Analysis on Arithmetic Schemes. II

Total Page:16

File Type:pdf, Size:1020Kb

Analysis on Arithmetic Schemes. II Analysis on arithmetic schemes. II Ivan Fesenko Abstract. We construct adelic objects for rank two integral structures on arithmetic surfaces and develop measure and integration theory, as well as elements of harmonic analysis. Using the topological Milnor K2-delic and K1 × K1-delic objects associated to an arithmetic surface, an adelic zeta integral is defined. Its unramified version is closely related to the square of the zeta function of the surface. For a proper regular model of an elliptic curve over a global field, a two-dimensional version of the theory of Tate and Iwasawa is derived. Using adelic analytic duality and a two-dimensional theta formula, the study of the zeta integral is reduced to the study of a boundary integral term. The work includes first applications to three fundamental properties of the zeta function: its meromorphic continuation and functional equation and a hypothesis on its mean periodicity; the location of its poles and a hypothesis on the permanence of the sign of the fourth logarithmic derivative of a boundary function; and its pole at the central point where the boundary integral explicitly relates the analytic and arithmetic ranks. Contents Introduction ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 1. A-delic objects with respect to two-dimensional structure :::::::::::::::::::::::::::::: 9 1.1. Basic objects ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 10 1.2. Adelic dualities ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 16 1.3. Adelic measure and integration ::::::::::::::::::::::::::::::::::::::::::::::::: 22 2. Two-dimensional K-delic objects :::::::::::::::::::::::::::::::::::::::::::::::::: 33 3. Two-dimensional zeta integral and its first properties ::::::::::::::::::::::::::::::::: 37 3.1. Group T and integrals over it :::::::::::::::::::::::::::::::::::::::::::::::::::39 3.2. Zeta function ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 46 3.3. Definition of the zeta integral :::::::::::::::::::::::::::::::::::::::::::::::::: 47 3.4. First calculation of the zeta integral ::::::::::::::::::::::::::::::::::::::::::::: 49 3.5. Subgroups of T and associated integrals ::::::::::::::::::::::::::::::::::::::::: 55 3.6. Two-dimensional theta-formula :::::::::::::::::::::::::::::::::::::::::::::::: 61 3.7. Second calculation of the zeta integral :::::::::::::::::::::::::::::::::::::::::: 63 4. The boundary term and first applications :::::::::::::::::::::::::::::::::::::::::::: 67 4.1. The boundary function :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 68 4.2. Mean-periodicity and meromorphic continuation of the zeta integral ::::::::::::::::70 4.3. Monotone behaviour of log derivatives of the boundary function and poles of the zeta integral ::::::::::::::::::::::::::::::::::::::::::::::::::: 74 4.4. Supplementary comments ::::::::::::::::::::::::::::::::::::::::::::::::::::: 86 4.5. Behaviour at the central point :::::::::::::::::::::::::::::::::::::::::::::::::: 88 Bibliography ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::90 List of notation ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::93 a slightly updated version (see footnotes) of the original published in J. K-theory, 5(2010), 437–557 2 I. Fesenko Analysis on arithmetic schemes. II Introduction 0. A conceptual way to understand the meromorphic continuation and functional equation of zeta functions of global fields and their twists by Dirichlet characters is to lift them to zeta integrals on appropriate adelic objects and then calculate the integrals in two different ways, using a powerful adelic duality. For number fields this first appeared in [24], [57], [25]; for the general case see e.g. [60]. For a continuous homomorphism χ from the idele class group to the multiplicative group of complex numbers, and an appropriate function f on the adeles, one derives the following formula concerning the zeta integral ζ(f; χ): ζ(f; χ) = ξ(f; χ) + ξ(f;b χb) + !(f; χ); <(s(χ)) > 1 in which the first two terms are absolutely convergent integrals on the plane. The boundary term !