Agents in Older Patients with Breast Cancer: Estimates from SEER-Medicare Data
    Supplemental online content for: Prevalence and Safety of Off-Label Use of Chemotherapeutic Agents in Older Patients With Breast Cancer: Estimates From SEER-Medicare Data Anne A. Eaton, MS; Camelia S. Sima, MD, MS; and Katherine S. Panageas, DrPH J Natl Compr Canc Netw 2016;14(1):57–65 • eAppendix 1: J-Codes Representing Intravenous Chemotherapy • eAppendix 2: Established Sequential Adjuvant Chemotherapy Regimens for Breast Cancer • eTable 1: Patient Characteristics © JNCCN—Journal of the National Comprehensive Cancer Network | Volume 14 Number 1 | January 2016 Eaton et al - 1 eAppendix 1: J-Codes Representing Intravenous Chemotherapy J-Code Agent J-Code Agent J9000 Injection, doxorubicin HCl, 10 mg J9165 Injection, diethylstilbestrol diphosphate, 250 J9001 Injection, doxorubicin HCl, all lipid mg formulations, 10 mg J9170 Injection, docetaxel, 20 mg J9010 Injection, alemtuzumab, 10 mg J9171 Injection, docetaxel, 1 mg J9015 Injection, aldesleukin, per single use vial J9175 Injection, Elliotts’ B solution, 1 ml J9017 Injection, arsenic trioxide, 1 mg J9178 Injection, epirubicin HCl, 2 mg J9020 Injection, asparaginase, 10,000 units J9179 Injection, eribulin mesylate, 0.1 mg J9025 Injection, azacitidine, 1 mg J9180 Epirubicin HCl, 50 mg J9027 Injection, clofarabine, 1 mg J9181 Injection, etoposide, 10 mg J9031 BCG (intravesical) per instillation J9182 Etoposide, 100 mg J9033 Injection, bendamustine HCl, 1 mg J9185 Injection, fludarabine phosphate, 50 mg J9035 Injection, bevacizumab, 10 mg J9190 Injection, fluorouracil, 500 mg J9040 Injection,
    [Show full text]
  • Multistage Delivery of Active Agents
    111111111111111111111111111111111111111111111111111111111111111111111111111111 (12) United States Patent (io) Patent No.: US 10,143,658 B2 Ferrari et al. (45) Date of Patent: Dec. 4, 2018 (54) MULTISTAGE DELIVERY OF ACTIVE 6,355,270 B1 * 3/2002 Ferrari ................. A61K 9/0097 AGENTS 424/185.1 6,395,302 B1 * 5/2002 Hennink et al........ A61K 9/127 (71) Applicants:Board of Regents of the University of 264/4.1 2003/0059386 Al* 3/2003 Sumian ................ A61K 8/0241 Texas System, Austin, TX (US); The 424/70.1 Ohio State University Research 2003/0114366 Al* 6/2003 Martin ................. A61K 9/0097 Foundation, Columbus, OH (US) 424/489 2005/0178287 Al* 8/2005 Anderson ............ A61K 8/0241 (72) Inventors: Mauro Ferrari, Houston, TX (US); 106/31.03 Ennio Tasciotti, Houston, TX (US); 2008/0280140 Al 11/2008 Ferrari et al. Jason Sakamoto, Houston, TX (US) FOREIGN PATENT DOCUMENTS (73) Assignees: Board of Regents of the University of EP 855179 7/1998 Texas System, Austin, TX (US); The WO WO 2007/120248 10/2007 Ohio State University Research WO WO 2008/054874 5/2008 Foundation, Columbus, OH (US) WO WO 2008054874 A2 * 5/2008 ............... A61K 8/11 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Akerman et al., "Nanocrystal targeting in vivo," Proc. Nad. Acad. Sci. USA, Oct. 1, 2002, 99(20):12617-12621. (21) Appl. No.: 14/725,570 Alley et al., "Feasibility of Drug Screening with Panels of Human tumor Cell Lines Using a Microculture Tetrazolium Assay," Cancer (22) Filed: May 29, 2015 Research, Feb.
