Talc-Bearing Serpentinite and the Creeping Section of the San Andreas Fault
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Facts About Serpentine Rock and Soil Containing Asbestos in California
University of California Division of Agriculture and Natural Resources http://anrcatalog.ucdavis.edu Publication 8399 / August 2009 Facts about Serpentine Rock and Soil Containing Asbestos in California JULIE FRAZELL, Program Representative, and RACHEL ELKINS, Pomology Farm Advisor, University of California Cooperative Extension, Lake County; ANTHONY TOBY O’GEEN, Associate Soil Resources Specialist in Cooperative Extension, Department of Land, Air and Water Resources, University of California, Davis; ROBERT REYNOLDS, Director Emeritus, Lake County Air Quality Management District; JAMES MEYERS, Occupational and Environmental Health Specialist Emeritus, Department of Biological and Agricultural Engineering, University of California, Davis What is Serpentine? The term “serpentine” refers to a group of minerals that make up serpentinite rock. “Serpentine” and “serpentinite,” however, are often used interchangeably. Serpentinite is a metamorphic rock formed when water and rock are exposed to low temperatures (about 400 to 600 ºC) and metamorphic processes (high pressures) within the earth’s crust. Serpentinite is a type of ultramafic rock, consisting predominantly of magnesium silicate and iron oxide minerals. Most ultramafic rocks, including serpentinite, contain naturally occurring asbestos (NOA) particles (fig. 1), microscopic needlelike particles of asbestos or asbestos-like fibers. The term “NOA” also refers to a group of relatively common fibrous minerals in rock (U.S. Geological Survey 2007). NOA minerals include chrysotile and fibrous forms of five amphiboles. These forms include a complex group of widely distributed magnesium-iron silicates (rock-forming minerals), crocidolite, amosite, anthophyllite, actinolite, and tremolite. The most common NOA particle in ultramafic rocks is chrysotile. NOA particles are a known human health risk. Asbestos has been classified as a carcinogen by state, federal, and international agencies. -
Fault Rocks and Fault Mechanisms
Fault rocks and fault mechanisms R. H. SIBSON SUMMARY Physical factors likely to affect the genesis of the with the production of mylonite series rocks various fault rocks--frictional properties, tem- possessing strong tectonite fabrics. In some cases, perature, effective stress normal to the fault and fault rocks developed by transient seismic fault- differential stress--are examined in relation to ing can be distinguished from those generated the energy budget of fault zones, the main by slow aseismic shear. Random-fabric fault velocity modes of faulting and the type of fault- rocks may form as a result of seismic faulting ing, whether thrust, wrench, or normal. In a within the ductile shear zones from time to conceptual model of a major fault zone cutting time, but tend to be obliterated by continued crystalline quartzo-feldspathic crust, a zone of shearing. Resistance to shear within the fault elastico-frictional (EF) behaviour generating zone reaches a peak value (greatest for thrusts random-fabric fault rocks (gouge--breccia-- and least for normal faults) around the EF/OP cataclasite series--pseudotachylyte) overlies a transition level, which for normal geothermal region where quasi-plastic (QP) processes of gradients and an adequate supply of water, rock deformation operate in ductile shear zones occurs at depths of lO-15 km. SINCE LAPWORTH'$ (I885) description of the type mylonite from the Moine Thrust in NW Scotland, there have been many petrographic descriptions and classifications of the texturally distinctive rocks found associated with fault zones (e.g. Waters & Campbell 1935, Hsu 1955, Christie 196o , 1963, Reed 1964, Spry I969, Higgins 1971 ). -
Lithology and Internal Structure of the San Andreas Fault at Depth Based
