Strophanthus Hispidus: Its Natural History, Chemistry, and Pharmacology

Total Page:16

File Type:pdf, Size:1020Kb

Strophanthus Hispidus: Its Natural History, Chemistry, and Pharmacology ( 955 ) XXI.—Strophanthus hispidus: its Natural History, Chemistry, and Pharmacology. By THOMAS K. FRASER, M.D., F.K.S., F.R.S.E., F.R.C.P.E., Professor of Materia Medica in the University of Edinburgh. PART I.'—NATURAL HISTORY AND CHEMISTRY. (Plates I.-VII.) (Read 4th February 1889.) CONT ENTS. PAGE PAGE HISTORICAL INTRODUCTION, 955 B. CHEMISTRY— 1. Seeds— A. NATURAL HISTORY— Composition; Ether Extract; Alcohol 1. Use in Africa as an Arrow-Poison, and Extract, its Characters, Constituents, Description of Arrows, 960 and Reactions; Absence of an Alka- loid ; Presence of a Glucoside, 993 2. Botanical Description— Strophanthin; its Preparation, Charac- General Description, 975 ters, Composition, and Eeactions, . 1008 Description of Root, Stem, Leaves, Strophanthidin; Kombic Acid, 1017 Flowers, Follicles, and of Seeds and 2. Composition of other Parts of the Plant— other contents of the Follicles, 977 Comose Appendages; Pericarp; Leaves; Dehiscence of Follicles and Dissemi- Bark; Boot, 1018 nation of Seeds, . 990 Explanation of Plates I.-VIL, 1025 HISTORICAL INTRODUCTION. The preliminary notices published by me in 1870 and 1872, on the action arid chemistry of Strophanthus, indicated that it was likely to prove of value as a therapeutic agent; and so early as the year 1874, I had applied the substance in a few cases to the treatment of disease. Before sufficient data, however, had been obtained to justify any conclusions regarding its value as a therapeutic agent, the observations were interrupted by my leaving Edinburgh to occupy a public office in England, in connection with which it was impossible to conduct observations on the treatment of disease. In 1879, oppor- tunities were again afforded to resume the interrupted observations, and results con- firmatory of the anticipations which had been raised by the earlier physiological observa- tions were gradually collected. The publication of a few of these results at the Cardiff meeting of the British Medical Association in 1885* has led to Strophanthus gaining a wide recognition as an important therapeutic agent, and to the production of numerous papers dealing with its botany, chemistry, pharmacology and therapeutics, not only in this country, but also in the continent of Europe and in America. In this paper I propose to give, with greater detail than has been attempted in the * British Medical Journal, vol. ii., 1885, p. 904. VOL. XXXV. PART IV. (NO. 21). 7 G 956 DR THOMAS R. FRASER ON STROPHANTHUS HISPIDUS. previous communications, an account of the observations I have made on the general natural history, the chemistry, and the pharmacology (or physiological action) of Strophan- thus. Before doing so, it may be desirable to state what knowledge existed with regard to these departments of its study and consideration previously to the publication of my papers of 1870 and 1872; to reproduce some of the leading statements contained in these papers ; and to indicate the extent to which the knowledge regarding Strophanthus was increased during the period of fifteen years which elapsed between the publication of my paper of 1870 and of my subsequent paper read before the British Medical Association in 1885. Previously to the publication of my preliminary paper of 1870, the knowledge regard- ing Strophanthus consisted of several botanical descriptions of the plant; of notices by travellers of its use by African tribes, who had discovered its poisonous action, and had employed it as an arrow-poison in the chase, and apparently also in warfare; and of a few brief references to some points relating to its physiological action. Interest was first attracted to the physiological action of this substance by the intro- duction into Europe of a few specimens of fruits and seeds reputed to be the source of a remarkable arrow-poison used in several parts of Africa, and termed in some districts the Kombe and in others the Inee poison. The physiologists who first examined the properties of this poison seem to have been SHARPEY, and HILTON FAGGE and STEVENSON of London, and PELIKAN of St Petersburg. SHARPEY'S experiments were made in 1862-63, but they were not published, as before his investigation had been completed my preliminary notice of 1870, briefly descriptive of the general results I had then obtained, was communicated to this Society, and, much to my regret, led SHARPEY to refrain from publishing his observations, as they entirely agreed with those contained in my paper. From the notes of his experiments, which he afterwards very kindly sent to me, it is apparent that SHARPEY had determined that the action of Strophanthus was characteristically that of a cardiac poison. On