Experimental Comparison of Chemical Migration From

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Comparison of Chemical Migration From Exper imental Comparison of Chemical Migration from Petrochemical Plastic and Bioplastic Bottles into Drinking Water California Department of Resources Recycling and Recovery December 2013 Contractor's Report Produced Under Contract By: Lawrence Berkeley National Laboratory and The University of California, Berkeley Randy Maddalena1, Megan Schwarzman2, Toni Carrick1,3, Akos Kokai2, Marion Russell1, Christine Papagni4, Wen-Yee Lee1,3 Author Affiliations: 1 Indoor Environment Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory 2 Center for Occupational and Environmental Health, UC Berkeley School of Public Health 3 University of Texas at El Paso 4 State of California, Department of Toxic Substances Control, Office of Pollution Prevention and Green Technology S T A T E O F C ALIFORNIA Edmund G. Brown Jr. Governor Matt Rodriquez Secretary, California Environmental Protection Agency DEPARTMENT OF RESOURCES RECYCLING AND RECOVERY Caroll Mortensen Director Department of Resources Recycling and Recovery Public Affairs Office 1001 I Street (MS 22-B) P.O. Box 4025 Sacramento, CA 95812-4025 www.calrecycle.ca.gov/Publications/ 1-800-RECYCLE (California only) or (916) 341-6300 Publication # DRRR-2013-1486 To conserve resources and reduce waste, CalRecycle reports are produced in electronic format only. If printing copies of this document, please consider use of recycled paper containing 100 percent postconsumer fiber and, where possible, please print images on both sides of the paper. Copyright © 2014 by the California Department of Resources Recycling and Recovery (CalRecycle). All rights reserved. This publication, or parts thereof, may not be reproduced in any form without permission. Prepared as part of contract number DRR 10064, Agreement # 09-T9125, for $103,296 The California Department of Resources Recycling and Recovery (CalRecycle) does not discriminate on the basis of disability in access to its programs. CalRecycle publications are available in accessible formats upon request by calling the Public Affairs Office at (916) 341-6300. Persons with hearing impairments can reach CalRecycle through the California Relay Service, 1-800-735-2929. Disclaimer: This report was produced under contract by Lawrence Berkeley National Laboratory. The statements and conclusions contained in this report are those of the contractor and not necessarily those of the Department of Resources Recycling and Recovery (CalRecycle), its employees, or the State of California and should not be cited or quoted as official Department policy or direction. The state makes no warranty, expressed or implied, and assumes no liability for the information contained in the succeeding text. Any mention of commercial products or processes shall not be construed as an endorsement of such products or processes. Table of Contents Acknowledgments ......................................................................................................................................... ii Executive Summary ...................................................................................................................................... 1 Project Background ....................................................................................................................................... 4 Introduction ................................................................................................................................................... 5 Methods ........................................................................................................................................................ 6 Literature review ........................................................................................................................................... 6 Experimental Design ..................................................................................................................................... 8 Identification and Acquisition of Bottles for Testing ................................................................................. 11 Identification of Chemicals ......................................................................................................................... 12 Materials ..................................................................................................................................................... 12 Sample collection and preparation .............................................................................................................. 13 Instrumentation ........................................................................................................................................... 13 Results ......................................................................................................................................................... 14 Direct thermal desorption screening experiment ........................................................................................ 14 Chemical Identification ............................................................................................................................... 15 Quantification of Chemical Migration during Storage Experiment ............................................................ 17 Chemical Prioritization for Screening Hazard Assessment ........................................................................ 27 Review of Concentration and Trends for Prioritized compounds ............................................................... 28 Exposure assessment ................................................................................................................................... 29 Conclusion .................................................................................................................................................. 34 Chemical Migration Study and Preliminary Hazard Assessment ............................................................... 