CRL4B Interacts with and Coordinates the SIN3A-HDAC Complex To

Total Page:16

File Type:pdf, Size:1020Kb

CRL4B Interacts with and Coordinates the SIN3A-HDAC Complex To ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 4679–4691 doi:10.1242/jcs.154245 RESEARCH ARTICLE CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression Qinghong Ji, Huili Hu, Fan Yang, Jupeng Yuan, Yang Yang, Liangqian Jiang, Yanyan Qian, Baichun Jiang, Yongxin Zou, Yan Wang, Changshun Shao and Yaoqin Gong* ABSTRACT Shahbazian and Grunstein, 2007). HATs catalyze the acetylation of histones and other proteins, whereas HDACs catalyze the CUL4B, a scaffold protein that assembles the CRL4B ubiquitin removal of the acetyl moieties from acetylated proteins. To date, ligase complex, participates in the regulation of a broad spectrum of 18 mammalian HDAC isoforms have been characterized and are biological processes. Here, we demonstrate a crucial role of CUL4B classified into class I, class II, class III and class IV (de Ruijter in driving cell cycle progression. We show that loss of CUL4B et al., 2003). Among them, HDAC1 and HDAC2, members of results in a significant reduction in cell proliferation and causes G1 class I, represent two of the best-characterized HDACs to date. cell cycle arrest, accompanied by the upregulation of the cyclin- They function in a number of deacetylase complexes – including dependent kinase (CDK) inhibitors (CKIs) p21 and p57 (encoded by SIN3A-HDAC, NuRD-HDAC, the BCH10-containing complex CDKN1A and CDKN1C, respectively). Strikingly, CUL4B was found and the CoREST-HDAC complex – and they are generally to negatively regulate the function of p21 through transcriptional associated with transcriptional repression (Hayakawa and repression, but not through proteolysis. Furthermore, we Nakayama, 2011; Laherty et al., 1997; Wang et al., 2009b). demonstrate that CRL4B and SIN3A-HDAC complexes interact Cells lacking both HDAC1 and HDAC2 show G1 cell cycle arrest with each other and co-occupy the CDKN1A and CDKN1C accompanied by upregulation of the cyclin-dependent kinase promoters. Lack of CUL4B led to a decreased retention of SIN3A- (CDK) inhibitors (CKIs) p21 and p57 (encoded by CDKN1A and HDAC components and increased levels of acetylated H3 and H4. CDKN1C, respectively) (Gui et al., 2004; Wilting et al., 2010; Interestingly, the ubiquitylation function of CRL4B is not required for Yamaguchi et al., 2010; Zupkovitz et al., 2010). the stable retention of SIN3A-HDAC on the promoters of target Cullin 4 (CUL4) acts as the scaffold of the E3 ligase complex genes. Thus, in addition to directly contributing to epigenetic CRL4. By interaction (at its C-terminal end) with a small RING silencing by catalyzing H2AK119 monoubiquitylation, CRL4B also finger protein [either ROC1 (also known as RBX1) or ROC2 facilitates the deacetylation function of SIN3A-HDAC. Our findings (also known as RBX2)], CUL4 recruits the E2 ubiquitin- reveal a coordinated action between CRL4B and SIN3A-HDAC conjugating enzyme (E2) charged with a ubiquitin ready for complexes in transcriptional repression. transfer to the substrate (Jackson and Xiong, 2009). The N- terminal domain of CUL4 binds to the substrate adaptor DNA KEY WORDS: CRL4B, CDKN1A, SIN3A-HDAC, Cell cycle damage binding protein 1 (DDB1), which recruits various progression substrate-recognition proteins (DCAF proteins), resulting in a large family of distinct CRL4 E3 ubiquitin ligase complexes INTRODUCTION (Higa et al., 2006; Lee and Zhou, 2007; Scott et al., 2006). CRL4 Histones are subject to a variety of post-translational targets different substrates for proteasomal degradation or for modifications that affect chromatin configuration, transcription