the 18th of May 1865, HILTON FAGGE and STEVENSON stated, in a note appended to a paper communicated to the Eoyal Society of London, on the " Application of Physio- logical Tests for Certain Organic Poisons,"* that the Manganja arrow-poison, obtained during the Zambesi Expedition by Sir JOHN (then Dr) KIRK, acts as a" cardiac poison." By this expression they imply an action on the frog's heart of the same kind as that produced by digitalin, Antiaris toxicaria, Helleborus viridis and niger, Scilla, and certain other poisons ; and, especially, that the heart is stopped with the ventricle " rigidly contracted and perfectly pale." In the same year, on the 5th of June, PELiKAN.t in a note communicated to the Academy of Sciences of Paris, pointed out that an extract obtained from the seeds which yield the Inee or Onage arrow-poison acts on the frog's heart in the same way as digitalis * Proceedings of the Royal Society, vol. xiv., 1865, p. 274. t " Sur un nouveau poison du coeur provenaiit de l'Inee ou Onage, et employe au Gabon (Afrique Ocoidentale) comme poison des fleches " (Comptes Bendus de VAcade'mie des Sciences, tome lx., 1865, p. 1209). DR THOMAS R. FRASER ON STROPHANTHUS HISPIDUS. 957 and other similar cardiac poisons, but with greater activity. The heart's beats were quickly arrested, with the ventricle in systole and with the auricles distended. This effect is attributed by him to an action on the nerve structures of the heart. He also states that his experiments were confirmed by VULPIAN. PELIKAN obtained the seeds from the Colonial Exhibition held in Paris in 1865, to which they had been sent by M. GRIFFON DXJ BELLAY, a surgeon in the French Naval Service, who had obtained them in the Gaboon district of West Africa, where they are used by an elephant-hunting tribe (Pahouins) to poison their small bamboo arrows. In 1869, a few specimens of ripe follicles were presented to the Materia Medica Museum of the University of Edinburgh by the Rev. HORACE WALLER, who had been a member of the Oxford and Cambridge Universities Mission of 1861-64, superintended by the late Bishop MACKENZIE, with whom had been associated, during the operations of the mission between the Eiver Shire and Lake Shirwa, the famous traveller LIVING- STONE and the enterprising botanist KIRK. The follicles were sent with the information that the seeds contained in them constituted the Kombe arrow-poison of South-Eastern Africa. Mr WALLER informs me that, at his suggestion, they had been brought to this country by Mr E. D. YOUNG, R.N., when he went to Africa in 1867, to clear up the story of LIVINGSTONE'S murder. Sir ROBERT CHRISTISON placed these follicles at my disposal for examination, and as in the course of time the insufficient material which they afforded was supplemented by some additional follicles sent to me by Professor SHARPEY and, afterwards, by Mr JOHN BUCHANAN, I was enabled to determine the most important facts in the pharmacological action, as well as in the chemistry of the substance, some of which were communicated to this Society in February 1870, in the form of a preliminary notice, and published in the Proceedings of that year,* and also, with a few amplifications, in the Journal of Anatomy and Physiology of 1872.1 While the investi- gation was in progress, Sir DOUGLAS MACLAGAN received from Sir JOHN KIRK a poisoned arrow, obtained from the same district of Africa as the follicles; and with this arrow I was enabled to determine that the poison possesses the same action as the seeds contained in the follicles, and thus to confirm the discovery already made by KIRK of the source of the arrow-poison.} My experiments were made on cold-blooded animals and on birds and mammals ; and the administration was effected by subcutaneous injection, and by introduction into the * Proceedings of the Royal Society of Edinburgh, vol. vii., 1869-70, pp. 99-103. t Journal of Anatomy and Physiology, vol. vii., 1872, pp. 140-155. % In a recently written letter (31st Oct. 1888) Sir JOHN KIRK thus graphically describes the discovery he had made in 1861 of the plant from which the Kombe poison is obtained :—" The source of the poison, namely, Strophanthus Kombe', was first identified by me. 1 had long sought for it, but the natives invariably gave me some false plant, until one day at Chibisa's village, on the river Shire, I saw the ' Kombe,' then new to me as an East African plant (I had known an allied, or perhaps identical, species at Sierra Leone (1858), where it is used as a poison). There climbing on a tall tree it was in pod, and I could get no one to go up and pick specimens. On mounting the tree myself to reach the Kombe pods, the natives, afraid that I might poison myself if I handled the plant roughly or got the juice in a cut or in my mouth, warned me to be careful, and admitted that this was the 'Kombe' or poison plant.
