Performance Comparison of the Multilayer Perceptron and the Radial Basis Function Artificial Neural Networks Murat Kayria Muş Alparslan University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Malware Classification with BERT
San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-25-2021 Malware Classification with BERT Joel Lawrence Alvares Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons Malware Classification with Word Embeddings Generated by BERT and Word2Vec Malware Classification with BERT Presented to Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree By Joel Alvares May 2021 Malware Classification with Word Embeddings Generated by BERT and Word2Vec The Designated Project Committee Approves the Project Titled Malware Classification with BERT by Joel Lawrence Alvares APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE San Jose State University May 2021 Prof. Fabio Di Troia Department of Computer Science Prof. William Andreopoulos Department of Computer Science Prof. Katerina Potika Department of Computer Science 1 Malware Classification with Word Embeddings Generated by BERT and Word2Vec ABSTRACT Malware Classification is used to distinguish unique types of malware from each other. This project aims to carry out malware classification using word embeddings which are used in Natural Language Processing (NLP) to identify and evaluate the relationship between words of a sentence. Word embeddings generated by BERT and Word2Vec for malware samples to carry out multi-class classification. BERT is a transformer based pre- trained natural language processing (NLP) model which can be used for a wide range of tasks such as question answering, paraphrase generation and next sentence prediction. However, the attention mechanism of a pre-trained BERT model can also be used in malware classification by capturing information about relation between each opcode and every other opcode belonging to a malware family. -
Training Autoencoders by Alternating Minimization
Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort. -
Fun with Hyperplanes: Perceptrons, Svms, and Friends
Perceptrons, SVMs, and Friends: Some Discriminative Models for Classification Parallel to AIMA 18.1, 18.2, 18.6.3, 18.9 The Automatic Classification Problem Assign object/event or sequence of objects/events to one of a given finite set of categories. • Fraud detection for credit card transactions, telephone calls, etc. • Worm detection in network packets • Spam filtering in email • Recommending articles, books, movies, music • Medical diagnosis • Speech recognition • OCR of handwritten letters • Recognition of specific astronomical images • Recognition of specific DNA sequences • Financial investment Machine Learning methods provide one set of approaches to this problem CIS 391 - Intro to AI 2 Universal Machine Learning Diagram Feature Things to Magic Vector Classification be Classifier Represent- Decision classified Box ation CIS 391 - Intro to AI 3 Example: handwritten digit recognition Machine learning algorithms that Automatically cluster these images Use a training set of labeled images to learn to classify new images Discover how to account for variability in writing style CIS 391 - Intro to AI 4 A machine learning algorithm development pipeline: minimization Problem statement Given training vectors x1,…,xN and targets t1,…,tN, find… Mathematical description of a cost function Mathematical description of how to minimize/maximize the cost function Implementation r(i,k) = s(i,k) – maxj{s(i,j)+a(i,j)} … CIS 391 - Intro to AI 5 Universal Machine Learning Diagram Today: Perceptron, SVM and Friends Feature Things to Magic Vector -
CS 189 Introduction to Machine Learning Spring 2021 Jonathan Shewchuk HW6
CS 189 Introduction to Machine Learning Spring 2021 Jonathan Shewchuk HW6 Due: Wednesday, April 21 at 11:59 pm Deliverables: 1. Submit your predictions for the test sets to Kaggle as early as possible. Include your Kaggle scores in your write-up (see below). The Kaggle competition for this assignment can be found at • https://www.kaggle.com/c/spring21-cs189-hw6-cifar10 2. The written portion: • Submit a PDF of your homework, with an appendix listing all your code, to the Gradescope assignment titled “Homework 6 Write-Up”. Please see section 3.3 for an easy way to gather all your code for the submission (you are not required to use it, but we would strongly recommend using it). • In addition, please include, as your solutions to each coding problem, the specific subset of code relevant to that part of the problem. Whenever we say “include code”, that means you can either include a screenshot of your code, or typeset your code in your submission (using markdown or LATEX). • You may typeset your homework in LaTeX or Word (submit PDF format, not .doc/.docx format) or submit neatly handwritten and scanned solutions. Please start each question on a new page. • If there are graphs, include those graphs in the correct sections. Do not put them in an appendix. We need each solution to be self-contained on pages of its own. • In your write-up, please state with whom you worked on the homework. • In your write-up, please copy the following statement and sign your signature next to it. -