34 Study Limitation ......................................................................................................................................... 34 Future Work ................................................................................................................................................ 35 Abbreviations and Acronyms ..................................................................................................................... 37 Appendix A Literature Review: Leaching of Migrants into Beverages Bottled in Polyethylene Terephthalate (PET) Beverage Container ................................................................................................... 39 Appendix B Literature Review: Tentative Target Compound List ............................................................. 49 Appendix C Measured Concentration of Organic Compounds in Water from Storage Experiment for each Bottle Type and Manufacturer .................................................................................................................... 78 Appendix D Measured Concentration (ppb) of Elements in Water During Storage Experiment for Each Bottle Type and Manufacturer .................................................................................................................... 93 Appendix E Graphical assessment concentration trends related to storage time and temperature for target compounds included in exposure assessment ........................................................................................... 107 Appendix F Health hazard data review ..................................................................................................... 124 Bibliography ............................................................................................................................................. 127 Contractor’s Report to CalRecycle i Acknowledgments This report was prepared as a result of work sponsored by the California Department of Resources Recycling and Recovery under CalRecycle Agreement number 09-T9125, LBNL Award number WF007356A1 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work was conducted in part with support from the Faculty and Student Teams (FaST) internship program—a collaboration of the United States Department of Energy (DOE) and the National Science Foundation (NSF), managed by the Lawrence Berkeley National Laboratory Center for Science and Engineering Education. The authors thank Fernando De Leon for his contribution to this project as a FaST intern. While this document is believed to contain correct information, neither the U.S. Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory
Recommended publications
  • Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions
    AN ABSTRACT OF THE THESIS OF Paul John Dornath for the degree of Honors Baccalaureate of Science in Chemical Engineering presented on May 29, 2010. Title: Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions Abstract approved: ______________________________________________ Skip Rochefort There has been much controversy in recent years over the leaching of chemicals from plastic water bottles. In this study, two of the most common plastics used in water bottles, polyethylene terphthalate (PETE) and polycarbonate (PC) were studied. The leaching of the chemical bisphenol-A (BPA) from polycarbonate (Nalgene ™, Camelback ™) water bottles was studied to examine the validity of these claims by exposing polycarbonate bottles to various conditions and analyzing how much BPA leaches into water contained in the bottles. New polycarbonate bottles were filled with water and exposed to treatment conditions ranging from 65 to 120 ⁰C. A reverse-phase solid phase extraction process was developed to extract BPA from the water and concentrate it into an organic phase. GC/MS was used to analyze the organic extract. BPA was only found to leach in detectable amounts (< 10ppb) when the bottles were exposed to 120 ⁰C water for 2 hours. Polyethylene terephthalate bottles were also tested and were exposed to sunlight for three months during the summer. Small amounts of the plasticizer DEHP were found to leach after several months. A method for determining what chemicals would leach from BPA-Free Tritan™ copolyester was also developed but not tested due to time constraints. An analysis of internal stress due to high humidity and temperature was performed on these BPA-Free bottles.
    [Show full text]
  • Changes in Packaging Impact Recycling Right in Santa Cruz
    Page 4 Spring 2016 Changes in Packaging … packaging material is clamshell and (Continued from Page 1) blister packaging—those plastic shells ❝❞ that cover new toys and other products What’s New? in a kid-friendly, squeezable plastic pouch. and the clear, hinged boxes that hold deli Check out the new Plastic pouches may also hold yogurt, rice, foods and produce. Clamshell packaging, Recycle Right! videos soup, coffee beans, cat food and snack which is designed for single-use and has on the City website. foods. Pouches are made up of polyester, practically no value in the recycling market, You can find out exactly aluminum foil, polyethylene, Mylar and is therefore destined for the landfill. Most what’s recyclable in your more, plus added spouts, caps, straws “clamshells” are made out of PET (plastic curbside recycle cart and or zipping mechanisms of various other resin code #1)—a highly recyclable plastic. what’s not. The short types of plastic. This packaging is almost However, clamshells are produced from (831) 420-5160 videos are divided into impossible to clean and difficult to recycle. a process known as “thermoforming,” www.cityofsantacruz.com different materials, so if If you and your kids love squeezable snack which changes the composition of the PET, you have questions about pouches, there is a reusable “kindness making them different from PET plastic Spring 2016 metal recycling, glass pouch” available from Squooshi™. bottles, which are blow molded. This slight or plastic bags, you can Have you ever noticed a number on the difference makes clamshells undesirable watch that segment.