1 1 Lithology and Internal Structure of the San Andreas Fault at depth based on 2 characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at 3 Depth (SAFOD) Borehole 4 By Kelly K. Bradbury1, James P. Evans1, Judith S. Chester2, Frederick M. Chester2, and David L. Kirschner3 5 1Geology Department, Utah State University, Logan, UT 84321-4505 6 2Center for Tectonophysics and Department of Geology and Geophysics, Texas A&M University, College Station, 7 Texas 77843 8 3Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, Missouri 63108 9 10 Abstract 11 We characterize the lithology and structure of the spot core obtained in 2007 during 12 Phase 3 drilling of the San Andreas Fault Observatory at Depth (SAFOD) in order to determine 13 the composition, structure, and deformation processes of the fault zone at 3 km depth where 14 creep and microseismicity occur. A total of approximately 41 m of spot core was taken from 15 three separate sections of the borehole; the core samples consist of fractured arkosic sandstones 16 and shale west of the SAF zone (Pacific Plate) and sheared fine-grained sedimentary rocks, 17 ultrafine black fault-related rocks, and phyllosilicate-rich fault gouge within the fault zone 18 (North American Plate). The fault zone at SAFOD consists of a broad zone of variably damaged 19 rock containing localized zones of highly concentrated shear that often juxtapose distinct 20 protoliths. Two zones of serpentinite-bearing clay gouge, each meters-thick, occur at the two 21 locations of aseismic creep identified in the borehole on the basis of casing deformation. -
Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs
Pure Appl. Geophys. Ó 2014 Springer Basel DOI 10.1007/s00024-014-0896-6 Pure and Applied Geophysics Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions 1 1 1 1 1 KELLY K. BRADBURY, COLTER R. DAVIS, JOHN W. SHERVAIS, SUSANNE U. JANECKE, and JAMES P. EVANS Abstract—We examine the fine-scale variations in mineralogi- 1. Introduction cal composition, geochemical alteration, and texture of the fault- related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Well-constrained geological, geochemical, and Observatory at Depth (SAFOD) borehole near Parkfield, California. geophysical models of active fault zones are needed if This work provides insight into the physical and chemical properties, we are to understand fault zone behavior and earth- structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. quake deformation, constraining the factors that affect Exhumed outcrops within the SAF system comprised of serpentinite- the distribution of earthquakes, and the nature of slip bearing protolith are examined for comparison at San Simeon, Goat in the shallow crust by developing realistic models of Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple subsurface fault zone structure and ground motion juxtaposed lenses of sheared, foliated siltstone and shale with block- predictions. Earthquakes nucleate in rocks at depth in-matrix fabric, black cataclasite to ultracataclasite, and sheared (e.g., FAGERENG and TOY 2011;SIBSON 1977; 2003), serpentinite-bearing, finely foliated fault gouge. -
Rnic~Ess T~Ese
GEOPHYSICAL RESEARCH LETTERS, VOL. 18, NO.5, PAGES 979-982, MAY 1991 HYDROGEOLOGY OF THRUST FAULTS AND CRYSTALLINE THRUST SHEETS: RESULTS OF COMBINED FIELD AND MODELING STUDIES Craig B. Forster Department of Geology & Geophysics, University of Utah James P. Evans Department of Geology, Utah State University Abstract. Field,. laboratory, and.modeling studies of faulted obtained for systems that span a wide range of spatial scales, rock yield insight 1Oto the hydraulic character of thrust faults. aid in establishing appropriate scales of observation. Although Late-stage fau lts comprise foliated and su?par~lel faults, ~ith our numerical models cannot provide a unique answer that clay-rich gouge and fracture zones, that YIeld mterpenetratmg applies directly to a given field situation, the numerical results layers of low-permeability gou~e and higher-permeab~l~ty do provide insight into this class of groundwater flow system. damage zones. Laboratory testmg suggests a permeabIlity contrast of two orders of magnitude between gouge and damage zones. Layers of differing permeability lead to overall Fault Zone Hydrogeology permeability anisotropy with maximum permeability within the plane of the fault and minimum permeability perpendicular to the fault plane. Numerical modeling of regional-scale fluid Precambrian granites and gneisses found in our field area flow and heat transport illustrates the impact of fault zone (northwest Wyoming) were thrusted over adjacent sedimentary hydrogeology on fluid flux, fluid pore pressure, and rocks along moderately-dipping thrust faults. About 150 m of temperature in the vicinity of a crystalline thrust sheet. exposed fault were examined through large-scale field mapping and detailed sampling both across and along strike. -
Strength of Chrysotile-Serpentinite Gouge Under Hydrothermal Conditions: Can It Explain a Weak San Andreas Fault?