protein modification, and thus regulates a broad variety of and the DNA damage response (Berger, 2007; Iizuka and Smith, physiologically and developmentally controlled processes (Higa 2003; van Attikum and Gasser, 2009). These modifications and Zhang, 2007). Although earlier studies focused on the include phosphorylation, methylation, acetylation, ubiquitylation redundant function and common substrates of members of the and sumoylation (Peterson and Laniel, 2004; Tan et al., 2011). CUL4 family, CUL4B has been recently reported to function Acetylation of histones, occurring mostly at lysine residues on the distinctly from CUL4A in transcriptional repression, neuronal N-terminal tails of histones H3 and H4, is linked to the opening of gene regulation, response to reactive oxygen species (ROS) and chromatin and activation of gene expression, either through microRNA regulation (Hu et al., 2012; Li et al., 2011; Nakagawa altering the affinity of histones for DNA or by creating binding and Xiong, 2011; Zou et al., 2013). Although CUL4A has been sites for the proteins that regulate chromatin accessibility. The proved to regulate the cell cycle by targeting CDT1 and CKIs antagonistic activities of two types of enzymes, histone such as p21 and p27 (encoded by CDKN1B) for proteolysis in acetyltransferases (HATs) and histone deacetylases (HDACs), cultured cells, it seems to be dispensable for embryonic control the reversible acetylation state (Kuo and Allis, 1998; development (Abbas et al., 2008; Hu et al., 2004; Li et al., 2006). However, studies from three independent groups have Key Laboratory of Experimental Teratology, Ministry of Education, Institute of demonstrated that Cul4b-null embryos are impaired in Molecular Medicine and Genetics, Shandong University School of Medicine, development (Chen et al., 2012; Jiang et al., 2012; Liu et al., Jinan, 250012, China. 2012), yet the underlying mechanisms still need to be elucidated. *Author for correspondence ([email protected]) Moreover, recent studies have established CRL4, especially CRL4B, as important epigenetic regulators. CUL4B ablation Received 1 April 2014; Accepted 16 August 2014 could block the degradation of WDR5, a core subunit of the Journal of Cell Science 4679 RESEARCH ARTICLE Journal of Cell Science (2014) 127, 4679–4691 doi:10.1242/jcs.154245 histone H3 lysine 4 (H3K4) methyltransferase complex, and thus encodes p21, was 2.3-fold higher in Cul4b-null MEFs than in increase H3K4 trimethylation (H3K4me3) on some neuronal gene wild-type MEFs (Fig. 2B, upper panel), and the CDKN1A mRNA promoters, leading to their upregulation (Nakagawa and Xiong, levels were 2.0-fold and 1.8-fold higher in CUL4B-knockdown 2011). Recently, we have shown that CRL4B functions as a HEK293 and HeLa cells (Fig. 2B, middle and lower panels), transcriptional co-repressor of tumor suppressors by respectively, suggesting that CUL4B might repress CDKN1A monoubiquitylating H2AK119 and coordinating with either the expression at the transcriptional level. Given that CDKN1A is a PRC2 complex or with DNA methyltransferase, HP1 and major transcriptional target of p53, we next examined whether the SUV39H1 to regulate histone methylation or DNA methylation increased transcription of CDKN1A was due to increased (Hu et al., 2012; Yang et al., 2013). Here, we show that CUL4B activation of p53 in CUL4B-deficient cells. Western blotting depletion can inhibit cell proliferation owing to the upregulation and qRT-PCR assays showed that there was no difference in the of Cdkn1a and Cdkn1c. Importantly, we demonstrate that the level of p53 in CUL4B-deficient cells as compared with that of CRL4B complex interacts and coordinates with SIN3A-HDAC to controls (Fig. 