Ostende and Arrigunaga Beaches, Two Different Interventions and Subsequent Geomorphological Changes in Northern Spain: an Appropriate Policy to Follow?

Total Page:16

File Type:pdf, Size:1020Kb

Ostende and Arrigunaga Beaches, Two Different Interventions and Subsequent Geomorphological Changes in Northern Spain: an Appropriate Policy to Follow? 25 Revista de la Sociedad Geológica de España 34 (1) ISSN (versión impresa): 0214-2708 ISSN (Internet): 2255-1379 OSTENDE AND ARRIGUNAGA BEACHES, TWO DIFFERENT INTERVENTIONS AND SUBSEQUENT GEOMORPHOLOGICAL CHANGES IN NORTHERN SPAIN: AN APPROPRIATE POLICY TO FOLLOW? Las playas de Ostende y Arrigunaga, dos intervenciones diferentes y cambios geomorfológicos sufridos en el norte de España:¿una apropiada política a seguir? Javier Elorza Departamento de Mineralogía y Petrología. Universidad del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao. [email protected] Abstract: The small towns of the Basque-Cantabrian coast (Spain) suffer from strong demographic pressure in summer time that has made it necessary to develop new beach areas suitable for bathing. In 1991 in Castro Urdiales (Cantabria), gravel was dumped in Urdiales cove (350,000 m3) to create the Ostende artificial beach. In Getxo (Bizkaia), the regeneration of Arrigunaga urban beach involved a complex intervention between 1995 and 1999, with the construction of groynes, the removal of sands and conglomerates of cemented cast iron slag (beachrock), the subsequent deposition of natural bioclastic sand (213,000 m3) and the complete urbanization of the beach. Several decades having now elapsed, the present work analyses how the two interventions have evolved, whether the migration of sand-gravel, with losses and accumulations in different areas, poses a risk for the proper use of the beaches, and whether the groynes meet their original objectives and maintain themselves despite the numerous sea storms to which they are subject. As a new feature, the rapid formation of new geomorphological aquafact structures on the rocky protrusions generated by the mechanical abrasion of water/sand-gravel. Finally, the question is raised whether this type of intervention is appropriate in the current context of environmental conservation. Keywords: coastal dynamics, beach regeneration, blast furnace slag, beachrock, aquafacts, Basque-Cantabrian coast. Resumen: El bienestar económico producido en el último tercio del siglo XX lleva consigo el disfrute, en la época estival, de una segunda vivienda situada en la costa. Las pequeñas localidades costeras sufren una fuerte presión demográfica que obliga a acondicionar nuevos espacios de esparcimiento playeros. En Castro Urdiales (Cantabria) en 1991 se realizó un vertido de gravilla (350.000 m3) en la Ensenada de Urdiales, para pasar a convertirse en la playa artificial de Ostende. En Getxo (Bizkaia), la regeneración de la playa urbana de Arrigunaga conllevó una intervención compleja entre los años 1995 y 1999, con la construcción de espigones, retirada de arenas y conglomerados de escorias de fundición cementados (beachrock), el vertido de arena bioclástica natural (213.000 m3) y la completa urbanización de la playa. Una vez que han pasado varias décadas, en este trabajo se analiza cómo han evolucionado ambas intervenciones, si la migración de la arena- gravilla, con pérdidas y acumulaciones en diferentes zonas, supone un riesgo para el pleno uso de las playas, y si los espigones cumplen los objetivos iniciales y se mantienen a pesar Revista de la Sociedad Geológica de España, 34 (1), 2021 26 OSTENDE AND ARRIGUNAGA BEACHES, TWO DIFFERENT INTERVENTIONS IN NORTHERN SPAIN de los numerosos temporales marítimos sufridos. Como novedad, se constata la rápida formación de acuafactos como nuevas estructuras geomorfológicas sobre las protusiones rocosas por la abrasión mecánica de agua/arena-gravilla. Por último, surge la pregunta sobre si este tipo de intervención resulta adecuado en el actual contexto de conservación ambiental. Palabras clave: dinámica costera, regeneración de playas, escorias alto