(f; χ) involves an integral of f and its transform fb over the set f0g, which is the (weak) boundary of the multiplicative group of the global field. This boundary term is a rational function either of s or of q−s. The meromorphic continuation, functional equation, and the location of the poles of the zeta integral and the determination of their residues then follow from analytic properties of the boundary term. This K1-adelic method was extended to algebraic groups over global fields in [18], where one works with zeta integrals of an automorphic representation. The appropriate analogue of the boundary term has finitely many poles. In particular, in the cuspidal case the corresponding boundary term vanishes. 1. Instead of passing from the one-dimensional, commutative theory, which uses GL1 or K1 of one-dimensional local, global, and adelic objects, to the one-dimensional, noncommutative theory, i.e. using algebraic groups of the objects, this work goes in the direction of a commutative, two- dimensional theory in the following sense. The analogue of a global field is a two-dimensional global field, namely the field of rational functions of an arithmetic surface, which in this text will be a proper, regular model of a curve over a (one-dimensional) global field. Abelian extensions of a two-dimensional global field are described by higher class field theory, one exposition of which t uses products, restricted in a two-dimensional sense, of topological Milnor K2-groups of completed and semi-completed objects associated to points and curves on the surface. In this work, without using higher class field theory, but working with subobjects of the objects from explicit higher class t field theory, we lift the zeta function of the arithmetic surface to a zeta integral on K2-delic and K1 × K1-delic objects, and then develop a two-dimensional, commutative generalization of Tate and Iwasawa’s one-dimensional theory. Thus, unlike almost all works in arithmetic geometry, which study the zeta function of arithmetic schemes in dimension two and higher via the study of their L-function factors, the two-dimensional adelic analysis of this paper directly operates with the zeta function. The key ingredient, which has not been available until recently, is the theory of translation invariant measure and integration on higher dimensional local fields, developed in [11], [12]. To introduce the zeta integral we first construct the theory of measure and integration on new adelic objects. The two-dimensional adelic analysis reveals various kinds of new adelic symmetries underlying the properties of the zeta function, which are not explicitly visible in the approaches which study the L-function factors. Milnor K-theory plays an important role too, both for the motivation of some of the main objects and for their use. There are numerous links between the commutative, two-dimensional adelic theory of this paper and the one-dimensional, noncommutative theories, including aspects of the arithmetic and geometric Langlands correspondences. Analysis on arithmetic schemes. II I. Fesenko 3 The ideles, introduced by Chevalley, simplified and clarified some of fundamental structures ⊕n in algebraic number theory. Similarly, for a group G (G = Ga, Kn, or K1 ), G-adeles in higher dimensions are expected to play a central role in arithmetic geometry. Deep theorems in the arithmetic of elliptic curves in characteristic zero have so far been proved only under special restrictions on the ground global field, using quite specific methods which unfortunately cannot be extended to an arbitrary global field. In contrast, adelic methods are universal and they work over an arbitrary global field without any restrictions. The adelic perspective in dimension two leads to a unified whole understanding of the connections between three fundamental aspects of zeta functions: the meromorphic continuation and functional equation, the location of poles, and the behaviour at the central point. 