2C), suggesting that the basal (stress-free) exert its repressive effect. upregulation of p21 is independent of p53. We also demonstrated that the negative effect of CUL4B on the p21 RESULTS level was not due to CUL4B-mediated protein degradation, Lack of CUL4B inhibits cell proliferation in MEFs because treatment with the proteasome inhibitor MG132 did not Our previous results have shown that reduced cell proliferation narrow the difference between CUL4B-overexpressing and and increased apoptosis can lead to developmental arrest in control cells (Fig. 2D). Furthermore, examination of p21 decay Cul4b-null embryos (Jiang et al., 2012). We also noted that rates, performed by adding cycloheximide to the culture medium CUL4B-deficient cells are severely selected against in vivo in to inhibit new protein synthesis, did not reveal a significant human and mouse heterozygotes (Jiang et al., 2012; Zou et al., difference between CUL4B-knockdown and control cells 2007). To further understand the mechanism by which CUL4B (Fig. 2E). Taken together, these results demonstrate that regulates cell survival during embryonic development, we CUL4B might function to repress the basal transcription of generated viable Cul4b-null mice by crossing Cul4b-floxed CDKN1A. mice to Sox2-cre transgenic mice, and we then prepared wild- To determine whether the compromised proliferation observed type and Cul4b-null murine embryonic fibroblasts (MEFs), which in CUL4B-deficient cells was mediated by the upregulation of are designated as Cul4bf/Y and Cul4b-/Y, respectively. As shown in p21, we performed rescue experiments in which we transfected Fig. 1A, no CUL4B protein was detected in Cul4b-/Y MEFs, Cul4b-/Y MEFs with siRNA targeting Cdkn1a or with control whereas CUL4A was detected at comparable levels between siRNA. As shown in Fig. 2F and supplementary material Fig. S1, Cul4bf/Y and Cul4b-/Y MEFs. To determine whether the two types knockdown of Cdkn1a could partially rescue the proliferation of MEFs have differential proliferation, we seeded equal numbers defects caused by CUL4B depletion, supporting the idea that of Cul4bf/Y and Cul4b-/Y MEFs onto replicate plates and CUL4B promotes cell proliferation at
Recommended publications
  • SF3B3) and Sin3a Associated Protein 130 (SAP130
    cells Communication Ambiguity about Splicing Factor 3b Subunit 3 (SF3B3) and Sin3A Associated Protein 130 (SAP130) Paula I. Metselaar 1,* , Celine Hos 1, Olaf Welting 1, Jos A. Bosch 2,3, Aletta D. Kraneveld 4 , Wouter J. de Jonge 1 and Anje A. Te Velde 1 1 Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam UMC, University of Amsterdam, 1105BK Amsterdam, The Netherlands; [email protected] (C.H.); [email protected] (O.W.); [email protected] (W.J.d.J.); [email protected] (A.A.T.V.) 2 Department of Psychology, University of Amsterdam, 1018WS Amsterdam, The Netherlands; [email protected] 3 Department of Medical Psychology, Amsterdam UMC, University of Amsterdam, 1001NK Amsterdam, The Netherlands 4 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: In 2020, three articles were published on a protein that can activate the immune system by binding to macrophage-inducible C-type lectin receptor (Mincle). In the articles, the protein was referred to as ‘SAP130, a subunit of the histone deacetylase complex.’ However, the Mincle ligand the authors aimed to investigate is splicing factor 3b subunit 3 (SF3B3). This splicing factor is unrelated to SAP130 (Sin3A associated protein 130, a subunit of the histone deacetylase-dependent Sin3A corepressor complex). The conclusions in the three articles were formulated for SF3B3, Citation: Metselaar, P.I.; Hos, C.; while the researchers used qPCR primers and antibodies against SAP130.