horno, beachrock, acuafactos, costa Vasco-Cantábrica. Elorza, J., 2021. Ostende and Arrigunaga beaches, two different interventions and subsequent geomorphological changes in northern Spain: An appropriate policy to follow? Revista de la Sociedad Geológica de España, 34 (1): 25-35. Introduction The last third of the 20th cen- tury saw a certain economic boom in Basque society, which allowed the most fortunate to acquire a se- cond residence in small coastal towns along the Basque-Cantabrian coast (Bizkaia, Cantabria) (Fig. 1A). This led to a major increase in po- pulation in these small towns during the summer period, with the conse- quent demand for public assistance services and recreational spaces. In this sense, according to 2019 data, the municipality of Castro Urdiales (Cantabria) went from a stable cen- sus population of 32,069 inhabitants to more than 70,000 inhabitants du- ring the summer season, whereas in the municipality of Getxo (Bizkaia) the population surveyed in 2019 rea- ched 79,946 inhabitants. One of the most frequently re- quested services during the summer season was for new beaches to be developed as recreation areas, for- cing the responsible administra- tions (municipal, provincial, and the Coastal Demarcation Office) to coordinate and undertake specific projects to satisfy the growing de- mand. In 1991, the municipality of Castro Urdiales undertake a work on the Urdiales cove, initially wi- thout sand and with a small marsh area, that was to become the so-ca- Fig. 1.- A: Geographical location of the Ostende artificial beach (Castro Urdiales, Cantabria) lled artificial beach of Ostende and the Arrigunaga beach (Getxo, Bizkaia) along the Basque-Cantabrian coast. *(b) Location (around 750 m in length, Fig. 1B). of the Abra-Ciervana buoy. B: View from the northern part of the current Ostende artificial beach (750 m in length), showing the tracks from the mechanical levelling that is carried out In the municipality of Getxo, by daily. C: General view of the current Arrigunaga beach from its western part (630 m in length). contrast, the work was undertaken on the Arrigunaga urban beach (around 630 m in length, the area, with the construction of three groynes and a lar- Fig. 1C) that due to its deep anthropic footprint was prac- ge breakwater (associated with Punta San Ignacio). It was tically in disuse and was not recommended for bathing. completed in 1999 with the addition of bioclastic natural This situation was mended by a complex intervention in sand to the beach. Revista de la Sociedad Geológica de España, 34 (1), 2021 J. Elorza 27 More than two decades after these interventions (30 rocky protrusions and in the breakwater blocks that stand and 21 years, respectively), it seems appropriate to review out in the foreshore. how the processes of coastal dynamics have acted upon them. In this sense, this study aims to inquire whether the Geological context and characteristics of the behaviour has been as theoretically predicted or whether interventions there have been substantial changes in the profiles of each beach. The loss and/or migration of the sands concentra- Ostende beach (Urdiales Cove) ted in certain areas may have modified the expected beach half-life. As regards the groynes and the breakwater built The Ostende artificial beach (43º 23’ 21” N and 3º on Arrigunaga beach, the question is whether they have 13’ 33” W, Fig. 1A) belongs to the municipality of Cas- been effective or been overcome by the coastal dynamics. tro Urdiales (Cantabria). From a geological point of view, Additionally, this study also deals with how the interaction the beach substrate is composed of limestones from the of tides and sediments has promoted an abrasive process so-called “Planar-parallel limestone of the Urdiales Cove producing new geomorphological structures in the natural Formation” (Rosales, 1995, 1999). Dated to the lower Al- bian, it is composed of 200 m-thick rhythmic alternations of marls, marly limestones and limestones in decimetre-thick beds. Rosales (1995) suggested that this formation belongs to a hemipelagic