2. This text deals with the relative situation of a two-dimensional, arithmetic scheme S over a one-dimensional base B, the latter being the spectrum of the ring of integers of a global number field k in characteristic zero, or a proper, smooth, connected curve over a finite field. The central case on which we concentrate in this work is that of a proper, regular model of an elliptic curve over a global field, which is the first nontrivial case of an arithmetic surface. The zeta integral in this case converges in the best possible way. In the case of proper, regular models of hyperbolic curves over global fields one should renormalize the fibre products of local zeta integrals, using the projective space over B. Prerequisites for this work are the one-dimensional theory [57], [24] and the higher dimensional, local theory [11], [12]. A closely related text which explains the main ideas, methods, constructions, and directions of applications and which is relatively free from technical details is [14]. The current text simplifies some of the objects in [14]. A brief review of [11] is included at the beginning of parts 1 and 3. The numeration of the sections continues that of [11], and its sections are referred to without explicit mentioning of [11]. The sections form rather natural divisions of the material of the paper and they are of varying length; such a simple marking of the text aims to simplify its reading. The two-dimensional
Recommended publications
  • In Search of the Riemann Zeros
    In Search of the Riemann Zeros Strings, Fractal Membranes and Noncommutative Spacetimes In Search of the Riemann Zeros Strings, Fractal Membranes and Noncommutative Spacetimes Michel L. Lapidus 2000 Mathematics Subject Classification. P rim a ry 1 1 A 4 1 , 1 1 G 20, 1 1 M 06 , 1 1 M 26 , 1 1 M 4 1 , 28 A 8 0, 3 7 N 20, 4 6 L 5 5 , 5 8 B 3 4 , 8 1 T 3 0. F o r a d d itio n a l in fo rm a tio n a n d u p d a tes o n th is b o o k , v isit www.ams.org/bookpages/mbk-51 Library of Congress Cataloging-in-Publication Data Lapidus, Michel L. (Michel Laurent), 1956 In search o f the R iem ann zero s : string s, fractal m em b ranes and no nco m m utativ e spacetim es / Michel L. Lapidus. p. cm . Includes b ib lio g raphical references. IS B N 97 8 -0 -8 2 18 -4 2 2 2 -5 (alk . paper) 1. R iem ann surfaces. 2 . F unctio ns, Z eta. 3 . S tring m o dels. 4 . N um b er theo ry. 5. F ractals. 6. S pace and tim e. 7 . G eo m etry. I. T itle. Q A 3 3 3 .L3 7 2 0 0 7 515.93 dc2 2 2 0 0 7 0 60 8 4 5 Cop ying and rep rinting. Indiv idual readers o f this pub licatio n, and no npro fi t lib raries acting fo r them , are perm itted to m ak e fair use o f the m aterial, such as to co py a chapter fo r use in teaching o r research.
    [Show full text]
  • Lecture Notes in Mathematics
    Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann Subseries: Mathematisches Institut der Universit~it und Max-Planck-lnstitut for Mathematik, Bonn - voL 5 Adviser: E Hirzebruch 1111 Arbeitstagung Bonn 1984 Proceedings of the meeting held by the Max-Planck-lnstitut fur Mathematik, Bonn June 15-22, 1984 Edited by E Hirzebruch, J. Schwermer and S. Suter I IIII Springer-Verlag Berlin Heidelberg New York Tokyo Herausgeber Friedrich Hirzebruch Joachim Schwermer Silke Suter Max-Planck-lnstitut fLir Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3, Federal Republic of Germany AMS-Subject Classification (1980): 10D15, 10D21, 10F99, 12D30, 14H10, 14H40, 14K22, 17B65, 20G35, 22E47, 22E65, 32G15, 53C20, 57 N13, 58F19 ISBN 3-54045195-8 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-15195-8 Springer-Verlag New York Heidelberg Berlin Tokyo CIP-Kurztitelaufnahme der Deutschen Bibliothek. Mathematische Arbeitstagung <25. 1984. Bonn>: Arbeitstagung Bonn: 1984; proceedings of the meeting, held in Bonn, June 15-22, 1984 / [25. Math. Arbeitstagung]. Ed. by E Hirzebruch ... - Berlin; Heidelberg; NewYork; Tokyo: Springer, 1985. (Lecture notes in mathematics; Vol. 1t11: Subseries: Mathematisches I nstitut der U niversit~it und Max-Planck-lnstitut for Mathematik Bonn; VoL 5) ISBN 3-540-t5195-8 (Berlin...) ISBN 0-387q5195-8 (NewYork ...) NE: Hirzebruch, Friedrich [Hrsg.]; Lecture notes in mathematics / Subseries: Mathematischee Institut der UniversitAt und Max-Planck-lnstitut fur Mathematik Bonn; HST This work ts subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re~use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks.