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • Loss of Fam60a, a Sin3a Subunit, Results in Embryonic Lethality and Is Associated with Aberrant Methylation at a Subset of Gene
    RESEARCH ARTICLE Loss of Fam60a, a Sin3a subunit, results in embryonic lethality and is associated with aberrant methylation at a subset of gene promoters Ryo Nabeshima1,2, Osamu Nishimura3,4, Takako Maeda1, Natsumi Shimizu2, Takahiro Ide2, Kenta Yashiro1†, Yasuo Sakai1, Chikara Meno1, Mitsutaka Kadota3,4, Hidetaka Shiratori1†, Shigehiro Kuraku3,4*, Hiroshi Hamada1,2* 1Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; 2Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan; 3Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; 4Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan Abstract We have examined the role of Fam60a, a gene highly expressed in embryonic stem cells, in mouse development. Fam60a interacts with components of the Sin3a-Hdac transcriptional corepressor complex, and most Fam60a–/– embryos manifest hypoplasia of visceral organs and die in utero. Fam60a is recruited to the promoter regions of a subset of genes, with the expression of these genes being either up- or down-regulated in Fam60a–/– embryos. The DNA methylation level of the Fam60a target gene Adhfe1 is maintained at embryonic day (E) 7.5 but markedly reduced at –/– *For correspondence: E9.5 in Fam60a embryos, suggesting that DNA demethylation is enhanced in the mutant. [email protected] (SK); Examination of genome-wide DNA methylation identified several differentially methylated regions, [email protected] (HH) which were preferentially hypomethylated, in Fam60a–/– embryos. Our data suggest that Fam60a is †These authors contributed required for proper embryogenesis, at least in part as a result of its regulation of DNA methylation equally to this work at specific gene promoters.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • A Role for Mammalian Sin3 in Permanent Gene Silencing
    Molecular Cell Article A Role for Mammalian Sin3 in Permanent Gene Silencing Chris van Oevelen,1 Jinhua Wang,1 Patrik Asp,1 Qin Yan,2,3 William G. Kaelin, Jr.,2,3 Yuval Kluger,1,* and Brian David Dynlacht1,* 1New York University School of Medicine, NYU Cancer Institute, 522 1st Avenue, New York, NY 10016, USA 2Howard Hughes Medical Institute 3Department of Medical Oncology Dana Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA *Correspondence: [email protected] (B.D.D.), [email protected] (Y.K.) DOI 10.1016/j.molcel.2008.10.015 SUMMARY substoichiometric regulatory proteins, including Swi/Snf-remod- eling proteins, retinoblastoma (RB)-binding protein 2 (RBP2), and The multisubunit Sin3 corepressor complex regu- other proteins (Hayakawa et al., 2007; Nagl et al., 2007; Sif et al., lates gene transcription through deacetylation of nu- 2001). Interestingly, RBP2 was recently shown to be a demethy- cleosomes. However, the full range of Sin3 activities lase specific for di- and trimethylated lysine 4 of histone H3 and targets is not well understood. Here, we have (Christensen et al., 2007; Klose et al., 2007). Thus, the Sin3 investigated genome-wide binding of mouse Sin3 complex provides a versatile platform for chromatin modifying and RBP2 as well as histone modifications and nucle- and remodeling activities. Sin3/Rpd3 corepressor complexes are recruited to promoter osome positioning as a function of myogenic differ- regions via sequence-specific repressors such as Ume6 or entiation. Remarkably, we find that Sin3 complexes Mad in yeast and mammalian cells, respectively, resulting in spread immediately downstream of the transcription localized deacetylation of histones within promoter regions and start site on repressed and transcribed genes during transcriptional silencing (Ayer et al., 1995; Kadosh and Struhl, differentiation.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Chromatin-Associated Protein SIN3B Prevents Prostate Cancer Progression by Inducing Senescence Anthony J
    Published OnlineFirst August 14, 2017; DOI: 10.1158/0008-5472.CAN-16-3410 Cancer Tumor and Stem Cell Biology Research Chromatin-Associated Protein SIN3B Prevents Prostate Cancer Progression by Inducing Senescence Anthony J. Bainor1, Fang-Ming Deng2, Yu Wang1, Peng Lee2,4, David J. Cantor1, Susan K. Logan1,3,4, and Gregory David1,3,4 Abstract Distinguishing between indolent and aggressive prostate ade- cinoma. Furthermore, SIN3B was downregulated in human pros- nocarcinoma remains a priority to accurately identify patients tate adenocarcinoma correlating with upregulation of its target who need therapeutic intervention. SIN3B has been implicated in genes. Our results suggest a tumor suppressor function for the initiation of senescence in vitro. Here we show that in a mouse SIN3B that limits prostate adenocarcinoma progression, with model of prostate cancer, SIN3B provides a barrier to malignant potential implications for the use of SIN3B and its target genes progression. SIN3B was required for PTEN-induced cellular senes- as candidate diagnostic markers to distinguish indolent from cence and prevented progression to invasive prostate adenocar- aggressive disease. Cancer Res; 77(19); 1–10. Ó2017 AACR. Introduction damage, activation of oncogenes, or loss of a tumor suppres- sor (5, 6). Senescent cells have been identified in preneoplastic Prostate adenocarcinoma is the second most common cancer lesions of several solid tumor types, including prostatic intrae- type in American men with approximately 230,000 new pithelial neoplasias (PIN), but are rarely found in normal patients diagnosed each year, equating to about 1 in 7 men prostate or prostate adenocarcinoma (7). On the basis of these being diagnosed with prostate adenocarcinoma in his lifetime findings, cellular senescence has been hypothesized to prevent (1).
