IIII II III L 1111 I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HELIOGRAPH DESCRIPTION: the Heliograph Was a Communications Device Used to Transmit Messages Over Long Distances. It Uses a Mi
HELIOGRAPH DESCRIPTION: The heliograph was a communications device used to transmit messages over long distances. It uses a mirror attached to a surveying device to direct a beam of light to a receiving station. Sunlight is used as the light source. Messages could be sent in any direction during daylight hours. If the sun was in front of the sender, the sun’s rays were reflected directly from the sender to the receiving station. If the sun was behind the sender, a secondary mirror was used to reflect the rays toward the receiving station. A keying system was used to generate the flashes required to transmit messages using the Morse Code. The distance that the signals could be seen depended on several variables. A clear line of sight was required and Heliograph at Fort because of the curvature of the earth, the heliograph stations were Bowie Visitor Center located on the highest convenient point. The clarity of the sky and the size of the mirrors were also significant factors. The maximum range was about 10 miles for each inch of mirror diameter. Under normal conditions using the naked eye, a flash could be seen for about 30 miles, much farther using a telescope. The speed at which messages could be sent was dependent on the proficiency of both the sender and the receiver. EARLY HISYORY: A forerunner to the heliograph, the heliotrope, was developed by Professor Carl Friedrich Gauss of the University of Gottingen in Germany. The heliotrope was used to direct a controlled beam of sunlight to a distant station to be used as a survey marker. -
Battle Management Language: History, Employment and NATO Technical Activities
Battle Management Language: History, Employment and NATO Technical Activities Mr. Kevin Galvin Quintec Mountbatten House, Basing View, Basingstoke Hampshire, RG21 4HJ UNITED KINGDOM [email protected] ABSTRACT This paper is one of a coordinated set prepared for a NATO Modelling and Simulation Group Lecture Series in Command and Control – Simulation Interoperability (C2SIM). This paper provides an introduction to the concept and historical use and employment of Battle Management Language as they have developed, and the technical activities that were started to achieve interoperability between digitised command and control and simulation systems. 1.0 INTRODUCTION This paper provides a background to the historical employment and implementation of Battle Management Languages (BML) and the challenges that face the military forces today as they deploy digitised C2 systems and have increasingly used simulation tools to both stimulate the training of commanders and their staffs at all echelons of command. The specific areas covered within this section include the following: • The current problem space. • Historical background to the development and employment of Battle Management Languages (BML) as technology evolved to communicate within military organisations. • The challenges that NATO and nations face in C2SIM interoperation. • Strategy and Policy Statements on interoperability between C2 and simulation systems. • NATO technical activities that have been instigated to examine C2Sim interoperation. 2.0 CURRENT PROBLEM SPACE “Linking sensors, decision makers and weapon systems so that information can be translated into synchronised and overwhelming military effect at optimum tempo” (Lt Gen Sir Robert Fulton, Deputy Chief of Defence Staff, 29th May 2002) Although General Fulton made that statement in 2002 at a time when the concept of network enabled operations was being formulated by the UK and within other nations, the requirement remains extant. -
SOUNDS of MORSE CODE (Version 2) NUMERALS (10)
SOUNDS OF MORSE CODE (Version 2) NUMERALS (10) Using dots and dashes to represent the sounds of 1 di-DAH-DAH-DAH-DAH Morse code is HIGHLY discouraged. 2 di-di-DAH-DAH-DAH Morse code is a language of SOUND, and by 3 di-di-di-DAH-DAH converting SOUND into dots and dashes, THEN 4 di-di-di-di-DAH converting dots and dashes into the letter the 5 di-di-di-di-dit SOUND represents WILL shoot you in the foot when you try to pick up speed. You can count on it. 6 DAH-di-di-di-dit (Continued next page...) 7 DAH- DAH-di-di-dit 8 DAH- DAH- DAH-di-dit FCC 43 CHARACTERS: 9 DAH-DAH-DAH-DAH-dit LETTERS (26) 0 DAH-DAH-DAH-DAH-DAH A di-DAH PUNCTUATION & PROCEDURALS (7) B DAH-di-di-dit C DAH-di-DAH-dit BT DAH-di-di-di-DAH = (Note 1) D DAH-di-dit ? di-di-DAH-DAH-di-dit E dit / DAH-di-di-DAH-dit F di-di-DAH-dit , DAH-DAH-di-di-DAH-DAH G DAH-DAH-dit . di-DAH-di-DAH-di-DAH H di-di-di-dit AR di-DAH-di-DAH-dit + (N0te 2) I di-dit SK di-di-di-DAH-di-DAH (Note 3) J di-DAH-DAH-DAH K DAH-di-DAH PROSIGNS NEEDED FOR GOOD CW OPERATING, NOT IN THE FCC 43 L di-DAH-di-dit M DAH-DAH BK DAH-di-di-di-DAH-di-DAH (Note 4) N DAH-dit KN DAH-di-DAH-DAH-dit (Note 5) O DAH-DAH-DAH AS di-DAH-di-di-dit (Note 6) P di-DAH-DAH-dit @ di-DAH-DAH-di-DAH-dit (Note 7) Q DAH-DAH-di-DAH error di-di-di-di-di-di-di-dit (Note 8) R di-DAH-dit NOTES S di-di-dit T DAH 1. -