Strength of chrysotile-serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault? D. E. Moore D. A. Lockner U.S. Geological Survey, Menlo Park, California 94025 R. Summers Ma Shengli Institute of Geology, State Seismological Bureau, Beijing, China J. D. Byerlee U.S. Geological Survey, Menlo Park, California 94025 ABSTRACT more, it has been suggested that at higher temperatures (Reinen et Chrysotile-bearing serpentinite is a constituent of the San An- al., 1993) and/or lower strain rates (Reinen and Tullis, 1995) the dreas fault zone in central and northern California. At room tem- frictional strength of chrysotile may be reduced to Յ 0.1. As a test perature, chrysotile gouge has a very low coefficient of friction ( of this hypothesis, we report here on the strength of a pure chrysotile Ϸ 0.2), raising the possibility that under hydrothermal conditions gouge at elevated temperatures and a wide range of velocities, in- might be reduced sufficiently (to <0.1) to explain the apparent tended to more closely represent conditions at depth in the fault. weakness of the fault. To test this hypothesis, we measured the Our results suggest that chrysotile alone is not a likely explanation frictional strength of a pure chrysotile gouge at temperatures to for a weak San Andreas fault. ؇C and axial-shortening velocities as low as 0.001 m/s. As 290 temperature increases to Ϸ100 ؇C, the strength of the chrysotile EXPERIMENTAL PROCEDURES gouge decreases slightly at low velocities, but at temperatures The chrysotile gouge used in this study was prepared from a ؇C, it is substantially stronger and essentially independent of soft, layered, light to medium grayish-green rock from the New Idria 200< velocity at the lowest velocities tested. -
Sulfide Mineralization in an Ultramafic-Rock Hosted Seafloor
Marine Geology 245 (2007) 20–39 www.elsevier.com/locate/margeo Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides ⁎ Ana Filipa A. Marques a,b, , Fernando J.A.S. Barriga a, Steven D. Scott b a CREMINER (LA/ISR), Universidade de Lisboa, Faculdade de Ciências, Departamento de Geologia, Edif. C6 Piso 4. 1749-016 Campo Grande, Lisboa, Portugal b Scotiabank Marine Geology Research Laboratory, Department of Geology, University of Toronto, 22 Russell St., Toronto, Canada M5S 3B1 Received 12 December 2006; received in revised form 2 May 2007; accepted 12 May 2007 Abstract The Rainbow vent field is an ultramafic rock-hosted seafloor hydrothermal system located on the Mid-Atlantic ridge issuing high temperature, acidic, metal-rich fluids. Hydrothermal products include Cu–Zn–(Co)-rich massive sulfides with characteristics comparable to those found in mafic volcanic-hosted massive sulfide deposits. Petrography, mineralogy and geochemistry of nonmineralized and mineralized rocks sampled in the Rainbow vent field indicate that serpentinized peridotites host the hydrothermal vent system but serpentinization reactions occurred prior to and independently of the sulfide mineralization event. The onset of sulfide mineralization is reflected by extensive textural and chemical transformations in the serpentine-group minerals that show clear signs of hydrothermal corrosion. Element remobilization is a recurrent process in the Rainbow vent field rocks and, during simple peridotite serpentinization, Ni and Cr present in olivine and pyroxene are incorporated in the pseudomorphic serpentine mesh and bastite, respectively. Ni is later remobilized from pseudomorphic serpentine into the newly formed sulfides as a result of extensive hydrothermal alteration. -
Physical Properties of Surface Outcrop Cataclastic Fault Rocks, Alpine Fault, New Zealand