    [Show full text]
  • The Weil Conjectures for Curves
    The Weil Conjectures for Curves Caleb Ji Summer 2021 1 Introduction We will explain Weil’s proof of his famous conjectures for curves. For the Riemann hypothe- sis, we will follow Grothendieck’s argument [1]. The main tools used in these proofs are basic results in algebraic geometry: Riemann-Roch, intersection theory on a surface, and the Hodge index theorem. For references: in Section 2 we used [3], while the rest can be found in Hartshorne [2] V.1 and Appendix C (some of it in the form of exercises). 1.1 Statements of the Weil conjectures We recall the statements. Let X be a smooth projective variety of dimension n over Fq. We define its zeta function by 1 ! X tr Z(X; t) := exp N ; r r r=1 where Nr is the number of closed points of X where considered over Fqr . Theorem 1.1 (Weil conjectures). Use the above notation. 1. (Rationality) Z(X; t) is a rational function of t. 2. (Functional equation) Let E be the Euler characteristic of X considered over C. Then 1 Z = ±qnE=2tEZ(t): qnt 3. (Riemann hypothesis) We can write P (t) ··· P (t) Z(t) = 1 2n−1 P0(t) ··· P2n(t) n where P0(t) = 1 − t; P2n(t) = 1 − q t and all the Pi(t) are integer polynomials that can be written as Y Pi(t) = (1 − αijt): j i=2 Finally, jαijj = q . 4. (Betti numbers) The degree of the polynomials Pi are the Betti numbers of X considered over C. 1 Caleb Ji The Weil Conjectures for Curves Summer 2021 d P1 r Note that dt log Z(X; t) = r=0 Nr+1t .
    [Show full text]
  • Counting Points and Acquiring Flesh
    Innovations in Incidence Geometry Volume 00 (XXXX), Pages 000–000 ISSN 1781-6475 Counting points and acquiring flesh Koen Thas Abstract This set of notes is based on a lecture I gave at “50 years of Finite Ge- ometry — A conference on the occasion of Jef Thas’s 70th birthday,” in November 2014. It consists essentially of three parts: in a first part, I in- troduce some ideas which are based in the combinatorial theory underlying F1, the field with one element. In a second part, I describe, in a nutshell, the fundamental scheme theory over F1 which was designed by Deitmar. The last part focuses on zeta functions of Deitmar schemes, and also presents more recent work done in this area. Keywords: Field with one element, Deitmar scheme, loose graph, zeta function, Weyl geometry MSC 2000: 11G25, 11D40, 14A15, 14G15 Contents 1 Introduction 2 2 Combinatorial theory 5 3 Deninger-Manin theory 8 4 Deitmar schemes 10 5 Acquiring flesh (1) 14 arXiv:1508.03997v1 [math.AG] 17 Aug 2015 6 Kurokawa theory 15 7 Graphs and zeta functions 18 2 Thas 8 Acquiring flesh (2) — The Weyl functor depicted 25 1 Introduction For a class of incidence geometries which are defined (for instance coordina- tized) over fields, it often makes sense to consider the “limit” of these geome- tries when the number of field elements tends to 1. As such, one ends up with a guise of a “field with one element, F1” through taking limits of geometries. A general reference for F1 is the recent monograph [21].
    [Show full text]
  • Arxiv:1604.01256V4 [Math.NT] 14 Aug 2017 As P Tends to Infinity, We Are Happy to Ignore Such Primes, Which Are Necessarily finite in Number
    SATO-TATE DISTRIBUTIONS ANDREW V.SUTHERLAND ABSTRACT. In this expository article we explore the relationship between Galois representations, motivic L-functions, Mumford-Tate groups, and Sato-Tate groups, and give an explicit formulation of the Sato-Tate conjecture for abelian varieties as an equidistribution statement relative to the Sato-Tate group. We then discuss the classification of Sato-Tate groups of abelian varieties of dimension g 3 and compute some of the corresponding trace distributions. This article is based on a series of lectures≤ presented at the 2016 Arizona Winter School held at the Southwest Center for Arithmetic Geometry. 1. AN INTRODUCTION TO SATO-TATE DISTRIBUTIONS Before discussing the Sato-Tate conjecture and Sato-Tate distributions for abelian varieties, we first consider the more familiar setting of Artin motives, which can be viewed as varieties of dimension zero. 1.1. A first example. Let f Z[x] be a squarefree polynomial of degree d; for example, we may take 3 2 f (x) = x x + 1. Since f has integer coefficients, we can reduce them modulo any prime p to obtain − a polynomial fp with coefficients in the finite field Z=pZ Fp. For each prime p define ' Nf (p) := # x Fp : fp(x) = 0 , f 2 g which we note is an integer between 0 and d. We would like to understand how Nf (p) varies with p. 3 The table below shows the values of Nf (p) when f (x) = x x + 1 for primes p < 60: − p : 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 Nf (p) 00111011200101013 There does not appear to be any obvious pattern (and we should know not to expect one, the Galois group lurking behind the scenes is nonabelian).