    [Show full text]
  • SOP 408 Biosafety Level-2 (BSL-2) Rodent Husbandry
    STANDARD OPERATING PROCEDURES DIVISION OF COMPARATIVE MEDICINE UNIVERSITY OF SOUTH FLORIDA SOP#: 408.14 Date Issued: 10/98 Date Revised: 5/19 Page 1 of 6 TITLE: Animal Biosafety Level-2 (ABSL-2) Rodent Husbandry SCOPE: All Authorized Personnel RESPONSIBILITY: Facility Manager and Technical Staff PURPOSE: To Outline the Proper Procedures for Safe Husbandry Practices for Rodents Housed at ABSL-2. I. PURPOSE 1. To outline the proper procedures for safely conducting husbandry of rodents housed under animal biosafety level 2 (ABSL-2) conditions. 2. Reduce the risk of exposure of research and animal care staff to biohazardous agents within the animal facility. II. RESPONSIBILITY 1. The Facility Manager is responsible for ensuring: a. That staff contributing to husbandry are adequately trained to perform the husbandry practices described. b. Implementation of the procedures described. c. Dedicated ABSL-2 rooms for infectious agents, and animal housing rooms for rDNA and PDX biocontainment at the cage level are clearly labeled with the biohazardous agent present and specific safety practices implemented. d. Appropriate personal protective equipment (PPE) is available. e. Biohazard Safety Data Sheets (SDSs) are accessible, when available. f. Safety practices have been communicated to the relevant personnel. 2. It is the responsibility of the animal care staff to: a. Read, understand, and follow the procedures described. b. Don appropriate PPE and review room signage and SDS prior to implementing the procedures described. III. PROCEDURES 1. Containment
    [Show full text]
  • Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL
    United States Office of Pollution EPA 744-B-97-001 Environmental Protection Prevention and Toxics June 1997 Agency (7406) Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL 5/22/97 A technical manual to accompany, but not supersede the "Premanufacture Notification Exemptions; Revisions of Exemptions for Polymers; Final Rule" found at 40 CFR Part 723, (60) FR 16316-16336, published Wednesday, March 29, 1995 Environmental Protection Agency Office of Pollution Prevention and Toxics 401 M St., SW., Washington, DC 20460-0001 Copies of this document are available through the TSCA Assistance Information Service at (202) 554-1404 or by faxing requests to (202) 554-5603. TABLE OF CONTENTS LIST OF EQUATIONS............................ ii LIST OF FIGURES............................. ii LIST OF TABLES ............................. ii 1. INTRODUCTION ............................ 1 2. HISTORY............................... 2 3. DEFINITIONS............................. 3 4. ELIGIBILITY REQUIREMENTS ...................... 4 4.1. MEETING THE DEFINITION OF A POLYMER AT 40 CFR §723.250(b)... 5 4.2. SUBSTANCES EXCLUDED FROM THE EXEMPTION AT 40 CFR §723.250(d) . 7 4.2.1. EXCLUSIONS FOR CATIONIC AND POTENTIALLY CATIONIC POLYMERS ....................... 8 4.2.1.1. CATIONIC POLYMERS NOT EXCLUDED FROM EXEMPTION 8 4.2.2. EXCLUSIONS FOR ELEMENTAL CRITERIA........... 9 4.2.3. EXCLUSIONS FOR DEGRADABLE OR UNSTABLE POLYMERS .... 9 4.2.4. EXCLUSIONS BY REACTANTS................ 9 4.2.5. EXCLUSIONS FOR WATER-ABSORBING POLYMERS........ 10 4.3. CATEGORIES WHICH ARE NO LONGER EXCLUDED FROM EXEMPTION .... 10 4.4. MEETING EXEMPTION CRITERIA AT 40 CFR §723.250(e) ....... 10 4.4.1. THE (e)(1) EXEMPTION CRITERIA............. 10 4.4.1.1. LOW-CONCERN FUNCTIONAL GROUPS AND THE (e)(1) EXEMPTION.................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,242.228 B2 Cox Et Al