Article Volume 13, Number 1 28 January 2012 Q01018, doi:10.1029/2011GC003872 ISSN: 1525-2027 Physical properties of surface outcrop cataclastic fault rocks, Alpine Fault, New Zealand C. Boulton Department of Geological Sciences, University of Canterbury, PB 4800, Christchurch 8042, New Zealand ([email protected]) B. M. Carpenter Department of Geosciences, Pennsylvania State University, 522 Deike Building, University Park, Pennsylvania 16802, USA V. Toy Department of Geology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand C. Marone Department of Geosciences, Pennsylvania State University, 522 Deike Building, University Park, Pennsylvania 16802, USA [1] We present a unified analysis of physical properties of cataclastic fault rocks collected from surface exposures of the central Alpine Fault at Gaunt Creek and Waikukupa River, New Zealand. Friction experi- ments on fault gouge and intact samples of cataclasite were conducted at 30–33 MPa effective normal stress (sn′) using a double-direct shear configuration and controlled pore fluid pressure in a true triaxial pressure vessel. Samples from a scarp outcrop on the southwest bank of Gaunt Creek display (1) an increase in fault normal permeability (k=7.45 Â 10À20 m2 to k = 1.15 Â 10À16 m2), (2) a transition from frictionally weak (m = 0.44) fault gouge to frictionally strong (m = 0.50–0.55) cataclasite, (3) a change in friction rate depen- dence (a-b) from solely velocity strengthening, to velocity strengthening and weakening, and (4) an increase in the rate of frictional healing with increasing distance from the footwall fluvioglacial gravels contact. At Gaunt Creek, alteration of the primary clay minerals chlorite and illite/muscovite to smectite, kaolinite, and goethite accompanies an increase in friction coefficient (m = 0.31 to m = 0.44) and fault- perpendicular permeability (k=3.10 Â 10À20 m2 to k = 7.45 Â 10À20 m2). -
Analysis of Iron-Containing Weathering Products in Serpentine Soils and Their Implications for Mars T
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2904.pdf ANALYSIS OF IRON-CONTAINING WEATHERING PRODUCTS IN SERPENTINE SOILS AND THEIR IMPLICATIONS FOR MARS T. A. Bamisile1, E. M. Hausrath1, O. D. Tschauner1, Z. R. Harrold1, C. Adcock1, C. M. Phillips-Lander1, S. Gainey1 and R. Gabriel1. 1 Department of Geoscience, University of Nevada, Las Vegas. Nevada, 89154 [email protected] Introduction: Abundant X-ray amorphous materi- refusal [12], and samples were collected from each soil al has been detected at Gale Crater by X-ray diffraction horizon using a spatula that had been previously (XRD) using CheMin. Approximately 27% - 40% X- cleaned with 70% ethanol. Samples were placed in ray amorphous material [1,2] has been found inter- sterile Whirlpak® bags and stored in a cooler until mixed with primary basaltic minerals at the Rocknest returned to the laboratory. Samples were stored at 4°C aeolian bedform. In XRD patterns, it was best fit by in the laboratory before analysis. either basaltic glass or allophane (a hydrous alumino- Isolation of clay-sized materials: The clay sized- silicate with a molar Si: Al ratio of typically 1:2 or fraction was isolated from the soils via flocculation and 1:1), although it is believed based on chemical data to centrifugation following methods modified from Iyoda contain Fe [1,3]. The X-ray amorphous material is also et al. [13]. Briefly, 10 g of soil was weighed into a volatile-rich based on Sample Analysis at Mars (SAM), 250mL LDPE bottle, and 25 – 50 mL of 18.2 MΩ de- which suggests that the amorphous material may con- ionized water was added to each sample. -
Generation of Sintered Fault Rock and Its Implications for Earthquake
ARTICLE https://doi.org/10.1038/s43247-020-0004-z OPEN Generation of sintered fault rock and its implications for earthquake energetics and fault healing ✉ Tetsuro Hirono 1 , Shunya Kaneki 2, Tsuyoshi Ishikawa 3, Jun Kameda4, Naoya Tonoike1,7, Akihiro Ito5 & Yuji Miyazaki6 1234567890():,; After an earthquake, faults can recover strength through fault healing, but the mechanisms responsible are not well understood. Seismic slip may induce sintering, a bonding process between solid particles in contact under high temperatures without melting, which could produce a fault rock with elevated strength and chemical stability. Here we present results from electron microscope analyses that show a typical sintered structure in a black disk- shaped rock from the Chelungpu fault, Taiwan. This structure is experimentally reproducible in simulated fault material, prepared from the local host-rock, by heating at 800–900 °C. Through thermal and kinetic analyses of experimental materials, we show that sintering is an exothermic process which can generate energy to enhance post-slip thermochemical reac- tions in the fault. We propose that sintering substantially contributes to earthquake ener- getics and fault healing and that its occurrence can be a useful indicator of past seismic slip. 1 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. 2 Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan. 3 Kochi Institute for Core Sample Research, Japan Agency for Marine-Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. 4 Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan. -
