University of Arkansas, Fayetteville ScholarWorks@UARK Computer Science and Computer Engineering Computer Science and Computer Engineering Undergraduate Honors Theses 5-2017 A Study of Activation Functions for Neural Networks Meenakshi Manavazhahan University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/csceuht Part of the Other Computer Engineering Commons Recommended Citation Manavazhahan, Meenakshi, "A Study of Activation Functions for Neural Networks" (2017). Computer Science and Computer Engineering Undergraduate Honors Theses. 44. http://scholarworks.uark.edu/csceuht/44 This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact
[email protected],
[email protected]. A Study of Activation Functions for Neural Networks An undergraduate thesis in partial fulfillment of the honors program at University of Arkansas College of Engineering Department of Computer Science and Computer Engineering by: Meena Mana 14 March, 2017 1 Abstract: Artificial neural networks are function-approximating models that can improve themselves with experience. In order to work effectively, they rely on a nonlinearity, or activation function, to transform the values between each layer. One question that remains unanswered is, “Which non-linearity is optimal for learning with a particular dataset?” This thesis seeks to answer this question with the MNIST dataset, a popular dataset of handwritten digits, and vowel dataset, a dataset of vowel sounds. In order to answer this question effectively, it must simultaneously determine near-optimal values for several other meta-parameters, including the network topology, the optimization algorithm, and the number of training epochs necessary for the model to converge to good results.