Recommended publications
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Traditional Herbs: a Remedy for Cardiovascular Disorders
    ARTICLE IN PRESS JID: PHYMED [m5G;December 4, 2015;15:27] Phytomedicine 000 (2015) 1–8 Contents lists available at ScienceDirect Phytomedicine journal homepage: www.elsevier.com/locate/phymed Traditional herbs: a remedy for cardiovascular disorders Subha Rastogi∗, Madan Mohan Pandey, A.K.S. Rawat Pharmacognosy & Ethnopharmacology Division, CSIR- National Botanical Research Institute, Lucknow 226 001, India article info abstract Article history: Background: Medicinal plants have been used in patients with congestive heart failure, systolic hypertension, Received 1 September 2015 angina pectoris, atherosclerosis, cerebral insufficiency, venous insufficiency and arrhythmia since centuries. Accepted 22 October 2015 A recent increase in the popularity of alternative medicine and natural products has revived interest in tradi- Available online xxx tional remedies that have been used for the treatment of cardiovascular diseases. Keywords: Aim: The purpose of this review is to provide updated, comprehensive and categorized information on the Cardiovascular disorders history and traditional uses of some herbal medicines that affect the cardiovascular system in order to explore Medicinal plants their therapeutic potential and evaluate future research opportunities. Allium sativum Methods: Systematic literature searches were carried out and the available information on various medici- Commiphora wightii nal plants traditionally used for cardiovascular disorders was collected via electronic search (using Pubmed, Crataegus oxyacantha SciFinder, Scirus, GoogleScholar, JCCC@INSTIRC and Web of Science) and a library search for articles published Terminalia arjuna in peer-reviewed journals. No restrictions regarding the language of publication were imposed. Results: This article highlights the cardiovascular effects of four potent traditional botanicals viz. Garlic (Al- lium sativum), Guggul (Commiphora wightii), Hawthorn (Crataegus oxyacantha) and Arjuna (Terminalia arjuna).
    [Show full text]
  • Apocynaceae of Namibia
    S T R E L I T Z I A 34 The Apocynaceae of Namibia P.V. Bruyns Bolus Herbarium Department of Biological Sciences University of Cape Town Rondebosch 7701 Pretoria 2014 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens, which the South African National Biodiversity Institute (SANBI) inherited from its predecessor organisa- tions. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arbores- cent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of SANBI is partly based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It symbolises the commitment of SANBI to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s excep- tionally rich biodiversity for all people. EDITOR: Alicia Grobler PROOFREADER: Yolande Steenkamp COVER DESIGN & LAYOUT: Elizma Fouché FRONT COVER PHOTOGRAPH: Peter Bruyns BACK COVER PHOTOGRAPHS: Colleen Mannheimer (top) Peter Bruyns (bottom) Citing this publication BRUYNS, P.V. 2014. The Apocynaceae of Namibia. Strelitzia 34. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-98-3 Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa Tel.: +27 12 843 5000 E-mail: [email protected] Website: www.sanbi.org Printed by: Seriti Printing, Tel.: +27 12 333 9757, Website: www.seritiprinting.co.za Address: Unit 6, 49 Eland Street, Koedoespoort, Pretoria, 0001 South Africa Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved.
