Notes and News

Total Page:16

File Type:pdf, Size:1020Kb

Notes and News NOTES AND NEWS A NEW SPECIES OF COROPHIID FOR THE TURKISH FAUNA: CHELICOROPHIUM MAEOTICUM (SOWINSKY, 1898) (AMPHIPODA) BY MURAT ÖZBEK, M. RUSEN USTAOGLU and SULEYMAN BALIK Department of Hydrobiology, Faculty of Fisheries, Ege University, TR-35100 Bornova-Izmir,˙ Turkey Corophium Latreille, 1804 is a world-wide marine genus with the propensity to enter non-marine habitats, not only because some species are euryhaline but also because some have a low level of biocompetition in the entirely marine biome (Barnard & Barnard, 1983). The genus is represented world-wide by a total of 58 species, 40 of which occur in the sea, while the remaining ones occur in fresh water, mainly in the Ponto-Caspian area (Barnard & Barnard, 1983). Among these, 17 species are found in and around the Mediterranean basin (Ruffo, 1982). In their recent revision of the Corophiidae, Bousfield & Hoover (1997) divided the family into two subfamilies, Corophiinae and Siphonoecetinae, and described many new genera. One of these is Chelicorophium, which is the only corophiid genus found in the Ponto-Caspian area that includes freshwater species. This genus is represented here by eleven species, in addition to Chelicorophium curvispinum (G. O. Sars, 1895) which was designated as the type species of the genus (Bousfield & Hoover, 1997). So far, Chelicorophium maeoticum (Sowinsky, 1898) was reported by Carausu (1943), Carausu et al. (1955), Mordukhai-Boltovskoi (1964), and Grigorovich et al. (2002) from the northern and western parts of the Black Sea, where the salinity levels are lower than that in the south. Eight species of Corophini [Apocorphium acutum (Chevreux, 1908); Che- licorophium curvispinum (G. O. Sars, 1895); Crassicorophium bonellii (H. Milne Edwards, 1830); Corophium orientale Schellenberg, 1928; Medicorophium mini- mum (Schiecke, 1979); Medicorophium rotundirostre (Stephensen, 1915); Mono- corophium acherusicum (Costa, 1851), and Monocorophium insidiosum (Craw- ford, 1937)] were reported from Turkey (Kocatas & Katagan, 1977a, b, 1980; Ustaoglu et al., 1998, 2000; Sari et al., 2001; Sezgin, 2003). Of these, only C. curvispinum and C. orientale were reported from fresh- or brackish-water lakes (Ustaoglu et al., 1998, 2000; Sari et al., 2001). © Koninklijke Brill NV, Leiden, 2004 Crustaceana 77 (8): 1013-1018 Also available online: www.brill.nl 1014 NOTES AND NEWS Fig. 1. Poyrazlar Lake, the sampling locality, near the souther Black Sea coast of Turkey. In this study, we investigated the corophiids collected from Poyrazlar Lake (fig. 1.) and present herein Chelicorophium maeoticum (Sowinsky, 1898) for the first time for the Turkish fauna. The following papers were used for the identification of the species: Carausu (1943), Carausu et al. (1955), and Bousfield & Hoover (1997). Chelicorophium maeoticum (Sowinsky, 1898) (figs. 2-3) Corophium maeoticum Sowinsky, 1898: 362; 1904: 389-390; Martynov, 1924: 44-47; Miloslavs- kaia, 1939: 147-148; Carausu, 1943: 234-237; Carausu et al., 1955: 376-379; Barnard & Barnard, 1983: 705; Grigorovich et al., 2002: 1199. Chelicorophium maeoticum — Bousfield & Hoover, 1997: 88. ◦ ◦ Material examined. — Poyrazlar Lake (40 50 N30 27 E) near province of Sakarya, northern Anatolia (fig. 1); 3 ,6ovig., 24.vi.2003, from sandy-muddy bottom with well developed aquatic macrophytes in littoral zone; total length 2.3-3.7 mm. Description. — Antenna 1 with 10-segmented flagellum (fig. 2a, a). Peduncle segments setose along ventral and dorsolateral margins. Setae on peduncular segments very long and numerous (fig. 2a). A few spines also occur on proximal section of first peduncular segment. Antenna 2 well developed in both sexes and longer than antenna 1; ventrally setose (fig. 2b). Fourth segment robust (length.