Morse Code (Edited from Wikipedia)
Morse Code (Edited from Wikipedia) SUMMARY Morse code is a method of transmitting text information as a series of on-off tones, lights, or clicks that can be directly understood by a skilled listener or observer without special equipment. It is named for Samuel F. B. Morse, an inventor of the telegraph. The International Morse Code encodes the ISO basic Latin alphabet, some extra Latin letters, the Arabic numerals and a small set of punctuation and procedural signals (prosigns) as standardized sequences of short and long signals called "dots" and "dashes", or "dits" and "dahs", as in amateur radio practice. Because many non-English natural languages use more than the 26 Roman letters, extensions to the Morse alphabet exist for those languages. Each Morse code symbol represents either a text character (letter or numeral) or a prosign and is represented by a unique sequence of dots and dashes. The duration of a dash is three times the duration of a dot. Each dot or dash is followed by a short silence, equal to the dot duration. The letters of a word are separated by a space equal to three dots (one dash), and the words are separated by a space equal to seven dots. The dot duration is the basic unit of time measurement in code transmission. To increase the speed of the communication, the code was designed so that the length of each character in Morse is shorter the more frequently it is used in the language. Thus the most common letter in English, the letter "E", has the shortest code, a single dot. -
JOTA Activity Booklet KE4TIO
1 2 3 Gulf Ridge Council Pack 415 KE4TIO Alan Wentzell (Operator) Amateur Call Signs Heard and Worked: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ States Contacted: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ Countries Contacted: __________________________________ __________________________________ __________________________________ __________________________________ Scouts Present: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ Akela’s Present: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ 4 Q Codes The “Q” code was originally developed as a way of sending shorthand messages in Morse Code. However, it is still used by operators for voice communications. Some of those in common use are listed below: QRA What is your call sign? QRM I have interference (manmade). QRN I am receiving static (atmospheric noise). QRT I am closing -
Mnlilslffislßl SIGNAL BOOK UNITED STATES ARMY
Uifh '^r MnlilSlffiSlßl SIGNAL BOOK UNITED STATES ARMY v 1916 WASHINGTON GOVERNMENT PRINTING OFFICE 1916 NOV 0 8 1988 WAR DEPARTMENT Document No. 500 Office ofthe Chief Sijnal Officer ADDITIONALCOPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE•SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE "WASHINGTON,D. C. AT 20 CENTS PER COPY V War Department, Office of the Chief of Staff. > Washington, April15, 1916. The followingSignal Book, prepared by the Chief Signal Officer of the Army,is approved and herewith issued for the information and government of the Regular Army and the Organized Militia of the United States. It supersedes Signal Book, United States Army, 1914, and its provisions willbe strictly observed throughout the service. order of the Secretary of War: H.L. Scott, Major General, Chief ofStaff. 3 CONTENTS. Page. Part I. General Instructions for Army Signaling 7 11. The American Morse Code 9 111. The International Morse or General Service Code. \u25a0 12 IV. Visual Signaling ingeneral 15 V. Visual Signaling by Flag, Torch, Hand Lan tern, or Beam of Searchlight (without shut ter) 17 VI. Signaling with Heliograph, Flash Lantern, or Searchlight (with shutter) 18 VII.The Ardois System 19 VIII.Signaling by Two-ArmSemaphore . 21 Stationary Semaphore 21 Hand Flags withTwo-ArmSemaphore Code. 21 IX.Letter Codes: Infantry .' 23 Cavalry. 24 Field Artillery ..... 24 Coast Artillery , 26 X. Conventional and Preconcerted Signals with Rockets, Bombs, Small Arms, Guns, Coston Lights, Very Pistols, etc 2828 XI.Flag Signals by Permanent Hoist. 31 XII.Conventional Telephone Signals 33 XIII.Emergency Signals '.. 34 XIV.Additional and Improvised Codes. 38 XV. -
Morse Code [10Pt] History