    [Show full text]
  • History of the Vegetable Drugs of the Pharmacopeia Of
    [From an autographed photograph pre the author with a complimentary copy of Û Pharmacopeia. Heretofore unpublished] >Ç5/. .y- I BULLETIN NO. 18. 191 I . PHARMACY SéRIES, NO. 4. BULLETIN of the LLOYD LIBRARY of BOTANY, PHARMACY AND MATERIA MEDICA J. U. & C. G. LLOYD CINCINNATI, OHIO PHARMACY SERIES, No. 4. HISTORY OF THE VEGETABLE DRUGS OF THE Pharmacopeia of the United States By JOHN URI LLOYD, Phar. M., With portraits of Charles Rice, Ph. D., New York, N. Y., elected Chairman of the Pharmacopeial Committee on Revision, who died May 13, 1901 (see portrait), and Joseph P. Remington, Ph. M., Phila- delphia, Pa. (see portraiÜ^^^SiK^^írecessor as Chairman of the Revision Committee, ui^p^hOßlV^^#pPeared- JUL 1 1931 Copyright secured according to law, içu. INTRODUCTION. Together with his brother, Mr. C. G. Lloyd, the writer began, in 1884, a quarterly publication entitled Drugs and Medicines of North America, with the object of considering, consecutively, the American remedial agents then in use by members of the various professions of medicine in America. It was planned to give the historical record of every American medicinal plant, as well as its pharmaceutical prepara- tions, whether Pharmacopeial or otherwise. The literature on the sub- ject being largely Americana, the authors believed that they were in a position to do passable justice to the subject, inasmuch as they had, for a number of years, given much study in that direction. This publication was kindly received by the medical and pharma- ceutical professions of America, as well as by scientists throughout the world. However, notwithstanding the cordial reception of the work, its authors became convinced that, before going further in this direction, much reference literature not then at their command should be provided.
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]
  • Invitro and Invivo Cultivation of Pergularia Tomentosa for Cardenolides
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 9, Issue 2 Ver. I (Mar-Apr. 2014), PP 40-52 www.iosrjournals.org Invitro and invivo cultivation of Pergularia tomentosa for cardenolides M.S., Hifnawy 1, M.A. El-Shanawany2, M.M., Khalifa 3, A.K, Youssef4, M.H Bekhit5& S.Y., Desoukey*6. 1Department of Pharmacognosy,Faculty of Pharmacy, Cairo University. 2Department of Pharmacognosy, Faculty of Pharmacy Assuit University. 3Department of Pharmacology,Faculty of Pharmacy, Minia University. 4Medicinal and Aromatic Plant Dept., Desert Research Center, El–Matariya, Cairo. 5Plant biotechnology department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Minoufiya. 6*Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia, Egypt. Abstract: The importance for the conservation of the Egyptian desert plant Pergularia tomentosa was encouraged after the isolation and identification of the highly stable and water soluble cardiac glycosides with very interesting pharmacological activities and wide safety margins. The study included agricultural and tissue culture experiments for the possible production of these important cardenolides in high concentrations. Calli formation and growth obtained from different explants were significantly affected by many factors tested. The HPLC analysis of the extracts of both cultivated plants samples and calli from tissue culture experiments demonstrated promising results. All extracts showed the presence of the major ghalakinoside, in variable concentrations. The highest results were obtained from the irrigated plants in the agricultural experiments and after progesterone addition in tissue culture experiments. Key words: Cardenolides of Pergularia tomentosa, in vitro & in vivo cultivation, propagation& tissue culturing.
    [Show full text]
  • Apocynaceae-Apocynoideae)
    THE NERIEAE (APOCYNACEAE-APOCYNOIDEAE) A. J. M. LEEUWENBERG1 ABSTRACT The genera of tribe Nerieae of Apocynaceae are surveyed here and the relationships of the tribe within the family are evaluated. Recent monographic work in the tribe enabled the author to update taxonomie approaches since Pichon (1950) made the last survey. Original observations on the pollen morphology ofth egener a by S.Nilsson ,Swedis h Natural History Museum, Stockholm, are appended to this paper. RÉSUMÉ L'auteur étudie lesgenre s de la tribu desNeriea e desApocynacée s et évalue lesrelation s del a tribu au sein de la famille. Un travail monographique récent sur la tribu a permit à l'auteur de mettre à jour lesapproche s taxonomiques depuis la dernière étude de Pichon (1950). Lesobservation s inédites par S. Nilsson du Muséum d'Histoire Naturelle Suédois à Stockholm sur la morphologie des pollens des genres sontjointe s à cet article. The Apocynaceae have long been divided into it to generic rank and in his arrangement includ­ two subfamilies, Plumerioideae and Apocynoi- ed Aganosma in the Echitinae. Further, because deae (Echitoideae). Pichon (1947) added a third, of its conspicuous resemblance to Beaumontia, the Cerberioideae, a segregate of Plumerioi­ it may well be that Amalocalyx (Echiteae— deae—a situation which I have provisionally ac­ Amalocalycinae, according to Pichon) ought to cepted. These subfamilies were in turn divided be moved to the Nerieae. into tribes and subtribes. Comparative studies Pichon's system is artificial, because he used have shown that the subdivision of the Plume­ the shape and the indumentum of the area where rioideae is much more natural than that of the the connectives cohere with the head of the pistil Apocynoideae.