    USOO8242228B2 (12) United States Patent (10) Patent No.: US 8,242.228 B2 Cox et al. (45) Date of Patent: Aug. 14, 2012 (54) LOW HAZE THERMOPLASTIC (58) Field of Classification Search .................... 528/44, POLYURETHANE USING MIXTURE OF 528/59, 65, 66,80, 81, 85; 252/182.2, 182.21, CHAIN EXTENDERS INCLUDING 1.3- AND 252/182,22, 182.25, 182.28 1,4-CYCLOHEXANEDIMETHANOL See application file for complete search history. (56) References Cited (76) Inventors: John M. Cox, Lake Jackson, TX (US); Francisco Lerma, Lake Jackson, TX U.S. PATENT DOCUMENTS (US); Mark F. Sonnenschein, Midland, 4.245,081 A * 1/1981 Quiring et al. .................. 528.65 MI (US) 6,187,968 B1 2/2001 Itoh et al. 6,521,164 B1* 2/2003 Plummer et al. ......... 264,328.17 Subject to any disclaimer, the term of this 2002/O1236O1 A1 9/2002 Sonnenschein et al. (*) Notice: 2009.01.04449 A1 4/2009 Farah et al. ................ 428/422.8 patent is extended or adjusted under 35 2009,0198O14 A1* 8, 2009 Baikerikar et al. ........... 524,849 U.S.C. 154(b) by 137 days. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 12/593,377 EP O781792 A 7/1997 OTHER PUBLICATIONS (22) PCT Filed: Dec. 3, 2007 Paint & Coatings Industry, UNOXOL Diol: A new liquid (86). PCT No.: PCT/US2007/024.753 cycloaliphatic diol for coating applications. Jun. 2006. Presented by Argyropoulus, John et al. S371 (c)(1), A new liquid cycloaliphatic diol for coating Applications. (2), (4) Date: Sep. 28, 2009 Argyropoulos, John et al. Presented at the International Waterborne, High-Solids, and Powder Coatings Symposium, Feb.
    [Show full text]
  • DID YOU KNOW? PET (Polyethylene Terephthalate) Is Actually Polyester. When PET Is Used for Bottles, Containers and Other
    355 Lexington Ave., Suite 1500 ▪ New York, NY 10017 ▪ www.PETresin.org DID YOU KNOW? Little-Known Facts about PET Plastic . PET (polyethylene terephthalate) is actually polyester. When PET is used for bottles, containers and other applications, it is called PET or PET resin. When PET is used as a fiber, it is typically called polyester. The PET bottle was invented by Nathaniel C. Wyeth, a DuPont engineer and brother of American painter Andrew Wyeth. The patent was issued to Wyeth in 1973 and assigned to DuPont. According to the EPA, recycling one pound of PET bottles (that’s about 10 two-liter soda bottles) saves approximately 26,000 BTUs of energy. PET bottles and the sun are helping millions of people in developing countries obtain potable water. Using a system called SODIS (solar water disinfection), inhabitants set water-filled PET bottles in the sun for several hours or days – depending on how much sunlight is available – as a simple but effective means of destroying disease-causing bacteria and gaining safe drinking water. More than 1.5 billion pounds of used PET bottles and containers are collected in the U.S. each year for recycling. PET is the most recycled plastic in the U.S. and the world. A single-serve PET bottle (0.5 liter) is strong enough to hold 50 times its weight in water. Chemists keep finding new ways to make PET lighter without losing any strength. A 2-liter PET bottle that weighed 68 grams in 1980 now weighs as little as 42 grams. The average weight of single-serve 0.5 liter PET water bottle is now 9.9 grams, nearly half of what it weighed in 2000.