Morse code History 2013-June-11 Code pre-Morse Polybius, Greek historian from 150 BC, sent messages with torches, with numbers standing for letters. 1 2 3 4 5 1 ABCDE 2 F G H I,J K 3 LMNOP 4 QRSTU 5 VWXYZ that tied together to make national networks. Invention of telegraph In the Napoleanic wars both the French and the British set up towers Invention of telegraph In the Napoleanic wars both the French and the British set up towers that tied together to make national networks. Heartbroken to know that for days he was unaware of his wife's failing health and her lonely death he first began to think about how to do rapid long distance communication. The code as part of the telegraph: Morse Samuel Morse was a well-known painter. S F B Morse 1791-1872 In 1825 he was asked to paint the Marquis de Lafayette in Washington DC. Mid-way through he got a note that his wife was ill. He hurried home to CT, but was too late. The code as part of the telegraph: Morse Samuel Morse was a well-known painter. S F B Morse 1791-1872 In 1825 he was asked to paint the Marquis de Lafayette in Washington DC. Mid-way through he got a note that his wife was ill. He hurried home to CT, but was too late. Heartbroken to know that for days he was unaware of his wife's failing health and her lonely death he first began to think about how to do rapid long distance communication. -
1 めざせ 1 級! 英語上級者への道 ~Listen and Speak Ⅱ~ 第 7 回
めざせ 1 級! 英語上級者への道 ~Listen and Speak Ⅱ~ 第 7 回 モールス信号 Script ■Dialogue for Introduction E: Hello, Tets. Thanks for posting so many photos of your wonderful journey to Europe on Facebook. I felt as if I were traveling with you on the continent. T: Yes, with social networks we now have almost instant communication. That’s a far cry from the days of snail mail. E: Indeed it is. But you know, Tets, there were some important interim communication technologies along the way. For example, do you know the origin of the acronym “SOS”? T: Ah! Dot dot dot /dash dash dash/ dot dot dot! That is one of the most famous acronyms represented by the telegraph code system developed by Samuel Morse in 1836. That system was also implemented later in radio broadcasting. “Save Oh Save” or perhaps “Save Our Souls”…there is some debate as to the original meaning! There was, however, Edward, an earlier version of this call for distress! Did you know that, my friend? E: Indeed I do! The original code was CQD! It may have meant “Come quickly: Distress!” But the dots and dashes used to indicate it were too long and… T: Stop! We will have to send a real distress call if we spill the beans about our lesson too soon! Let’s give our listeners a chance to experience this article for themselves. E: A fine idea! Let’s signal the start of this month’s study! T&E: Pip-pip-pip…pip-pip. ■Listen to the passage and answer the questions that follow. -
Safety and Alarming Applications Using ISA100 Wireless
Safety and alarming applications using ISA100 Wireless Yokogawa Electric Corporation Toshi Hasegawa 1 March 2016 Presenter Toshi Hasegawa is a Manager of standard department, Marketing Head quarters. Toshi has been working for Yokogawa Electric Corporation for 27 years, and he has worked for development of Distributed Control Systems (DCS). His current activity is mainly on standardization and marketing of industrial wireless network. 2 The History of Radio • Marconi had an early interest in science, and was especially interested in the work of Hertz • He quickly realized the potential of wireless transmission and filed a British patent – Awarded on 2nd July 1897, GB12039 • At 12:00pm on the 12th December 1901 Marconi sent and received the first Transatlantic radio transmission 3 The History of Radio • On Sunday evening 14th April 1912 the largest passenger ship in the world, Titanic struck an iceberg • The radio operators onboard were employed by Marconi International Marine • They sent a distress signal alerting the world and the Carpathia "CQD CQD SOS Titanic Position 41.44 N 50.24 W.·······” • Radio had proven it worth… Wireless safety application has been started over 100 years ago.. 4 Today’s topics 1) Motivation of wireless for plant safety 2) Benefits 3) Key requirements 4) ISA100 Wireless solutions 5) Applications 6) Summary 5 Motivation of adopting wireless for safety • Preventive measures – Process condition / status monitoring: Temperatures / Pressures / Flows / Levels / etc. – Asset condition monitoring: Vibration / Corrosion / Temperature / etc. • Accident avoidance / Limit the extent of damages – Alarm / Warning: Gas leak detection / Safety shower detection /Tsunami detection – Emergency shutdown: Remote valve control for safety mode • Human safety – People tracking on site / Communication to navigate for evacuation / etc. -