Can Temporal-Difference and Q-Learning Learn Representation? a Mean-Field Analysis
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Analysis Yufeng Zhang Qi Cai Northwestern University Northwestern University Evanston, IL 60208 Evanston, IL 60208 [email protected] [email protected] Zhuoran Yang Yongxin Chen Zhaoran Wang Princeton University Georgia Institute of Technology Northwestern University Princeton, NJ 08544 Atlanta, GA 30332 Evanston, IL 60208 [email protected] [email protected] [email protected] Abstract Temporal-difference and Q-learning play a key role in deep reinforcement learning, where they are empowered by expressive nonlinear function approximators such as neural networks. At the core of their empirical successes is the learned feature representation, which embeds rich observations, e.g., images and texts, into the latent space that encodes semantic structures. Meanwhile, the evolution of such a feature representation is crucial to the convergence of temporal-difference and Q-learning. In particular, temporal-difference learning converges when the function approxi- mator is linear in a feature representation, which is fixed throughout learning, and possibly diverges otherwise. We aim to answer the following questions: When the function approximator is a neural network, how does the associated feature representation evolve? If it converges, does it converge to the optimal one? We prove that, utilizing an overparameterized two-layer neural network, temporal- difference and Q-learning globally minimize the mean-squared projected Bellman error at a sublinear rate. Moreover, the associated feature representation converges to the optimal one, generalizing the previous analysis of [21] in the neural tan- gent kernel regime, where the associated feature representation stabilizes at the initial one. The key to our analysis is a mean-field perspective, which connects the evolution of a finite-dimensional parameter to its limiting counterpart over an infinite-dimensional Wasserstein space. -
Introduction to Machine Learning
Introduction to Machine Learning Perceptron Barnabás Póczos Contents History of Artificial Neural Networks Definitions: Perceptron, Multi-Layer Perceptron Perceptron algorithm 2 Short History of Artificial Neural Networks 3 Short History Progression (1943-1960) • First mathematical model of neurons ▪ Pitts & McCulloch (1943) • Beginning of artificial neural networks • Perceptron, Rosenblatt (1958) ▪ A single neuron for classification ▪ Perceptron learning rule ▪ Perceptron convergence theorem Degression (1960-1980) • Perceptron can’t even learn the XOR function • We don’t know how to train MLP • 1963 Backpropagation… but not much attention… Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550 4 Short History Progression (1980-) • 1986 Backpropagation reinvented: ▪ Rumelhart, Hinton, Williams: Learning representations by back-propagating errors. Nature, 323, 533—536, 1986 • Successful applications: ▪ Character recognition, autonomous cars,… • Open questions: Overfitting? Network structure? Neuron number? Layer number? Bad local minimum points? When to stop training? • Hopfield nets (1982), Boltzmann machines,… 5 Short History Degression (1993-) • SVM: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture. • SVM and Graphical models almost kill the ANN research. • Training deeper networks consistently yields poor results. • Exception: deep convolutional neural networks, Yann LeCun 1998. (discriminative model) 6 Short History Progression (2006-) Deep Belief Networks (DBN) • Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554. • Generative graphical model • Based on restrictive Boltzmann machines • Can be trained efficiently Deep Autoencoder based networks Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. -
Neural Networks Shuai Li John Hopcroft Center, Shanghai Jiao Tong University