    [Show full text]
  • Plastic Bottles Today Innovating to Reach Today’S Consumer
    PLASTICS MARKET WATCH PLASTIC BOTTLES TODAY INNOVATING TO REACH TODAY’S CONSUMER BETTER INDUSTRY. BETTER WORLD. February 2017 The Plastics Industry Association (PLASTICS) sends special thanks to the Brand Owners, Processors and Equipment Councils, and Rigid Plastics Packaging Group (RPPG) for their guidance and input on this Bottling Plastics Market Watch Report. Materials were compiled, written and edited by William (Bill) Mashek, with editorial assistance from Kim Holmes, George Southworth, Kendra Martin and Ashley Stoney at PLASTICS. Copyright Plastics Industry Association. 02 Plastics Market Watch—Watching: Bottling Plastics Market Watch Plastic Bottles Today Innovating to Reach Today’s Consumer A series examining the business of plastics, including demographics, economics, policy developments and technological trends in specific plastics end markets. Contents 05 Forward 08 Introduction: Plastic Bottles Today— Innovating to Reach Today’s Consumer 11 Role of Plastics in Bottling 16 Growth of Plastics Bottling 20 Innovation 25 Plastic Bottle Economics 29 Bottling Equipment & Machinery 31 Recycling Progress 37 Conclusion 42 Plastic Bottle Glossary 49 Sources 52 Plastics Market Watch Snapshot Plastics Market Watch—Watching: Bottling 03 04 Plastics Market Watch—Watching: Bottling Forward The Plastics Industry Association’s (PLASTICS’) Plastics Market Watch reports provide forward-looking data and insights on key plastics industry end markets. The series examines the business of plastics, including demographics, economics, policy developments and technological improvements for markets including automotive and transportation, healthcare and medical devices, packaging, building and construction, automotive recycling, bioplastics and consumer electronics. Given the role that plastics play in today’s modern society, Plastics Market Watch reports offer a holistic picture of our technology—from beginning-of-life resins and polymers to end-of-life management and recycling efforts.
    [Show full text]
  • Sustainability at Work Bottled Vs. Tap Water
    Sustainability at Work Providing free tools and expertise to achieve your goals Phone: 503-823-7037 Email: [email protected] Bottled vs. Tap Water When it comes to water, the best environmental choice is to avoid single-serve bottles all together and drink water from the tap [1]. Quick links: Reduce, reuse, recycle: water edition. What can your workplace do to support tap water? What about delivery service water? Why? Disposable bottled water uses more resources than tap water and costs more money. And, in Portland, we have great tap water! So good in fact, that it’s won “Best Tasting Water” contests [2]! Curious about where our tap water comes from, how it’s processed and how much Portlanders use? Find answers and learn more about Portland’s water system (http://www.portlandoregon.gov//water/48904). Don't like the taste of your office's tap water? Could be older pipes or other causes. Get a free test kit (http://www.portlandoregon.gov/#WaterQuality), or consider installing a filter (http://www.portlandoregon.gov/#WaterFilter) on your tap. Did you know? Some of Portland's water pipes generate electricity (http://www.opb.org/news/article/portland-now-generating-hydropower-in-its-water-pipes/)! Reduce, reuse, recycle: water edition 1. Reduce your environmental impact by drinking from the tap instead of disposable plastic bottles. Buying a reusable water bottle prevents the need to continue purchasing bottled water. You can even get your bottle from a local company (http://www.portlandmonthlymag.com/health-and-fitness/the-balance/articles/3-local-bottle-companies-beg-you-to-ditch-the-plastic-may-2015).
    [Show full text]
  • Vicki Williams Ozarka Eco-Shape Water Bottle General Description
    Vicki Williams Ozarka Eco-Shape Water Bottle General Description Bottled water is purified or natural spring water, most often sold in plastic bottles, made for human consumption. One bottled water brand, Ozarka, has debuted a new, more environmentally friendly bottle. According to the label, the shape, along with other new design elements, mean it uses 40% less plastic than the previously used bottle. It holds a half liter of natural spring water. Description of Parts As Figure 1 shows, the Ozarka Eco-Shape bottle is comprised of three parts: the lid, label, and body. Figure 1: Ozarka Eco-Shape Water Bottle Image Source: Global Package Gallery. Retrieved: April 26, 2010. http://www.globalpackagegallery.com Lid The lid on a bottle of water keeps foreign particles from entering the water. It also enables the water to be transported. Without the lid, a bottle of water would have no portability. It screws on and off easily. The lid on the new Eco-Shape bottle measures about 4/16” in width and 1” in diameter. This lid is much smaller than any other brand of bottled water. Label Generally, labels on bottled water offer the same information: amount of water held in the bottle, brand, and contact information, and company logo. This paper label is colorful and informative. It has a picture of a spring and a red banner that reads “Ozarka.” It informs that the company was established in 1905, produces natural spring water, establishes origin information, and describes in detail the eco-friendly aspects of the new bottle. The label is 2 ¾” in diameter and 1 5/16” in width.