    [Show full text]
  • A P-Adic Regulator Map and Finiteness Results for Arithmetic Schemes
    Documenta Math. 525 A p-adic Regulator Map and Finiteness Results for Arithmetic Schemes Dedicated to Andrei Suslin on his 60th birthday Shuji Saito1and Kanetomo Sato2 Received: January 21, 2009 Revised: March 19, 2010 Abstract. A main theme of the paper is a conjecture of Bloch-Kato on the image of p-adic regulator maps for a proper smooth variety X over an algebraic number field k. The conjecture for a regulator map of particular degree and weight is related to finiteness of two arithmetic objects: One is the p-primary torsion part of the Chow group in codimension 2 of X. An- other is an unramified cohomology group of X. As an application, for a regular model X of X over the integer ring of k, we prove an injectivity result on the torsion cycle class map of codimension 2 with values in a new p-adic cohomology of X introduced by the second author, which is a can- didate of the conjectural etale´ motivic cohomology with finite coefficients of Beilinson-Lichtenbaum. 2010 Mathematics Subject Classification: Primary 14C25, 14G40; Sec- ondary 14F30, 19F27, 11G25. Keywords and Phrases: p-adic regulator, unramified cohomology, Chow groups, p-adic etale´ Tate twists 1 Introduction Let k be an algebraic number field and let Gk be the absolute Galois group Gal(k/k), where k denotes a fixed algebraic closure of k. Let X be a projective smooth variety over k and put X := X k. Fix a prime p and integers r, m 1. A main theme ⊗k ≥ 1supported by Grant-in-Aid for Scientific Research B-18340003 and S-19104001 2supported by JSPS Postdoctoral Fellowship for Research Abroad and EPSRC grant Documenta Mathematica Extra Volume Suslin (2010) 525–594 · 526 S.
    [Show full text]
  • Arithmetic Deformation Theory Via Arithmetic Fundamental Groups and Nonarchimedean Theta-Functions, Notes on the Work of Shinichi Mochizuki
    ARITHMETIC DEFORMATION THEORY VIA ARITHMETIC FUNDAMENTAL GROUPS AND NONARCHIMEDEAN THETA-FUNCTIONS, NOTES ON THE WORK OF SHINICHI MOCHIZUKI IVAN FESENKO ABSTRACT. These notes survey the main ideas, concepts and objects of the work by Shinichi Mochizuki on inter- universal Teichmüller theory [31], which might also be called arithmetic deformation theory, and its application to diophantine geometry. They provide an external perspective which complements the review texts [32] and [33]. Some important developments which preceded [31] are presented in the first section. Several key aspects of arithmetic deformation theory are discussed in the second section. Its main theorem gives an inequality–bound on the size of volume deformation associated to a certain log-theta-lattice. The application to several fundamental conjectures in number theory follows from a further direct computation of the right hand side of the inequality. The third section considers additional related topics, including practical hints on how to study the theory. This text was published in Europ. J. Math. (2015) 1:405–440. CONTENTS Foreword 2 1. The origins 2 1.1. From class field theory to reconstructing number fields to coverings of P1 minus three points2 1.2. A development in diophantine geometry3 1.3. Conjectural inequalities for the same property4 1.4. A question posed to a student by his thesis advisor6 1.5. On anabelian geometry6 2. On arithmetic deformation theory8 2.1. Texts related to IUT8 2.2. Initial data 9 2.3. A brief outline of the proof and a list of some of the main concepts 10 2.4. Mono-anabelian geometry and multiradiality 12 2.5.