Recommended publications
  • HELCOM Red List
    SPECIES INFORMATION SHEET Corophium multisetosum English name: Scientific name: – Corophium multisetosum Taxonomical group: Species authority: Class: Malacostraca Stock, 1952 Order: Amphipoda Family: Corophiidae Subspecies, Variations, Synonyms: Generation length: 2 years? Trophonopsis truncata Strøm, 1768 Trophon truncatus Strøm, 1768 Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): Fishing (bottom trawling; codes): Fishing (bottom trawling; F02.02.01), F02.02.01), Eutrophication (H01.05) Eutrophication (H01.05) IUCN Criteria: HELCOM Red List NT B2b Category: Near Threatened Global / European IUCN Red List Category Habitats Directive: – – Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland –/–, Germany –/G (endangered by unknown extent), Latvia –/–, Lithuania –/–-, Poland –/–, Russia –/–, Sweden: –/– Distribution and status in the Baltic Sea region C. multisetosum is reported mainly from coastal waters (bays) along southern shores of the Baltic Sea and those in the Danish straits, including adjacent fjords, canals, lagoons, e.g. the Curonian Lagoon, which is the easternmost area. However, there are also records from more open sea, and thus more saline areas such as the Hevring Bay, Arhus Bay, Arkona Basin by Darss-Zingst Peninsula, and the outer Puck Bay. Declining population trends are reported from the Szczecin Lagoon (Wawrzyniak-Wydrowska, pers. comm.). ©HELCOM Red List Benthic Invertebrate Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of species SPECIES INFORMATION SHEET Corophium multisetosum Distribution map The georeferenced records of species compiled from the Danish national database for marine data (MADS), Russian monitoring data (Elena Ezhova, pers. comm), and the database of the Leibniz Institute for Baltic Sea Research (IOW), where also the Polish literature and monitoring data for the species are stored.
    [Show full text]
  • Belgian Register of Marine Species
    BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ...........................................................................................................................................
    [Show full text]
  • THE REVIEW of ECOLOGICAL and GENETIC RESEARCH of PONTO-CASPIAN GOBIES (Pisces, Gobiidae) in EUROPE
    Croatian Journal of Fisheries, 2016, 74, 110-123 G. Jakšić et al: Ecological and genetic research of Ponto-Caspian gobies DOI: 10.1515/cjf-2016-0015 CODEN RIBAEG ISSN 1330-061X (print), 1848-0586 (online) THE REVIEW OF ECOLOGICAL AND GENETIC RESEARCH OF PONTO-CASPIAN GOBIES (Pisces, Gobiidae) IN EUROPE Goran Jakšić1, *, Margita Jadan2, Marina Piria3 1City of Karlovac, Banjavčićeva 9, 47000 Karlovac, Croatia 2Division of materials chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia 3University of Zagreb, Faculty of Agriculture, Department of Fisheries, Beekeeping, Game management and Special Zoology, Svetošimunska 25, 10000 Zagreb, Croatia *Corresponding Author, Email: [email protected] ARTICLE INFO ABSTRACT Received: 27 January 2016 Invasive Ponto-Caspian gobies (monkey goby Neogobius fluviatilis, round Received in revised form: 14 May 2016 goby Neogobius melanostomus and bighead goby Ponticola kessleri) have Accepted: 20 May 2016 recently caused dramatic changes in fish assemblage structure throughout Available online: 24 May 2016 European river systems. This review provides summary of recent research on their dietary habits, age and growth, phylogenetic lineages and gene diversity. The principal food of all three species is invertebrates, and more rarely fish, which depends on the type of habitat, part of the year, as well as the morphological characteristics of species. According to the von Bertalanffy growth model, size at age is specific for the region, but due to its disadvantages it is necessary to test other growth models. Phylogenetic Keywords: analysis of monkey goby and round goby indicates separation between the European river systems Black Sea and the Caspian Sea haplotypes. The greatest genetic diversity is Invasive gobies found among populations of the Black Sea, and the lowest among European Ecology invaders.