Lecture 6: Neural Networks Shuai Li John Hopcroft Center, Shanghai Jiao Tong University https://shuaili8.github.io https://shuaili8.github.io/Teaching/VE445/index.html 1 Outline • Perceptron • Activation functions • Multilayer perceptron networks • Training: backpropagation • Examples • Overfitting • Applications 2 Brief history of artificial neural nets • The First wave • 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron model • 1958 Rosenblatt introduced the simple single layer networks now called Perceptrons • 1969 Minsky and Papert’s book Perceptrons demonstrated the limitation of single layer perceptrons, and almost the whole field went into hibernation • The Second wave • 1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was rediscovered and the whole field took off again • The Third wave • 2006 Deep (neural networks) Learning gains popularity • 2012 made significant break-through in many applications 3 Biological neuron structure • The neuron receives signals from their dendrites, and send its own signal to the axon terminal 4 Biological neural communication • Electrical potential across cell membrane exhibits spikes called action potentials • Spike originates in cell body, travels down axon, and causes synaptic terminals to release neurotransmitters • Chemical diffuses across synapse to dendrites of other neurons • Neurotransmitters can be excitatory or inhibitory • If net input of neuro transmitters to a neuron from other neurons is excitatory and exceeds some threshold, it fires an action potential 5 Perceptron • Inspired by the biological neuron among humans and animals, researchers build a simple model called Perceptron • It receives signals 푥푖’s, multiplies them with different weights 푤푖, and outputs the sum of the weighted signals after an activation function, step function 6 Neuron vs. -
Audio Event Classification Using Deep Learning in an End-To-End Approach
Audio Event Classification using Deep Learning in an End-to-End Approach Master thesis Jose Luis Diez Antich Aalborg University Copenhagen A. C. Meyers Vænge 15 2450 Copenhagen SV Denmark Title: Abstract: Audio Event Classification using Deep Learning in an End-to-End Approach The goal of the master thesis is to study the task of Sound Event Classification Participant(s): using Deep Neural Networks in an end- Jose Luis Diez Antich to-end approach. Sound Event Classifi- cation it is a multi-label classification problem of sound sources originated Supervisor(s): from everyday environments. An auto- Hendrik Purwins matic system for it would many applica- tions, for example, it could help users of hearing devices to understand their sur- Page Numbers: 38 roundings or enhance robot navigation systems. The end-to-end approach con- Date of Completion: sists in systems that learn directly from June 16, 2017 data, not from features, and it has been recently applied to audio and its results are remarkable. Even though the re- sults do not show an improvement over standard approaches, the contribution of this thesis is an exploration of deep learning architectures which can be use- ful to understand how networks process audio. The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author. Contents 1 Introduction1 1.1 Scope of this work.............................2 2 Deep Learning3 2.1 Overview..................................3 2.2 Multilayer Perceptron...........................4 -
Dynamic Modification of Activation Function Using the Backpropagation Algorithm in the Artificial Neural Networks
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 4, 2019 Dynamic Modification of Activation Function using the Backpropagation Algorithm in the Artificial Neural Networks Marina Adriana Mercioni1, Alexandru Tiron2, Stefan Holban3 Department of Computer Science Politehnica University Timisoara, Timisoara, Romania Abstract—The paper proposes the dynamic modification of These functions represent the main activation functions, the activation function in a learning technique, more exactly being currently the most used by neural networks, representing backpropagation algorithm. The modification consists in from this reason a standard in building of an architecture of changing slope of sigmoid function for activation function Neural Network type [6,7]. according to increase or decrease the error in an epoch of learning. The study was done using the Waikato Environment for The activation functions that have been proposed along the Knowledge Analysis (WEKA) platform to complete adding this time were analyzed in the light of the applicability of the feature in Multilayer Perceptron class. This study aims the backpropagation algorithm. It has noted that a function that dynamic modification of activation function has changed to enables differentiated rate calculated by the neural network to relative gradient error, also neural networks with hidden layers be differentiated so and the error of function becomes have not used for it. differentiated [8]. Keywords—Artificial neural networks; activation function; The main purpose of activation function consists in the sigmoid function; WEKA; multilayer perceptron; instance; scalation of outputs of the neurons in neural networks and the classifier; gradient; rate metric; performance; dynamic introduction a non-linear relationship between the input and modification output of the neuron [9]. -
4 Nonlinear Regression and Multilayer Perceptron