platform related to the distal part of a carbo- nate ramp-type shelf. Westwards the unit grades laterally to shallow shelf limestones (Oriñon Limestone For- mation). Refurbishment works were ca- rried out in a short period of time (from 29/12/1988 to 02/01/1991) and consisted of the modification of Urdiales cove by the deposition and levelling of crushed gravel (6-8 mm in diameter) along a coastal strip around 750 m in length, using a to- tal volume of 330,580 m3 to this end (data provided by the Cantabrian Coastal Demarcation Office) (Figs. 1B, 2A-C). Currently, the sediments found on the artificial beach corres- pond to two types: a) a minor part of fine-medium bioclastic natural sands (0.2-0.3 mm) typical of the beaches of the Cantabrian coast; and b) a majority of limestone gravels (6-8 mm) that corresponds to the artificial crushed deposit, extracted from the Santullán quarry, current- ly showing a clear increase in the roundness index (Figs. 2D-F). Arrigunaga beach Three sectors bounded by faults can be distinguished in the cliffs Fig. 2.- Ostende beach, Castro Urdiales. A: Aerial view of Urdiales cove, dating from 1965. bordering the Arrigunaga beach B: Aerial image similar to the previous one, taken in 2015, with evidence of the sand-gravel (43º 21’ 22.0” N and 3º 01’ 10.00” spill creating the recreation area (750 m in length). C: Current picture of the artificial beach from the southeast, where the protrusions of Urgonian limestone can be observed. D: Detail W, Fig. 1A), Getxo (Bizkaia) (Ro- of the fine bioclastic sands that make up a small part of the sandbank. E-F: Appearance of dríguez-Lázaro et al., 1989). The the artificial angular gravels (E), now notably rounded (F) by the abrasive effect exerted over northeastern sector comprises tur- three decades. Marker and coin are 2 cm and 2.2 cm in diameter, respectively. bidite sediments that belong to the Revista de la Sociedad Geológica de España, 34 (1), 2021 28 OSTENDE AND ARRIGUNAGA BEACHES, TWO DIFFERENT INTERVENTIONS IN NORTHERN SPAIN middle Eocene and consist of an alternation of calcarenites a family beach with limited use, little recommended for and coarse calcisiltites with marls.
Recommended publications
  • Virgin Islands National Park Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Program Center Virgin Islands National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2010/226 THIS PAGE: Underwater ecosystems including coral reefs are a primary natural resource at Virgin Islands National Park. National Park Service photograph. ON THE COVER: This view of Trunk Bay shows the steep slopes characteristic of Virgin Islands Na- tional Park. National Park Service photo- graph courtesy Rafe Boulon (Virgin Islands National Park). Virgin Islands National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2010/226 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 July 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.
    [Show full text]
  • Beachrock, in Schwartz, ML, Ed., Encyclopedia of Coastal Science
    Turner, RJ. 2005. Beachrock, in Schwartz, ML, ed., Encyclopedia of Coastal Science. Kluwer Academic Publishers, The Netherlands. Pp. 183-186. BEACHROCK Formation and Distribution of Beachrock Beachrock is defined by Scoffin and Stoddart (1987, 401) as "the consolidated deposit that results from lithification by calcium carbonate of sediment in the intertidal and spray zones of mainly tropical coasts." Beachrock units form under a thin cover of sediment and generally overlie unconsolidated sand, although they may rest on any type of foundation. Maximum rates of subsurface beachrock cementation are thought to occur in the area of the beach that experiences the most wetting and drying - below the foreshore in the area of water table excursion between the neap low and high tide levels (Amieux et al, 1989; Higgins, 1994). Figure B49 shows a beachrock formation displaying typical attributes. Figure B49 Multiple unit beachrock exposure at barrio Rio Grande de Aguada, Puerto Rico. The sculpted morphology, development of a nearly vertical landward edge, and dark staining of outer surface by cyanobacteria indicate that this beachrock has experience extended exposure. Landward relief and imbricate morphology of beachrock units define shore- parallel runnels that impound seawater (photo R. Turner). There are a number of theories regarding the process of beach sand cementation. Different mechanisms of cementation appear to be responsible at different localities. The primary mechanisms proposed for the origin of beachrock cements are as follows: 1)