    [Show full text]
  • Transcriptional Corepressor SIN3A Regulates Hippocampal Synaptic Plasticity Via Homer1/Mglur5 Signaling
    Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling Morgan Bridi, … , Nelson Spruston, Ted Abel JCI Insight. 2020;5(5):e92385. https://doi.org/10.1172/jci.insight.92385. Research Article Genetics Neuroscience Graphical abstract Find the latest version: https://jci.me/92385/pdf RESEARCH ARTICLE Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling Morgan Bridi,1 Hannah Schoch,2 Cédrick Florian,3 Shane G. Poplawski,4 Anamika Banerjee,5 Joshua D. Hawk,1 Giulia S. Porcari,3 Camille Lejards,6 Chang-Gyu Hahn,5 Karl-Peter Giese,7 Robbert Havekes,3 Nelson Spruston,8 and Ted Abel3 1Mahoney Institute for Neurosciences, 2Cell and Molecular Biology Graduate Group, 3Department of Biology, 4Pharmacology Graduate Group, and 5Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 6Université Paul Sabatier, Toulouse, France. 7King’s College, London, United Kingdom. 8Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, Virginia, USA. Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long- term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density.
    [Show full text]
  • Tissue-Specific Metabolic Regulation of FOXO-Binding Protein
    cells Review Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone Noriko Kodani 1 and Jun Nakae 2,* 1 Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; [email protected] 2 Department of Physiology, International University of Health and Welfare School of Medicine, Narita 286-8686, Japan * Correspondence: [email protected]; Tel.: +81-476-20-7701 Received: 17 January 2020; Accepted: 10 March 2020; Published: 13 March 2020 Abstract: The transcription factor forkhead box (FOXO) controls important biological responses, including proliferation, apoptosis, differentiation, metabolism, and oxidative stress resistance. The transcriptional activity of FOXO is tightly regulated in a variety of cellular processes. FOXO can convert the external stimuli of insulin, growth factors, nutrients, cytokines, and oxidative stress into cell-specific biological responses by regulating the transcriptional activity of target genes. However, how a single transcription factor regulates a large set of target genes in various tissues in response to a variety of external stimuli remains to be clarified. Evidence indicates that FOXO-binding proteins synergistically function to achieve tightly controlled processes. Here, we review the elaborate mechanism of FOXO-binding proteins, focusing on adipogenesis, glucose homeostasis, and other metabolic regulations in order to deepen our understanding and to identify a novel therapeutic target for the prevention and treatment of metabolic disorders. Keywords: FOXO; transcription factor; FOXO-binding protein 1. Introduction Forkhead box (FOXO) transcription factors play important roles in apoptosis, the cell cycle, DNA damage repair, oxidative stress, cell differentiation, glucose metabolism, and other cellular functions [1].
    [Show full text]
  • Genome-Wide Analyses Identify Transcription Factors Required for Proper Morphogenesis of Drosophila Sensory Neuron Dendrites
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites Jay Z. Parrish,1 Michael D. Kim,1 Lily Yeh Jan, and Yuh Nung Jan2 Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA Dendrite arborization patterns are critical determinants of neuronal function. To explore the basis of transcriptional regulation in dendrite pattern formation, we used RNA interference (RNAi) to screen 730 transcriptional regulators and identified 78 genes involved in patterning the stereotyped dendritic arbors of class I da neurons in Drosophila. Most of these transcriptional regulators affect dendrite morphology without altering the number of class I dendrite arborization (da) neurons and fall primarily into three groups. Group A genes control both primary dendrite extension and lateral branching, hence the overall dendritic field. Nineteen genes within group A act to increase arborization, whereas 20 other genes restrict dendritic coverage. Group B genes appear to balance dendritic outgrowth and branching. Nineteen group B genes function to promote branching rather than outgrowth, and two others have the opposite effects. Finally, 10 group C genes are critical for the routing of the dendritic arbors of individual class I da neurons. Thus, multiple genetic programs operate to calibrate dendritic coverage, to coordinate the elaboration of primary versus secondary branches, and to lay out these dendritic branches in the proper orientation. [Keywords: Transcription; RNAi; Drosophila; neuron; dendrite] Supplemental material is available at http://www.genesdev.org.