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • Ecology and Impact of the Exotic Amphipod,Corophium Curvispinum
    Ecology and impact of the exotic amphipod, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the River Rhine and Meuse S. Rajagopal, G. van der Velde, B.G.P. Paffen and A. bij de Vaate Reports ofth e project "Ecological Rehabilitation of Rivers Rhine and Meuse" No.75-1998 Institute for Inland Water Management and Waste Water Treatment (RIZA), P.O. Box 17, 8200 AA Lelystad, The Netherlands To be referred to as: Rajagopal, S., G. van der Velde, B.G.P. Paffen & A. bij de Vaate, 1997. Ecology and impact of exotic amphipod, Corophiumcurvispinum Sars , 1895 (Crustacea: Amphipoda), in the River Rhine and Meuse. Report (No. ) of the project "EcologicalRehabilitation of RiversRhine and Meuse" {with abstracts in Dutch, French and German). Institute for Inland Water Management and Waste Water Treatment (RIZA), P.O. Box 17, 8200 AA Lelystad, The Netherlands. Contents Preface I Summary III Samenvatting VII Résumé XI Zusammenfassung XV Listo f figures XIX List oftable s XXIII 1. Introduction 1 1.1. Distribution and range extensiono f Corophium curvispinum 1 1.2.Reason sfo r the present study 1 1.3. Objectives 3 2. Materials andmethod s 3 2.1. Study area 3 2.2. Methods 5 2.2.1. Life history andreproductiv e biology 5 2.2.2. Growth rates 6 2.2.3. Production 7 2.2.4. Distribution andimpact s of C. curvispinum onothe r macroinvertebrates 7 2.2.5. Mud-fixation 7 2.2.6. Filtration capacity 9 2.2.7. Hydrographie parameters 10 2.2.8. Statistical analysis 10 3. Results 10 3.1.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Corophium Volutator Class
    These are year round inhabitants of the mudflats in Corophium volutator nearby areas. Class: Malacosstraca Order: Amphipoda Family: Corophiidae Genus: Corophium A female Corophium shown in its protective U-shaped burrow. Photo: Jim Wolford Distribution They occupy both sides of In North America, this specific species Corophium volutator occurs the North Atlantic on the only in the Bay of Fundy and the Gulf of Maine. In Europe they American and European occur from Scandinavia to the Mediterranean. coasts. This amphipod (not a true shrimp) occupies semi-permanent Habitat U-shaped burrows in the fine sediments of mud flats, salt marsh They tolerate a wide range pools and brackish ditches. When present in high densities the of salinities from nearly openings of the burrows are clearly visible on the surface of fully saline to almost fresh their habitat. water. They have different methods of feeding. Two methods may Food occur simultaneously; deposit and suspension feeding. Sediment They ingest particulate particles are retained and passed into mouth parts. Another matter, organic detritus and method is scraping organic material off the surface of sediment. diatoms. They feed at all Food must be of an appropriate size. There are seasonal stages of the tidal cycle. variations in what they consume. Diatoms (single-celled plants) flourish in the summer months. Reproduction Males initiate courtship. Males may visit as few as two burrows or as many as 18 before The timing of this is very choosing one. Conflict may occur between males when a burrow important. They emerge is entered already occupied by another single male or a paired from their burrows on female and male.
    [Show full text]
  • Redalyc.Biodiversity of the Gammaridea and Corophiidea
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Chiesa, Ignacio L.; Alonso, Gloria M. Biodiversity of the Gammaridea and Corophiidea (Crustacea: Amphipoda) from the Beagle Channel and the Straits of Magellan: a preliminary comparison between their faunas Revista de Biología Tropical, vol. 55, núm. 1, 2007, pp. 103-112 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44909914 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biodiversity of the Gammaridea and Corophiidea (Crustacea: Amphipoda) from the Beagle Channel and the Straits of Magellan: a preliminary comparison between their faunas Ignacio L. Chiesa 1,2 & Gloria M. Alonso 2 1 Laboratorio de Artrópodos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; ichiesa@ bg.fcen.uba.ar 2 Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Div. Invertebrados, Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina; [email protected] Received 10-XI-2005. Corrected 25-IV-2006. Accepted 16-III-2007. Abstract: Gammaridea and Corophiidea amphipod species from the Beagle Channel and the Straits of Magellan were listed for the first time; their faunas were compared on the basis of bibliographic information and material collected in one locality at Beagle Channel (Isla Becasses). The species Schraderia serraticauda and Heterophoxus trichosus (collected at Isla Becasses) were cited for the first time for the Magellan region; Schraderia is the first generic record for this region.