    [Show full text]
  • Formation, Exposure, and Evolution of a High-Latitude Beachrock in the Intertidal Zone of the Corrubedo Complex (Ria De Arousa, Galicia, NW Spain)
    Sedimentary Geology 169 (2004) 93–105 www.elsevier.com/locate/sedgeo Formation, exposure, and evolution of a high-latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia, NW Spain) D. Rey*, B. Rubio, A.M. Bernabeu, F. Vilas Departamento de Geociencias Marinas y Ordenacio´n del Territorio, Facultad de Ciencias, del Mar Universidad de Vigo, 36200 Vigo (Pontevedra), Spain Received 12 February 2003; received in revised form 26 March 2004; accepted 4 May 2004 Abstract The presence of beachrocks is noted on the Galician shoreline at 41jN, a latitude at which this phenomenon is rarely found. The present study focuses on the petrological characterization and sedimentological evolution of a beachrock that was exhumed during an exceptional storm in the winter of 2001 in the intertidal zone of a high-energy beach. The cemented material comprises medium-to-coarse mixed siliciclastic-carbonate sands. Unlike tropical beachrocks, the cement consists of epitaxial low-Mg calcite presenting varied morphologies and textures: acicular and bladed coatings and pore linings, pore fillings of sparitic calcite, and meniscus-style cements. Seawater, dominantly wave action, plus marine and meteoric mixed waters are invoked as the main generative fluids. Beachrock formation and evolution are approached from a morphodynamic viewpoint, considering four progressive stages: 1. initial cementation in the intertidal zone; 2. exposure and modelling by wave action; 3. colonization and hardening; and 4. disintegration/preservation and burial. Finally, the morphodynamic significance, climatic implications, and occurrence of this type of cementation along the north and northwest shoreline of Spain are discussed. D 2004 Elsevier B.V.
    [Show full text]
  • ATOLL RESEARCH BULLETIN No. 125
    ATOLL RESEARCH BULLETIN No. 125 RECONNAISSANCE GEOMORPHOLOGY OF RANGIROA ATOLL, TUAMOTU ARCHIPELAGO by D. R. Stoddart with LIST OF VASCULAR FLORA OF RANGIROA by Marie-H6lkne Sachet Issued by THE SMITHSONIAN INSTITUTION Washington, D. C., U. S. A. March 30, 1969 Contents Page I. General Description A. Introduction B. Acknowledgements C. Gross form of Rangiroa D. Climate and tides 11. The Northern or Windward Rim A. General characteristics B. Reef flat profiles 111. The Western or Leeward Rim A. General characteristics B. Reef flat profiles IV. The Southern or Swellward Rim A. General characteristics B. Reef flat profiles V. Problems of Rangiroa Geomorphology A. Consolidated sediments B. Surface features of the seaward reef flats C. Unconsolidated sediments D. Tentative geomorphic history of Rangiroa Notes on land vegetation of Rangiroa References List of vascular flora of Rangiroa, by ~arie-He'ldneSachet Figures (following p. 44) Fig. 1 Location of Rangiroa Atoll Fig. 2 Rangiroa Atoll Fig. 3 Rangiroa rainfall 1959-65: monthly totals Fig. 4 Rangiroa rainfall 1960-65: single-day maxima Fig. 5 Schematic diagram of northern rim with islands Fig. 6 Schematic sections of islands on north and south rims Fig. 7 Profiles 1-6, northern rim Fig. 8 Profiles 7-8, western rim Fig. 9 Schematic diagram of southern rim with islands Fig. 10 Profiles 9-11, southern rim Plates 1 Tiputa, north shore: seaward shingle ridge, smooth erosion ramp, and beachrock and rubble. Relict beachrock on reef flat in background. 2 Tiputa, north shore, west end, looking towards Reporepo: steep shingle beach, erosion ramp, and conglomerate beachrock.