    [Show full text]
  • Innovative Design of Early Phase Clinical Trials in Radiation Oncology
    Integration of chemotherapy and radiation therapy Adam P. Dicker, M.D., Ph.D. Chair, Department of Radiation Oncology Kimmel Cancer Center Jefferson Medical College of Thomas Jefferson University Philadelphia, PA No Disclosures 2 U.S. Cancer Statistics - 1998 1.2 Million New Cases Each Year 600,000 600,000 Localized Disseminated Tumors Tumors 570,000 Cured 70,000 Cured Via Surgery or Via Radiotherapy Chemotherapy Outline • Current Status • Rationale for combination of chemotherapy with Radiation • Mechanism of action and resistance • Disease sites and toxicity of combination therapies • New targets 4 The past decade • Radiotherapy has Improved & will Improve Further • Most Recent Advances Relate to Imaging & Planning • Future Advances will be in New Delivery Approaches • RT Dose and Fractionation Paradigms will Shift • RT Target Volume “Rules” will Also Shift • RT/Drug Interactions Could Dictate Dose & Fractionation Therapeutic Ratio Curves Reasons to use Chemoradiation • Sterilize micrometastases outside of the XRT portal • Tumor cell sensitization • Improved nutrition and reoxygenation to hypoxic tumor cell (decrease tumor burden) – Better blood supply to remaining tumor cells • Cells cycle into a more radiation sensitive phase • Inhibit cell division between radiation doses • Inhibit cellular repair of damage between therapies Rationale for combined chemotherapy and radiotherapy • Spatial cooperation • Toxicity independence • Action as a radiosensitizer (possible synergism) • Eliminate need for surgical procedure. – Not all patients
    [Show full text]
  • Testimony of Manon Ress on Behalf of the Union for Affordable Cancer Treatment (UACT)
    Testimony of Manon Ress on behalf of the Union for Affordable Cancer Treatment (UACT) United States International Trade Commission (USITC) hearing on "Economic Impact of Trade Agreements Implemented Under Trade Authorities Procedure, 2016 Report. Inv. No.: 332-555 November 17, 2015 The Union for Affordable Cancer Treatment (UACT), is an international network of people who share *he conviction that cancer treatment and care should be available everywhere for everyone, regardless of gender, age, nationality, or financial resources. Our web page is http://cancerunion.org. We are a union of people - people affected by cancer, their family members and friends, people who take care of people with cancer, health care professionals and cancer researchers - committed to increasing access to effective cancer treatment and care. I myself am a stage IV HER2 positive breast cancer patient in active treatment since May 2010. I am extremely fortunate to have access to the most advanced cancer treatment available. Thanks to successful and efficient treatments, my cancer as for many cancer patients has become a chronic disease. It is costly and will be more and more costly for all of us as the price of insurance will increase to keep up with the many cancer patients living for longer and longer time. We believe that cancer medicines and other essential medical tools, such as diagnostic tests, should be affordable. They are not, and things are getting worse. Like many patients, caregivers, doctors, insurers... and policymakers, we are extremely concerned about the rapidly escalating cost of cancer medication. For example, according to one large private payer of health care: the average per cycle cost of cancer drugs in 2014 was almost $18,650.
    [Show full text]
  • Acalabrutinib and Vistusertib Protocol: ACE-LY-110
    Product: Acalabrutinib and vistusertib Protocol: ACE-LY-110 PROTOCOL TITLE: A Phase 1/2 Proof-of-Concept Study of the Combination of Acalabrutinib and Vistusertib in Subjects with Relapsed/Refractory B-Cell Malignancies PROTOCOL NUMBER: ACE-LY-110 STUDY DRUGS: Acalabrutinib (ACP-196) and vistusertib (AZD2014) IND NUMBER: 133812 EUDRACT NUMBER: 2016-003736-21 SPONSOR MEDICAL PPD MONITOR: Acerta Pharma BV SPONSOR: Kloosterstraat 9 5349 AB Oss The Netherlands ORIGINAL PROTOCOL: Version 0.0 – 02 February 2017 AMENDMENT 1: Version 1.0 – 26 March 2017 AMENDMENT 2: Version 2.0 – 06 February 2018 AMENDMENT 3: Version 3.0 – 29 March 2019 Confidentiality Statement This document contains proprietary and confidential information of Acerta Pharma BV that must not be disclosed to anyone other than the recipient study staff and members of the Institutional Review Board (IRB)/Independent Ethics Committee (IEC). This information cannot be used for any purpose other than the evaluation or conduct of the clinical investigation without the prior written consent of Acerta Pharma BV. Acerta Pharma Confidential Page 1 of 159 Product: Acalabrutinib and vistusertib Protocol: ACE-LY-110 PROTOCOL APPROVAL PAGE I have carefully read Protocol ACE-LY-110 entitled “A Phase 1/2 Proof-of-Concept Study of the Combination of Acalabrutinib and Vistusertib in Subjects with Relapsed/Refractory B-cell Malignancies”. I agree to conduct this study as outlined herein and in compliance with Good Clinical Practices (GCP) and all applicable regulatory requirements. Furthermore, I understand that the sponsor, Acerta Pharma, and the IRB/IEC must approve any changes to the protocol in writing before implementation.
    [Show full text]