Titanic Lessons.Indd
Lee AWA Review Titanic - Lessons for Emergency Communica- tions 2012 Bartholomew Lee Author She went to a freezing North Atlantic grave a hundred years ago, April 15, 1912, hav- By Bartholomew ing slit her hull open on an iceberg she couldn’t Lee, K6VK, Fellow avoid. Her story resonates across time: loss of of the California life, criminal arrogance, heroic wireless opera- Historical Radio tors, and her band playing on a sinking deck, Society, copyright serenading the survivors, the dying and the dead 2012 (no claim to as they themselves faced their own cold wet images) but any demise. The S.S. Titanic is the ship of legend.1 reasonable use The dedication to duty of the Marconi wire- may be made of less operators, Jack Phillips and Harold Bride, this note, respect- is both documented and itself legendary.2 Phil- ing its authorship lips stuck to his key even after Captain Edward and integrity, in Smith relieved him and Bride of duty as the ship furtherance of bet- sank. Phillips’ SOS and CQD signals brought the ter emergency com- rescue ships, in particular the S.S. Carpathia. munications. Phillips died of exposure in a lifeboat; Bride Plese see the survived.3 author description This note will present some of the Marconi at the end of the wireless messages of April 14. Any kind of work article, Wireless -- under stress is challenging. In particular stress its Evolution from degrades communications, even when effective Mysterious Won- communications can mean life or death. Art der to Weapon of Botterel4 once summed it up: “Stress makes you War, 1902 to 1905, stupid.” The only protection is training. -
Using Coding to Improve Localization and Backscatter Communication Performance in Low-Power Sensor Networks
Using Coding to Improve Localization and Backscatter Communication Performance in Low-Power Sensor Networks by Itay Cnaan-On Department of Electrical and Computer Engineering Duke University Date: Approved: Jeffrey Krolik, Co-supervisor Robert Calderbank, Co-supervisor Matthew Reynolds Henry Pfister Loren Nolte Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the Graduate School of Duke University 2016 Abstract Using Coding to Improve Localization and Backscatter Communication Performance in Low-Power Sensor Networks by Itay Cnaan-On Department of Electrical and Computer Engineering Duke University Date: Approved: Jeffrey Krolik, Co-supervisor Robert Calderbank, Co-supervisor Matthew Reynolds Henry Pfister Loren Nolte An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the Graduate School of Duke University 2016 Copyright c 2016 by Itay Cnaan-On All rights reserved except the rights granted by the Creative Commons Attribution-Noncommercial Licence Abstract Backscatter communication is an emerging wireless technology that recently has gained an increase in attention from both academic and industry circles. The key innovation of the technology is the ability of ultra-low power devices to utilize nearby existing radio signals to communicate. As there is no need to generate their own ener- getic radio signal, the devices can benefit from a simple design, are very inexpensive and are extremely energy efficient compared with traditional wireless communica- tion. These benefits have made backscatter communication a desirable candidate for distributed wireless sensor network applications with energy constraints. -
Visible Light Communication (VLC), Application Scenarios and Demonstrations in the Various Are Presented in This Document
March 2008 doc.: IEEE 802.15-<08/0114-02> Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Visible Light Communication : Tutorial] Date Submitted: [9 March 2008] Source: [(1)Eun Tae Won, Dongjae Shin, D.K. Jung, Y.J. Oh, Taehan Bae, Hyuk-Choon Kwon, Chihong Cho, Jaeseung Son, (2) Dominic O’Brien (3)Tae-Gyu Kang (4) Tom Matsumura] Company [(1)Samsung Electronics Co.,LTD, (2)University of Oxford, (3)ETRI (4) VLCC (28 Members)] Address [(1)Dong Suwon P.O. Box 105, 416 Maetan-3dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-742 Korea, (2) Wellington Square, Oxford, OX1 2JD, United Kingdom, (3) 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, Korea] Voice:[(1)82-31-279-5613,(3)82-42-860-5232], FAX: [(1)82-31-279-5130], E-Mail:[(1)[email protected], (2) [email protected], (3)[email protected]] Re: [] Abstract: [The overview of the visible light communication (VLC), application scenarios and demonstrations in the various are presented in this document. The research issues, which should be discussed in the near future, also are presented.] Purpose: [Tutorial to IEEE 802.15] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.