    [Show full text]
  • Some Distinguishing Features of a Few Strophanthus Species
    Ancient Science of Life, Vol No. XV2 October 1995, Pages 145-149 SOME DISTINGUISHING FEATURES OF A FEW STROPHANTHUS SPECIES VIKARAMADITYA, MANISHA SARKAR, RAJAT RASHMI and P.N VARMA Homoeopathic Pharmacopoea Laboratory C.G.O.B.I, Kamla Nehru Nagar, Ghaziabad – 201 002, U.P Received: 5 April, 1995 Accepted: 11 April, 1995 ABSTRACT: Strophanthus (Family apocynaceae) contains glycosides which are comparable with cardiac glycosides of Digitalis but has less harmful physiological actions, S. kombe Oliver is officially used but some other species of this genus also contain glycosides and resemble the official one and thus often used as adulterants, This study shows distinguishing features of some strophanthus species. Strophanthus DC, belongs to the family does not have any cumulative effect, therefore in Apocynaceae, is a native of tropical Africa and has some cases is used as a substitute of Digitalis in about 30 species. Official Strophanthus seeds are cardiac emergencies. A disadvantage of oral obtained from S. kombe Oliver and one of its active therapy with strophanthus is the fact that its constituents strophanthin is used as a cardiac glycosides break down readily in the digestive stimulant and so these seeds are comparable to and tract than the Digitalis glycosides. recommended as a therapeutic substitute of G-strophanthin obtained from S. gratus maybe Digitalis. But not only S. kombe but other species used as biological standard for the assay of of strophanthus also contain strophanthin and some cardiac glycodsides. G-strophanthin obtained of them are used in other systems of medicine viz from S. gratus maybe used as biological standard S.
    [Show full text]
  • Economically Important Plants Arranged Systematically James P
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 1-2017 Economically Important Plants Arranged Systematically James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: http://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Economically Important Plants Arranged Systematically" (2017). Botanical Studies. 48. http://digitalcommons.humboldt.edu/botany_jps/48 This Economic Botany - Ethnobotany is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. ECONOMICALLY IMPORTANT PLANTS ARRANGED SYSTEMATICALLY Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 30 January 2017 This list began in 1970 as a handout in the Plants and Civilization course that I taught at HSU. It was an updating and expansion of one prepared by Albert F. Hill in his 1952 textbook Economic Botany... and it simply got out of hand. I also thought it would be useful to add a brief description of how the plant is used and what part yields the product. There are a number of more or less encyclopedic references on this subject. The number of plants and the details of their uses is simply overwhelming. In the list below, I have attempted to focus on those plants that are of direct economic importance to us.
    [Show full text]
  • New Sources of 9-D-Hydroxy-Cis-12-Octadecenoic Acid 1
    Reprinted from LIPIDS, November, 1969, Vol. 4, No.6, Pages: 450-453 New Sources of 9-D-Hydroxy-cis-12-octadecenoic Acid 1 R. G. POWELL, R. KLEIMAN and C. R. SMITH, JR., Northern Regional Research Laboratory,2 Peoria, Illinois 61604 ABSTRACT gl V cerid e mixt ure isolated from Nerium ;l~ander L. seed oil. 9-D -Hydroxy-cis-12-octadecenoic acid has been isolated from 3 seed oils of the family Apocynaceae: Holarrhena anti­ PROCEDURES AND DATA dysenterica (73%), Nerium oleander Infrared (IR) spectra were determined on a (II %) and Nerium indicum (8%). The Perkin-Elmer 137 instrument as liquid films or known occurrence of this acid was as I % solutions in carbon tetrachloride or car­ previously limited to the genus bon disulfide. Nuclear magnetic resonance Strophanthus (9-15%). A mixture of (NMR) spectra were recorded on Varian A-60 unusual tetra-acid glycerides was isolated or HA-IOO spectrometers with deuteriochloro­ from N. oleander oil by thin layer chro­ form solutions containing 1% tetramethylsilane matography. Pancreatic lipase hydrolysis as an internal standard (unless otherwise indi­ of the glyceride mixture showed that cated). Optical rotatory dispersion (ORO) 9 -D-acetoxy-cis-12-octadecenoic acid is measurements were made on a Cary Model 60 esterified exclusively at an Cl'-glycerol recording spectropolarimeter at 26° in absolute position and that normal fatty acids methanol and in 0.5 dm cells. Melting points occupy the remaining 2 glycerol posi­ were determined with a Fisher-Johns melting tions. A portion of the hydroxy acid in point apparatus and are uncorrected.. N. indicum oil was also acetylated, how­ Thin layer chromatography (TLC) was per­ ever.