    [Show full text]
  • Arithmetic Zeta-Function
    Arithmetic Zeta-Function Gaurish Korpal1 [email protected] Summer Internship Project Report 14th year Int. MSc. Student, National Institute of Science Education and Research, Jatni (Bhubaneswar, Odisha) Certificate Certified that the summer internship project report \Arithmetic Zeta-Function" is the bona fide work of \Gaurish Korpal", 4th year Int. MSc. student at National Institute of Science Ed- ucation and Research, Jatni (Bhubaneswar, Odisha), carried out under my supervision during June 4, 2018 to July 4, 2018. Place: Mumbai Date: July 4, 2018 Prof. C. S. Rajan Supervisor Professor, Tata Institute of Fundamental Research, Colaba, Mumbai 400005 Abstract We will give an outline of the motivation behind the Weil conjectures, and discuss their application for counting points on projective smooth curves over finite fields. Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor Prof. C. S. Rajan for his motivation. I am also thankful to Sridhar Venkatesh1, Rahul Kanekar 2 and Monalisa Dutta3 for the enlightening discussions. Last but not the least, I would like to thank { Donald Knuth for TEX { Michael Spivak for AMS-TEX { Sebastian Rahtz for TEX Live { Leslie Lamport for LATEX { American Mathematical Society for AMS-LATEX { H`anTh^e´ Th`anhfor pdfTEX { Heiko Oberdiek for hyperref package { Steven B. Segletes for stackengine package { David Carlisle for graphicx package { Javier Bezos for enumitem package { Hideo Umeki for geometry package { Peter R. Wilson & Will Robertson for epigraph package { Jeremy Gibbons, Taco Hoekwater and Alan Jeffrey for stmaryrd package { Lars Madsen for mathtools package { Philipp Khl & Daniel Kirsch for Detexify (a tool for searching LATEX symbols) { TeX.StackExchange community for helping me out with LATEX related problems 1M.Sc.
    [Show full text]
  • Alexey Zykin Professor at the University of French Polynesia
    Alexey Zykin Professor at the University of French Polynesia Personal Details Date and place of birth: 13.06.1984, Moscow, Russia Nationality: Russian Marital status: Single Addresses Address in Polynesia: University of French Polynesia BP 6570, 98702 FAA'A Tahiti, French Polynesia Address in Russia: Independent University of Moscow 11, Bolshoy Vlasyevskiy st., 119002, Moscow, Russia Phone numbers: +689 89 29 11 11 +7 917 591 34 24 E-mail: [email protected] Home page: http://www.mccme.ru/poncelet/pers/zykin.html Languages Russian: Mother tongue English: Fluent French: Fluent Research Interests • Zeta-functions and L-functions (modularity, special values, behaviour in families, Brauer{ Siegel type results, distribution of zeroes). • Algebraic geometry over finite fields (points on curves and varieties over finite fields, zeta-functions). • Families of fields and varieties, asymptotic theory (infinite number fields and function fields, limit zeta-functions). • Abelian varieties and Elliptic Curves (jacobians among abelian varieties, families of abelian varieties over global fields). • Applications of number theory and algebraic geometry to information theory (cryptog- raphy, error-correcting codes, sphere packings). Publications Publications in peer-reviewed journals: • On logarithmic derivatives of zeta functions in families of global fields (with P. Lebacque), International Journal of Number Theory, Vol. 7 (2011), Num. 8, 2139{2156. • Asymptotic methods in number theory and algebraic geometry (with P. Lebacque), Pub- lications Math´ematiquesde Besan¸con,2011, 47{73. • Asymptotic properties of Dedekind zeta functions in families of number fields, Journal de Th´eoriedes Nombres de Bordeaux, 22 (2010), Num. 3, 689{696. 1 • Jacobians among abelian threefolds: a formula of Klein and a question of Serre (with G.