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]
  • Barriers and Benefits to Desired Behaviors for Single Use Plastic
    Marine Pollution Bulletin 127 (2018) 576–585 Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Barriers and benefits to desired behaviors for single use plastic items in T northeast Ohio's Lake Erie basin ⁎ Jill F. Bartolottaa,b, , Scott D. Hardya,b a Ohio Sea Grant College Program, OH, Columbus, United States b The Ohio State University, College of Food, Agriculture, and Environmental Sciences, OH, Columbus, United States ARTICLE INFO ABSTRACT Keywords: Given the growing saliency of plastic marine debris, and the impact of plastics on beaches and aquatic en- Marine debris vironments in the Laurentian Great Lakes, applied research is needed to support municipal and nongovernmental Great Lakes campaigns to prevent debris from reaching the water's edge. This study addresses this need by examining the Behavior change barriers and benefits to positive behavior for two plastic debris items in northeast Ohio's Lake Erie basin: plastic Social marketing bags and plastic water bottles. An online survey is employed to gather data on the use and disposal of these Single use plastics plastic items and to solicit recommendations on how to positively change behavior to reduce improper disposal. Results support a ban on plastic bags and plastic water bottles, with more enthusiasm for a bag ban. Financial incentives are also seen as an effective way to influence behavior change, as are location-specific solutions focused on education and outreach. 1. Introduction An online survey was employed to gather data on the use and disposal of these plastic items in the Cleveland-Elyria Metropolitan Statistical In a relatively short period of time plastic has become the most Area (CESMA), and to solicit recommendations on how to positively common form of marine debris on the planet (Zettler et al., 2013; change behavior to reduce improper disposal.
    [Show full text]
  • Synthesis and Characterization of Amorphous Cycloaliphatic Copolyesters with Novel Structures and Architectures
    Synthesis and Characterization of Amorphous Cycloaliphatic Copolyesters with Novel Structures and Architectures Yanchun Liu Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry S. Richard Turner, Committee Chair Timothy E. Long Paul A. Deck Herve Marand Judy S. Riffle March 22, 2012 Blacksburg, Virginia Keywords: amorphous copolyesters, cycloaliphatic monomers, melt-phase polymerization, glass transition temperature, structure-property relationship Copyright @ 2012 by Yanchun Liu Synthesis and Characterization of Amorphous Cycloaliphatic Copolyesters with Novel Structures and Architectures Yanchun Liu ABSTRACT A series of random and amorphous copolyesters containing different cycloaliphatic rings within the polymer chains were prepared by melt polycondensaton of difunctional monomers (diesters and diols) in the presence of a catalyst. These polyesters were characterized by nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile tests and/or dynamic mechanical analysis (DMA). The copolyester based on dimethyl bicyclo[2.2.2]octane-1,4-dicarboxylate (DMCD-2) was observed to have a higher Tg, about 115 ºC, than the other copolyesters with the same compositions in this study. For copolyesters containing different compositions of dimethyl-1,4-cyclohexane dicarboxylate (DMCD) and DMCD-2, the Tg increased linearly with the increase of DMCD-2 mole content. DMA showed that all of the cycloaliphatic copolyesters had secondary relaxations, resulting from conformational transitions of the cyclohexylene rings. The polyester based on DMCD-3 in the hydrolytic tests underwent the fastest hydrolytic degradation among these samples. A new triptycene diol (TD) was synthesized and incorporated into a series of cycloaliphatic copolyester backbones by melt condensation polymerization.
    [Show full text]