    [Show full text]
  • Oleandrin: a Cardiac Glycosides with Potent Cytotoxicity
    PHCOG REV. REVIEW ARTICLE Oleandrin: A cardiac glycosides with potent cytotoxicity Arvind Kumar, Tanmoy De, Amrita Mishra, Arun K. Mishra Department of Pharmaceutical Chemistry, Central Facility of Instrumentation, School of Pharmaceutical Sciences, IFTM University, Lodhipur, Rajput, Moradabad, Uttar Pradesh, India Submitted: 19-05-2013 Revised: 29-05-2013 Published: **-**-**** ABSTRACT Cardiac glycosides are used in the treatment of congestive heart failure and arrhythmia. Current trend shows use of some cardiac glycosides in the treatment of proliferative diseases, which includes cancer. Nerium oleander L. is an important Chinese folk medicine having well proven cardio protective and cytotoxic effect. Oleandrin (a toxic cardiac glycoside of N. oleander L.) inhibits the activity of nuclear factor kappa‑light‑chain‑enhancer of activated B chain (NF‑κB) in various cultured cell lines (U937, CaOV3, human epithelial cells and T cells) as well as it induces programmed cell death in PC3 cell line culture. The mechanism of action includes improved cellular export of fibroblast growth factor‑2, induction of apoptosis through Fas gene expression in tumor cells, formation of superoxide radicals that cause tumor cell injury through mitochondrial disruption, inhibition of interleukin‑8 that mediates tumorigenesis and induction of tumor cell autophagy. The present review focuses the applicability of oleandrin in cancer treatment and concerned future perspective in the area. Key words: Cardiac glycosides, cytotoxicity, oleandrin INTRODUCTION the toad genus Bufo that contains bufadienolide glycosides, the suffix-adien‑that refers to the two double bonds in the Cardiac glycosides are used in the treatment of congestive lactone ring and the ending-olide that denotes the lactone heart failure (CHF) and cardiac arrhythmia.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0303470 A1 Smothers (43) Pub
    US 2013 0303470A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0303470 A1 Smothers (43) Pub. Date: Nov. 14, 2013 (54) PLANT EXTRACTION METHOD AND Publication Classification COMPOSITIONS (51) Int. Cl. (71) Applicant: Nerium Biotechnology, Inc., San C7H I/08 (2006.01) Antonio, TX (US) A68/60 (2006.01) A613 L/7048 (2006.01) (72) Inventor: Donald L. Smothers, Terrell, TX (US) (52) U.S. Cl. CPC .............. C07H I/08 (2013.01); A61 K3I/7048 (21) Appl. No.: 13/944,720 (2013.01); A61K 8/602 (2013.01) USPC .............................................. 514/26:536/6.3 (22) Filed: Jul. 17, 2013 (57) ABSTRACT Related U.S. Application Data The present invention pertains to methods of extracting car (63) Continuation of application No. 12/578,436, filed on diac systs from arts gy sing play Oct. 13, 2009, now Pat. No. 8524286 material, such as Nerium oteanaer, t rougn use of aloe. It • - s s • L vs. 8 Y-sa-1 is a Y- a • further provides for compositions resulting from Such extrac (60) Provisional application No. 61/105,133, filed on Oct. tions, pharmaceutical compositions, cosmetic compositions, 14, 2008. and methods of treating skin conditions. US 2013/0303470 A1 Nov. 14, 2013 PLANT EXTRACTION METHOD AND bility of the cardiac glycosides to some extent. More recently, COMPOSITIONS U.S. Pat. No. 7,402.325, which is hereby incorporated by reference in its entirety, has described use of supercritical CROSS-REFERENCE TO RELATED CO as extracting higher yields of desired product from pow APPLICATIONS dered oleander leaves. Extraction with supercritical CO 0001.
    [Show full text]