    [Show full text]
  • Ring Test Bulletin – RTB#50
    www.nmbaqcs.org Ring Test Bulletin – RTB#50 Carol Milner Tim Worsfold David Hall Chris Ashelby Søren Pears (Images) APEM Ltd. March 2016 E-mail: [email protected] NMBAQC RTB#50 RING TEST DETAILS Ring Test #50 Type/Contents – General Circulated – 14/10/15 Results deadline – 18/12/15 Final results received date – 5/1/16 Number of Subscribing Laboratories – 22 Number of Participating Laboratories – 20 Number of Results Received – 21* *multiple data entries per laboratory permitted Summary of differences Total differences for 21 Specimen Genus Species returns Genus Species RT5001 Ampelisca diadema 0 8 RT5002 Pseudoprotella phasma 1 1 RT5003 Gammaropsis maculata 5 5 RT5004 Socarnes erythrophthalmus 4 6 RT5005 Stenothoe marina 1 1 RT5006 Abludomelita obtusata 4 5 RT5007 Gammarus crinicornis 0 5 RT5008 Unciola crenatipalma 3 3 RT5009 Leptocheirus tricristatus 1 1 RT5010 Harpinia crenulata 2 2 RT5011 Parametaphoxus fultoni 2 2 RT5012 Melita hergensis 0 1 RT5013 Caprella mutica 0 13 RT5014 Corophium volutator 0 3 RT5015 Parajassa pelagica 3 3 RT5016 Stenothoe monoculoides 4 4 RT5017 Dexamine thea 4 10 RT5018 Dexamine thea 3 6 RT5019 Aora gracilis 0 4 RT5020 Crassicorophium crassicorne 2 3 RT5021 Talitrus saltator 5* 5* RT5022 Nototropis swammerdamei 0 1 RT5023 Gammarus tigrinus 1 14 RT5024 Gammarus finmarchicus 2 5 RT5025 Melita hergensis 0 4 Total differences 47 115 Average differences /lab. 2.2 5.5 *A mixture of Talitrus saltator and Deshayesorchestia deshayesii was sent out in error. Specimens have been checked prior to this report being issued and labs marked correct. Please see RT5021 below for details.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]
  • The Marine Arthropods of Turkey
    Turkish Journal of Zoology Turk J Zool (2014) 38: http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1405-48 The marine arthropods of Turkey 1, 1 1 2 Ahmet Kerem BAKIR *, Tuncer KATAĞAN , Halim Vedat AKER , Tahir ÖZCAN , 3 4 1 1 Murat SEZGİN , Abdullah Suat ATEŞ , Cengiz KOÇAK , Fevzi KIRKIM 1 Faculty of Fisheries, Ege University, İzmir, Turkey 2 Faculty of Marine Sciences and Technology, Mustafa Kemal University, İskenderun, Hatay, Turkey 3 Faculty of Fisheries, Sinop University, Sinop, Turkey 4 Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey Received: 29.05.2014 Accepted: 30.07.2014 Published Online: 00.00.2013 Printed: 00.00.2013 Abstract: This recent checklist of marine arthropods found on the coasts of Turkey represents a total of 1531 species belonging to 7 classes: Malacostraca (766 species), Maxillopoda (437 species), Ostracoda (263 species), Pycnogonida (27 species), Arachnida (26 species), Branchiopoda (7 species), and Insecta (5 species). Seventy-five species were classified as alien species in the region. This paper also includes the first record of the amphipod Melita valesi from the Levantine coast of Turkey (Kaş, Gulf of Antalya). Key words: Arthropoda, Black Sea, Sea of Marmara, Aegean Sea, Levantine Sea, Turkey 1. Introduction İzmir Bay (Smirnæ) and the Bosphorus (Constantinopoli). The arthropods, containing approximately 1.2 million Forskål died of malaria in July 1763 and Carsten Niebuhr described species and constituting almost 80% of all edited and published the work of his friend in 1775. In described living animal species, constitute the largest the 19th century, Ostroumoff (1896) participated in the and most successful of the animal phyla.
    [Show full text]
  • Grandidierella Japonica Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Grandidierella japonica Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Peracarida, Amphipoda, Senticaudata, A brackish water amphipod Corophiida, Corophiidira Family: Aoroidea, Aoridae Description Antenna 1: The first antenna in males Size: Males up to 22 mm in length, females is more than ½ body length (Chapman and 13 mm long (San Francisco Bay, Chapman Dorman 1975) and is much shorter in fe- and Dorman 1975; Myers 1981). The males. The peduncle is with short accessory illustrated specimen (a male, from Coos flagellum in both sexes (Fig. 1b). The male Bay) is 10 mm in length (Fig. 1). flagellum has 20 articles and is a little longer Color: Black head, mottled grey to grey than peduncle. The female flagellum is equal brown body (Chapman and Dorman 1975) to peduncle and consists of 18 articles with distal parts of limbs white (Stephensen (Stephensen 1938). Male antenna one longer 1938; Chapman 2007). This specimen white than its antenna two (Barnard 1973), however (preserved in ETOH). female antennae are of equal size General Morphology: The body of amphi- (Stephensen 1938) (female not figured). pod crustaceans can be divided into three Antenna 2: Length from ¾ of to longer major regions. The cephalon (head) or than antenna one (Chapman and Dorman cephalothorax includes antennules, anten- 1975) (see antenna 1). Spines present on nae, mandibles, maxillae and maxillipeds peduncle articles 3–5. Male second antenna (collectively the mouthparts). Posterior to stout and flagellum with seven articles the cephalon is the pereon (thorax) with (Stephensen 1938). Female second antenna seven pairs of pereopods attached to pere- length in equal to antenna one and fifth article onites followed by the pleon (abdomen) with of peduncle with four strong spines.
    [Show full text]