    [Show full text]
  • Hats and Hdacs in Neurodegeneration: a Tale of Disconcerted Acetylation Homeostasis
    Cell Death and Differentiation (2006) 13, 539–550 & 2006 Nature Publishing Group All rights reserved 1350-9047/06 $30.00 www.nature.com/cdd Review HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis RN Saha1 and K Pahan*,1 Introduction 1 Section of Neuroscience, Department of Oral Biology, University of Nebraska Histone acetyltransferases (HATs) and histone deacetylases Medical Center, Lincoln, NE 68583-0740, USA (HDACs) represent two enzyme classes that, respectively, * Corresponding author: K Pahan, Section of Neuroscience, Department of Oral catalyze forward and backward reaction kinetics of lysine Biology, University of Nebraska Medical Center, 40th and Holdrege, Lincoln, residue acetylation in specific protein substrates. These NE 68583-0740, USA. Tel: þ 1-402-472-1324; Fax: þ 1-402-472-2551; substrates most importantly include nucleosomal histones E-mail: [email protected] and various transcription factors (TFs), which form part of Received 28.4.05; revised 11.7.05; accepted 01.8.05; published online 28.10.05 the transcription initiation complex. Accordingly, HATs and Edited by L Greene HDACs are found embedded in large multiprotein complexes near euchromatic regions of the chromatin. HATs modify Abstract core histone tails by post-translational acetylation of specific lysine residues, thereby creating appropriate ‘histone code’ Gradual disclosure of the molecular basis of selective for chromatin modification and enhanced DNA accessibility of neuronal apoptosis during neurodegenerative diseases TFs. Moreover, TFs like RelA, E2F, p53 and GATA1 are also reveals active participation of acetylating and deacetylating acetylated by HATs. In addition to enhancing protein stability, agents during the process. Several studies have now such acetylation, in most cases, enhance their transactivation successfully manipulated neuronal vulnerability by influen- potential by facilitating their interactions with DNA and other cing the dose and enzymatic activity of histone acetyltrans- proteins of the transcription apparatus.
    [Show full text]
  • Novel Mechanisms of Transcriptional Regulation by Leukemia Fusion Proteins
    Novel mechanisms of transcriptional regulation by leukemia fusion proteins A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the Department of Cancer and Cell Biology of the College of Medicine by Chien-Hung Gow M.S. Columbia University, New York M.D. Our Lady of Fatima University B.S. National Yang Ming University Dissertation Committee: Jinsong Zhang, Ph.D. Robert Brackenbury, Ph.D. Sohaib Khan, Ph.D. (Chair) Peter Stambrook, Ph.D. Song-Tao Liu, Ph.D. ABSTRACT Transcription factors and chromatin structure are master regulators of homeostasis during hematopoiesis. Regulatory genes for each stage of hematopoiesis are activated or silenced in a precise, finely tuned manner. Many leukemia fusion proteins are produced by chromosomal translocations that interrupt important transcription factors and disrupt these regulatory processes. Leukemia fusion proteins E2A-Pbx1 and AML1-ETO involve normal function transcription factor E2A, resulting in two distinct types of leukemia: E2A-Pbx1 t(1;19) acute lymphoblastic leukemia (ALL) and AML1-ETO t(8;21) acute myeloid leukemia (AML). E2A, a member of the E-protein family of transcription factors, is a key regulator in hematopoiesis that recruits coactivators or corepressors in a mutually exclusive fashion to regulate its direct target genes. In t(1;19) ALL, the E2A portion of E2A-Pbx1 mediates a robust transcriptional activation; however, the transcriptional activity of wild-type E2A is silenced by high levels of corepressors, such as the AML1-ETO fusion protein in t(8;21) AML and ETO-2 in hematopoietic cells.
    [Show full text]