    [Show full text]
  • Annales Scientifiques De L'é.Ns
    ANNALES SCIENTIFIQUES DE L’É.N.S. J.-B. BOST Potential theory and Lefschetz theorems for arithmetic surfaces Annales scientifiques de l’É.N.S. 4e série, tome 32, no 2 (1999), p. 241-312 <http://www.numdam.org/item?id=ASENS_1999_4_32_2_241_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1999, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. sclent. EC. Norm. Sup., 4° serie, t. 32, 1999, p. 241 a 312. POTENTIAL THEORY AND LEFSCHETZ THEOREMS FOR ARITHMETIC SURFACES BY J.-B. BOST ABSTRACT. - We prove an arithmetic analogue of the so-called Lefschetz theorem which asserts that, if D is an effective divisor in a projective normal surface X which is nef and big, then the inclusion map from the support 1-D) of -D in X induces a surjection from the (algebraic) fondamental group of \D\ onto the one of X. In the arithmetic setting, X is a normal arithmetic surface, quasi-projective over Spec Z, D is an effective divisor in X, proper over Spec Z, and furthermore one is given an open neighbourhood ^ of |-D|(C) on the Riemann surface X(C) such that the inclusion map |D|(C) ^ f^ is a homotopy equivalence.
    [Show full text]
  • Correspondences in Arakelov Geometry and Applications to the Case of Hecke Operators on Modular Curves
    CORRESPONDENCES IN ARAKELOV GEOMETRY AND APPLICATIONS TO THE CASE OF HECKE OPERATORS ON MODULAR CURVES RICARDO MENARES Abstract. In the context of arithmetic surfaces, Bost defined a generalized Arithmetic 2 Chow Group (ACG) using the Sobolev space L1. We study the behavior of these groups under pull-back and push-forward and we prove a projection formula. We use these results to define an action of the Hecke operators on the ACG of modular curves and to show that they are self-adjoint with respect to the arithmetic intersection product. The decomposition of the ACG in eigencomponents which follows allows us to define new numerical invariants, which are refined versions of the self-intersection of the dualizing sheaf. Using the Gross-Zagier formula and a calculation due independently to Bost and K¨uhnwe compute these invariants in terms of special values of L series. On the other hand, we obtain a proof of the fact that Hecke correspondences acting on the Jacobian of the modular curves are self-adjoint with respect to the N´eron-Tate height pairing. Contents 1. Introduction1 2 2. Functoriality in L1 5 2 2.1. The space L1 and related spaces5 2 2.2. Pull-back and push-forward in the space L1 6 2 2.3. Pull-back and push-forward of L1-Green functions 12 3. Pull-back and push-forward in Arakelov theory 16 2 3.1. The L1-arithmetic Chow group, the admissible arithmetic Chow group and intersection theory 16 3.2. Functoriality with respect to pull-back and push-forward 18 4.
    [Show full text]
  • Volume Function Over a Trivially Valued Field
    Volume function over a trivially valued field Tomoya Ohnishi∗ May 15, 2019 Abstract We introduce an adelic Cartier divisor over a trivially valued field and discuss the bigness of it. For bigness, we give the integral representation of the arithmetic volume and prove the existence of limit of it. Moreover, we show that the arithmetic volume is continuous and log concave. Contents 1 Introduction 1 2 Preliminary 3 2.1 Q- and R-divisors . .3 2.2 Big divisors . .5 2.3 Normed vector space . .6 2.4 Berkovich space . .8 3 Adelic R-Cartier divisors over a trivially valued field 9 3.1 Green functions . 10 3.2 Continuous metrics on an invertible OX -module . 11 3.3 Adelic R-Cartier divisors . 12 3.4 Associated R-Weil divisors . 13 3.5 Canonical Green function . 14 3.6 Height function . 15 3.7 Scaling action for Green functions . 16 4 Arithmetic volume 16 4.1 Big adelic R-Cartier divisors . 16 4.2 Existence of limit of the arithmetic volume . 17 4.3 Continuity of F(D;g)(t)........................................ 20 arXiv:1905.05447v1 [math.AG] 14 May 2019 4.4 Continuity of the arithmetic volume . 21 4.5 Log concavity of the arithmetic volume . 23 1 Introduction Arakelov geometry is a kind of arithmetic geometry. Beyond scheme theory, it has been developed to treat a system of equations with integer coefficients such by adding infinite points. In some sense, it is an extension of Diophantine geometry. It is started by Arakelov [1], who tried to define the intersection theory on an arithmetic surface.
    [Show full text]