    [Show full text]
  • Coastal Hazards and Vulnerability 4-1 by Gillian Cambers Coastal Zone/Island Systems Management CDCM Professional Development Programme, 2001
    The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL ZONE/ISLAND SYSTEMS MANAGEMENT CHAPTER 4 COASTAL HAZARDS AND VULNERABLITY By GILLIAN CAMBERS, PhD Sea Grant College Programme University of Puerto Rice Mayaguez, Puerto Rico Organized by Department of Civil Engineering, The University of the West Indies, in conjunction with Old Dominion University, Norfolk, VA, USA and Coastal Engineering Research Centre, US Army, Corps of Engineers, Vicksburg, MS , USA. Antigua, West Indies, June 18-22, 2001 Coastal Hazards and Vulnerability 4-1 By Gillian Cambers Coastal Zone/Island Systems Management CDCM Professional Development Programme, 2001 1.0 INTEGRATED COASTAL MANAGEMENT Definition: Integrated coastal management is a dynamic process in which a coordinated strategy is developed and implemented for the allocation of environmental, socio cultural and institutional resources to achieve the conservation and sustainable multiple use of the coastal zone. Other names for ICM: Integrated coastal management (ICM) is sometimes called by other names e.g. integrated coastal zone management, integrated coastal area management etc. Limits of the coastal area: The coastal area is defined by Sorenson and McCreary (1990) as the interface or transition zone, specifically ‘that part of the land affected by its proximity to the sea and that part of the ocean affected by its proximity to the land … an area in which processes depending on the interaction between land and sea are most intense’. However, the boundaries of this area are not fixed, they change with tides, the moon, seasons etc. The boundaries of the coastal zone may be drawn to fit a particular country’s needs, e.g.
    [Show full text]
  • Integrating Geomorphological Data, Geochronology and Archaeological Evidence for Coastal Landscape Reconstruction, the Case of Ammoudara Beach, Crete
    water Article Integrating Geomorphological Data, Geochronology and Archaeological Evidence for Coastal Landscape Reconstruction, the Case of Ammoudara Beach, Crete George Alexandrakis * , Stelios Petrakis and Nikolaos A. Kampanis Coastal and Marine Research Lab, Institute of Applied & Computational Mathematics, Foundation for Research & Technology-Hellas, 70013 Heraklion, Greece; [email protected] (S.P.); [email protected] (N.A.K.) * Correspondence: [email protected] Abstract: Understanding the processes that govern the transformation of the landscape through time is essential for exploring the evolution of a coastal area. Coastal landscapes are dynamic sites, with their evolution strongly linked with waves and sea level variations. Geomorphological features in the coastal area, such as beachrock formations and dune fields, can function as indicators of the coastal landscape evolution through time. However, our knowledge of the chronological framework of coastal deposits in the Aegean coasts is limited. Optically Stimulated Luminescence dating techniques are deemed to be very promising in direct dating of the coastal sediments, especially when they are linked with archaeological evidence. The dating of the sediments from different sediment core depths, determined by the method of luminosity, allowed us to calculate the rate of sediment deposition over time. More recent coastal evolution and stability were examined from 1945 to 2020 with the use of aerial photographs and satellite images. This paper presents the 6000 ka evolution of a coastal Citation: Alexandrakis, G.; Petrakis, landscape based on geomorphological, archaeological, and radio-chronological data. Based on the S.; Kampanis, N.A. Integrating results, the early stages of the Ammoudara beach dune field appears to have been formed ~9.0–9.6 ka Geomorphological Data, Geochronology and Archaeological BP, while the OSL ages from 6 m depth represented the timing of its stabilization (OSL ages ~5–6 ka).
    [Show full text]
  • Beachrock: a Microbial Mechanism for Maintaining Sand Cay Stability in the Great Barrier Reef
    User Meeting 2016 Contribution ID : 199 Type : Poster Beachrock: A microbial mechanism for maintaining sand cay stability in the Great Barrier Reef Beachrock is produced through the lithification of sediments in the intertidal zone of tropical beaches onboth continental coastlines and sand cays in reef environments. Beachrock formation through carbonate cement precipitation has the capacity to slow sea-level rise induced erosion of sand cays, islands that host vulnerable habitats, including inhabited cays and sea turtle rookeries. Beachrock formation has been linked to a number of interconnected physicochemical and biological processes, making it difficult to discern the key mechanism responsible for this geological process. This investigation employed synchrotron-based, X-ray fluorescence microscopy (XFM) to characterise beachrock specimens from Heron Island in the southern Great Barrier Reef. High-resolution elemental mapping of beachrock indicated that cementation in part occurs through the in- ternal cycling of cations through microbial dissolution and re-precipitation of carbonate minerals. Boring of endolithic cyanobacteria in carbonate sand grains in the intertidal zone generates elevated concentrations of soluble calcium, magnesium, and strontium in the pore spaces of the sediment. Cyanobacterial photo- synthesis produces microenvironments enriched in alkalinity, which, when combined with the high cation concentrations, induces supersaturating conditions with respect to carbonate minerals. Cement precipitation is also aided by the production of nucleation sites in the form of microbial exopolymer. This biogeochemical pathway for beachrock production was verified by synthesising new beachrock in the laboratory. Samples of beach sand and microbial communities from Heron Island were used in aquarium experiments that simulated the conditions typical of the intertidal zone with respect to tidal activity, light, temperature, and water chem- istry.