4 Nonlinear Regression and Multilayer Perceptron In nonlinear regression the output variable y is no longer a linear function of the regression parameters plus additive noise. This means that estimation of the parameters is harder. It does not reduce to minimizing a convex energy functions { unlike the methods we described earlier. The perceptron is an analogy to the neural networks in the brain (over-simplified). It Pd receives a set of inputs y = j=1 !jxj + !0, see Figure (3). Figure 3: Idealized neuron implementing a perceptron. It has a threshold function which can be hard or soft. The hard one is ζ(a) = 1; if a > 0, ζ(a) = 0; otherwise. The soft one is y = σ(~!T ~x) = 1=(1 + e~!T ~x), where σ(·) is the sigmoid function. There are a variety of different algorithms to train a perceptron from labeled examples. Example: The quadratic error: t t 1 t t 2 E(~!j~x ; y ) = 2 (y − ~! · ~x ) ; for which the update rule is ∆!t = −∆ @E = +∆(yt~! · ~xt)~xt. Introducing the sigmoid j @!j function rt = sigmoid(~!T ~xt), we have t t P t t t t E(~!j~x ; y ) = − i ri log yi + (1 − ri) log(1 − yi ) , and the update rule is t t t t ∆!j = −η(r − y )xj, where η is the learning factor. I.e, the update rule is the learning factor × (desired output { actual output)× input. 10 4.1 Multilayer Perceptrons Multilayer perceptrons were developed to address the limitations of perceptrons (introduced in subsection 2.1) { i.e. -
A Deep Reinforcement Learning Neural Network Folding Proteins
DeepFoldit - A Deep Reinforcement Learning Neural Network Folding Proteins Dimitra Panou1, Martin Reczko2 1University of Athens, Department of Informatics and Telecommunications 2Biomedical Sciences Research Center “Alexander Fleming” ABSTRACT Despite considerable progress, ab initio protein structure prediction remains suboptimal. A crowdsourcing approach is the online puzzle video game Foldit [1], that provided several useful results that matched or even outperformed algorithmically computed solutions [2]. Using Foldit, the WeFold [3] crowd had several successful participations in the Critical Assessment of Techniques for Protein Structure Prediction. Based on the recent Foldit standalone version [4], we trained a deep reinforcement neural network called DeepFoldit to improve the score assigned to an unfolded protein, using the Q-learning method [5] with experience replay. This paper is focused on model improvement through hyperparameter tuning. We examined various implementations by examining different model architectures and changing hyperparameter values to improve the accuracy of the model. The new model’s hyper-parameters also improved its ability to generalize. Initial results, from the latest implementation, show that given a set of small unfolded training proteins, DeepFoldit learns action sequences that improve the score both on the training set and on novel test proteins. Our approach combines the intuitive user interface of Foldit with the efficiency of deep reinforcement learning. KEYWORDS: ab initio protein structure prediction, Reinforcement Learning, Deep Learning, Convolution Neural Networks, Q-learning 1. ALGORITHMIC BACKGROUND Machine learning (ML) is the study of algorithms and statistical models used by computer systems to accomplish a given task without using explicit guidelines, relying on inferences derived from patterns. ML is a field of artificial intelligence. -
A Study of Activation Functions for Neural Networks Meenakshi Manavazhahan University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Computer Science and Computer Engineering Computer Science and Computer Engineering Undergraduate Honors Theses 5-2017 A Study of Activation Functions for Neural Networks Meenakshi Manavazhahan University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/csceuht Part of the Other Computer Engineering Commons Recommended Citation Manavazhahan, Meenakshi, "A Study of Activation Functions for Neural Networks" (2017). Computer Science and Computer Engineering Undergraduate Honors Theses. 44. http://scholarworks.uark.edu/csceuht/44 This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. A Study of Activation Functions for Neural Networks An undergraduate thesis in partial fulfillment of the honors program at University of Arkansas College of Engineering Department of Computer Science and Computer Engineering by: Meena Mana 14 March, 2017 1 Abstract: Artificial neural networks are function-approximating models that can improve themselves with experience. In order to work effectively, they rely on a nonlinearity, or activation function, to transform the values between each layer. One question that remains unanswered is, “Which non-linearity is optimal for learning with a particular dataset?” This thesis seeks to answer this question with the MNIST dataset, a popular dataset of handwritten digits, and vowel dataset, a dataset of vowel sounds. In order to answer this question effectively, it must simultaneously determine near-optimal values for several other meta-parameters, including the network topology, the optimization algorithm, and the number of training epochs necessary for the model to converge to good results.