Petrology on Mars†K
American Mineralogist, Volume 100, pages 2380–2395, 2015 INVITED CENTENNIAL ARTICLE REVIEW Petrology on Mars†k HARRY Y. MCSWEEN JR.1,* 1Department of Earth and Planetary Sciences and Planetary Geoscience Institute, University of Tennessee, Knoxville, Tennessee 37996-1410, U.S.A. ABSTRACT Petrologic investigations of martian rocks have been accomplished by mineralogical, geochemical, and textural analyses from Mars rov- ers (with geologic context provided by orbiters), and by laboratory analyses of martian meteorites. Igneous rocks are primarily lavas and volcaniclastic rocks of basaltic composition, and ultramafic cumulates; alkaline rocks are common in ancient terranes and tholeiitic rocks occur in younger terranes, suggesting global magmatic evolution. Relatively uncommon feldspathic rocks represent the ultimate fractionation prod- ucts, and granitic rocks are unknown. Sedimentary rocks are of both clastic (mudstone, sandstone, conglomerate, all containing significant igneous detritus) and chemical (evaporitic sulfate and less common carbonate) origin. High-silica sediments formed by hydrothermal activity. Sediments on Mars formed from different protoliths and were weathered under different environmental conditions from terrestrial sediments. Metamorphic rocks have only been inferred from orbital remote-sensing measurements. Metabasalt and serpentinite have mineral assemblages consistent with those predicted from low-pressure phase equilibria and likely formed in geothermal systems. Shock effects are com- mon in martian meteorites, and impact breccias are probably widespread in the planet’s crustal rocks. The martian rock cycle during early periods was similar in many respects to that of Earth. However, without plate tectonics Mars did not experience the thermal metamorphism and flux melting associated with subduction, nor deposition in subsided basins and rapid erosion resulting from tectonic uplift. -
AREAS MORE LIKELY to CONTAIN NATURALLY OCCURRING ASBESTOS August, 2000
OPEN-FILE REPORT 2000-19 A GENERAL LOCATION GUIDE FOR ULTRAMAFIC ROCKS IN CALIFORNIA - AREAS MORE LIKELY TO CONTAIN NATURALLY OCCURRING ASBESTOS August, 2000 DEPARTMENT OF CONSERVATION Division of Mines and Geology (:Jl ll lltCRt•Jlll CON'.!!"1\/'AnoN, STATE OF CALIFORNIA GRAY DAVIS GOVERNOR THE RESOURCES AGENCY DEPARTMENT OF CONSERVATION MARY D. NICHOLS DARRYL YOUNG SECRETARY FOR RESOURCES DIRECTOR STATE OF CALIFORNIA - GRAY DAVIS, GOVERNOR OPEN-FILE REPORT 2000-19 DIVISION OF MINES AND GEOLOGY THE RESOURCES AGENCY - MARY NICHOLS, SECRETARY FOR RESOURCES A GENERAL LOCATION GUIDE FOR ULTRAMAFIC ROCKS IN CALIFORNIA - JAMES F. DAVIS, STATE GEOLOGIST DEPARTMENT OF CONSERVATION - DARRYL YOUNG, DIRECTOR AREAS MORE LIKELY TO CONTAIN NATURALLY OCCURRING ASBESTOS 124° 42° B 120° B B 42° A General Location Guide for Ultramafic Rocks 97 DelDel NorteNorte in California - Areas More Likely to Contain ModocModoc 5 SiskiyouSiskiyou Naturally Occurring Asbestos 101 395 Compiled By Ronald K. Churchill and Robert L. Hill August 2000 c·~-.✓- MAP PURPOSE MAP USAGE AND LIMITATIONS ··, ,. _ ~ This map shows the areas more likely to contain natural occurrences of asbestos The small scale of this map (1:1,000,000) precludes showing detailed boundaries ~-r in California. Its purpose is to inform government agencies, private industry and of ultramafic rock units and small occurrences of ultramafic rocks. It should be used HumboldtHumboldt I LassenLassen the public of the areas in the State where natural occurrences of asbestos may only as a general guide to the presence of ultramafic rocks that may contain asbestos. be an issue. In these areas, consideration of the implications of the presence or This map is derived from the Geologic Map of California (1:750,000 scale - one inch TrinityTrinity ShastaShasta absence of asbestos through examination of more detailed maps and site-specific equals about 12 miles), Jennings (1977).