    [Show full text]
  • Journal of the American Shore and Beach Preservation Association Table of Contents
    Journal of the American Shore and Beach Preservation Association Table of Contents VOLUME 88 WINTER 2020 NUMBER 1 Preface Gov. John Bel Edwards............................................................ 3 Foreword Kyle R. “Chip” Kline Jr. and Lawrence B. Haase................... 4 Introduction Syed M. Khalil and Gregory M. Grandy............................... 5 A short history of funding and accomplishments post-Deepwater Horizon Jessica R. Henkel and Alyssa Dausman ................................ 11 Coordination of long-term data management in the Gulf of Mexico: Lessons learned and recommendations from two years of cross-agency collaboration Kathryn Sweet Keating, Melissa Gloekler, Nancy Kinner, Sharon Mesick, Michael Peccini, Benjamin Shorr, Lauren Showalter, and Jessica Henkel................................... 17 Gulf-wide data synthesis for restoration planning: Utility and limitations Leland C. Moss, Tim J.B. Carruthers, Harris Bienn, Adrian Mcinnis, Alyssa M. Dausman .................................. 23 Ecological benefits of the Bahia Grande Coastal Corridor and the Clear Creek Riparian Corridor acquisitions in Texas Sheri Land ............................................................................... 34 Ecosystem restoration in Louisiana — a decade after the Deepwater Horizon oil spill Syed M. Khalil, Gregory M. Grandy, and Richard C. Raynie ........................................................... 38 Event and decadal-scale modeling of barrier island restoration designs for decision support Joseph Long, P. Soupy
    [Show full text]
  • Bahamas Bibliography a List of Citations for Scientific, Engineering and Historical Articles Pertaining to the Bahama Islands
    BAHAM AS BIBLIOGRAPHY A LIST OF CITATIONS FOR SCIENTIFIC, ENGINEERING AND HISTORICAL ARTICLES PERTAINING TO THE BAHAMA ISLANDS by CAROL FANG and W. HARRISON SPECIAL SCIENTIFIC REPORT NUMBER 56 of the VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 '9 72 BAHAMAS BIBLIOGRAPHY A LIST OF CITATIONS FOR SCIENTIFIC, ENGINEERING AND HISTORICAL ARTICLES PERTAINING TO THE BAHAMA ISLANDS BY CAROL FANG AND W. HARRISON SPECIAL SCIENTIFIC REPORT NO. 56 1972 Virginia Institute of Marine Science Gloucester Point, Virginia 23062 William J. Hargis, Jr. Director TABLE OF CONTENTS Page ARCHAEOLOGY - ANTHROPOLOGY - HISTORY . • • . • . • • . • • 1 BIOLOGICAL SCIENCES . • • . • . • 4 GEOLOGICAL SCIENCES . • • • . • 23 OCEANOGRAPHY AND ENGINEERING . • • • . • . • . • • 38 iii INTRODUCTION Specialized bibliographies are sometimes needed in connection with the research studies being pursued at the Virginia Institute of Marine Science. The Bahamas Bibliography arose out of the needs of marine geologists, biologists and physical oceanographers engaged in studies of beaches, fishes and inlet currents in the Bahama Islands. Although the present bibliography may suffer from complete­ ness, it significantly surpasses in number of citations the only other known bibliography! of like kind. It should be noted that certain of the citations ~ight fit equally well under more than one of the subject headings used for grouping the references. The user would do well, therefore, to check similar headings when searching for references by general subjects. 1Boersma, Anne. 1968. Bibliography on the Bahama Islands. Mass. Inst. Technol. Exp. Astron. Lab. Rep. No. RN-37. 60 p. v ARCHAEOLOGY - ANTHROPOLOGY - HISTORY There are a great number of semi-popular histories and traveller's accounts that deal with the Bahamas and for these the interested reader should refer to Craton.
    [Show full text]
  • Beach Erosion Management in Small Island Developing States: Indian Ocean Case Studies
    Coastal Processes 149 Beach erosion management in Small Island Developing States: Indian Ocean case studies V. Duvat Department of Geography, Institute of Littoral and Environment, La Rochelle University, France Abstract In Small Island Developing States (SIDS), the questions of coastal erosion and sea defence structures raise specific issues that this paper will discuss in light of the analysis of the situations in Seychelles and Mauritius. These questions relate back to the role of post-colonial development strategies and have close ties with tourism as beaches have an important economic value. Thus, beach erosion has become a major concern both for the authorities, which lack well-documented analyses as well as the technical and financial capacities for developing appropriate strategies, and for tourism operators. The lack of consistent policies often leads to the systematic use of hard engineering structures without any consideration either for coastal dynamics or socioeconomic factors. Nevertheless, in western Indian Ocean states, beach erosion management has evolved positively for the past 15 years under the influence of internal and external factors. The respective roles of the Regional Environment Programme of the Indian Ocean Commission and of the initiatives of tourism operators in recent progress will be highlighted. Keywords: beach erosion, coastal protection works, tourism development, Small Island Developing States, Indian Ocean. 1 Introduction Worldwide beach erosion became apparent during the 1980s due to the works of
    [Show full text]
  • Coastal Erosion Problems in the Gilbert Islands Group, Republic Of
    COASTAL EROSION PROBLEMS IN THE GILBERT ISLANDS GROUP REPUBLIC OF KIRIBATI Richard D. Gillie SOPAC Secretariat March 1993 SOPAC Technical Report 167 Prepared for: South Pacific Applied Geoscience Commission (SOPAC) Coastal Program, Kiribati Project: KIA [3] TABLE OF CONTENTS i Page SUMMARY ........................................................................................................................................................... 9 ACKNOWLEDGEMENTS………………………………………………………………………………………………… 8 INTRODUCTION …………………………......................................................................................... ..........11 OBJECTIVES .................. ........ .. ................................................................................................. .......... 12 REVIEW OF LITERATURE ............................................................................................................................... 12 Geologici Origin and Tectonics ..............................................……. ................................................……. 13 Atoll Evolution and Reef Growth .. ........................................ …………………………......................….. .. 13 I Islet Formation and Evolution…. .............. .................. ........ .................... ..................... ...................14 Contemporary Coastal Processes and Engineering ..... ......... ..................... .................... ................ 1 5 Climatology, Meteorology and Oceanography .................. ... …. ... ...... … ....... … .... ..
    [Show full text]
  • ATOLL RESEARCH BULLETIN No. 50 Geology of Kapingamarangi Atoll
    ATOLL RESEARCH BULLETIN - No. 50 Geology of Kapingamarangi Atoll, Caroline Islands by Edriin D. PIcKee THE PACIFIC SCIENCE BOARD National Academy of Sciences--Natianal.Research Council Washiii&ton,. D. C. June 30, 1956 .Page Introduction ............................................... 1 Acknovledgriients ........................................... 1 Atoll fra~nework............................................ Geology of the islands ................................... Character of islaxis .................................. Sedimentary rocks ..................................... Lagoon beaches and bars ................................ Sear.iard beaches ....................................... Ragart and rampart wash ............................... Migration of islands ................................. Problem of Xapingamararigi eachroclr. .................. Petrology ................................................ Sediments ............................................. Sedimentary rocks ..................................... Soils ..................................................... General statement ..................................... Parent materials ...................................... Alteration processes .................................. Eelation of soil to posi-ti03 on is:.and ................ DevelopneilL of p11osphor.i-ie ................................ Ground water .............................................. Generai features ...................................... Objectives of investigatioi? ..........................
    [Show full text]