Interacting Dirac Matter

Total Page:16

File Type:pdf, Size:1020Kb

Interacting Dirac Matter Interacting Dirac Matter SAIKAT BANERJEE Doctoral Thesis Stockholm, Sweden 2018 TRITA-SCI-FOU 2018:22 ISSN xxxx-xxxx KTH School of Engineering Sciences ISRN KTH/xxx/xx--yy/nn--SE SE-100 44 Stockholm ISBN 978-91-7729-821-2 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av Doktorsexamen i teoretisk fysik Onsdag den 13 Juni 2018 kl 13.00 i Huvudbyggnaden, våningsplan 3, AlbaNova, Kungl Tekniska Högskolan, Roslagstullsbacken 21, Stockholm, FA-32, A3: 1077. © Saikat Banerjee, June 2018 Tryck: Universitetsservice US AB iii Sammanfattning Kondenserade materiens fysik är den mikroskopiska läran om materia i kon- denserad form, såsom fasta och flytande material. Egenskaperna hos fasta material uppstår som en följd av samverkan av ett mycket stort antal atomkärnor och elek- troner. Utgångspunkten för modellering från första-principer av kondenserad mate- ria är Schrödingerekvationen. Denna kvantmekaniska ekvation beskriver dynamik och egentillstånd för atomkärnor och elektroner. Då antalet partiklar i en solid är mycket stort, av storleksordningen 1026, är en direkt behandling av mångpartikel- problemet ej möjlig. Kännedom om enskilda elektroners tillstånd har vanligen liten relevans då det är det kollektiva beteendet av elektroner och atomkärnor som ger upphov till en solids makroskopiska och termodynamiska egenskaper. Det kanske enklaste sättet att beskriva elektrontillstånd i en solid utgår från att vi kan beakta N antal icke växelverkande elektroner i en volym V . För en enskild elektron i en potential följer av Schrödingerekvationen att ett antal diskreta energitillstånd finns tillgängliga medan det för det termodynamiskt stora antalet elektroner i en solid finns ett kontinuum av energitillstånd i form av bandstruktur. Centrala begrepp är Ferminivån vilken är den energinivå till vilken elektrontillstånd finns ockuperade, samt Fermiytan vilken är den sfär i reciproka rymden inom vilken de ockuperade tillstånden befinner sig. I ett riktigt material växelverkar elektronerna och teorin för icke växelverkande partiklar behöver kompletteras. Ett viktigt steg i den riktningen togs av Lev Landau som formulerade teorin för Fermivätskor. Enligt denna teori kan lågen- ergiexcitationerna hos ett oändligt stort antal växelverkande fermioner fortfarande beskrivas av ett oändligt stort antal icke växelverkande fermioner. Dessa icke växelverkande partiklarna skiljer sig något från de ursprungliga elektronerna och benämns därför kvasipartiklar, ett koncept som äger stor tillämpbarhet för model- lering och beskrivning av flertalet vanliga metaller. Fermiytan för ett d-dimensionellt material är en d − 1-dimensionell mångfald vars topologi utgör en begränsning för kvasipartiklarnas spektrum, vilket för många solider kan beskrivas av en Schrödingerekvation för en elektron med effektiv massa, avvikande från elektronmassan för en fri elektron, i en effektiv potential. År 2004 gjorde Andre Geim och Konstantin Novoselov upptäckten att det går att framställa mycket tunna filmer av kol på ett förbluffande enkelt sätt. En bit vanlig kontorstejp fästs på kolmaterialet grafit, och då tejpen avlägsnas exfolieras ett monoatomärt lager med kol. Detta material kom att benämnas grafen och besitter en rad intressanta elektriska och mekaniska egenskaper, däribland kvasi- partiklar med linjär dispersion. Till skillnad från de kvasipartiklar som beskrivs av Schrödingerekvationen kan den linjära dispersionen modelleras som lösningen till en Diracekvation i vilken ljushastigheten i detta sammanhang ersätts med Fermi- hastigheten som i grafen antar värden av storleksordning 106 meter per sekund. Den karakteristiska egenskapen hos ett Diracmaterial är att noderna hos dess spektrum skyddas av olika slags symmetri, till exempel för grafen i form av tidsreversions- och inversionssymmetri. iv För fermioner gäller Fermi-Dirac-statistik och Pauli-principen som uttrycker att ett enskilt fermiontillstånd endast kan vara ockuperat av noll eller en fermion, till skillnad från bosoner vars tillstånd kan besättas av i princip godtyckligt många partiklar. Ett extremfall är så kallade Bose-Einstein-kondensat i vilket en my- cket stor mängd bosoner kondenserar till ett och samma kvanttillstånd. I en en- partikelbeskrivning av Diracliknande kvasipartiklar är statistiken av underordnad betydelse och vi kan därmed förvänta oss att det utöver fermioniska Dirackvasipar- tiklar även kan finnas bosoniska Dirackvasipartiklar. Temat för denna avhandling är att studera egenskaper hos fermioniska och bosoniska kvasipartiklar med Diracdispersion. Jag har studerat hur bosoniska kvasipartiklar kan förekomma i en bikakestruktur av supraledande öar, samt i den ferromagnetiska isolatorn CrBr3. För det senare materialet har jag analyserat hur yttillstånd kan uppstå i ett bosoniskt Diracmaterial, och hur dessa tillstånd skiljer sig från bulktillstånden. Avvikelser från effektiv enpartikelbeskrivning är temat för mina studier på växelverkande Diracmaterial, projekt inom vilka jag har under- sökt hur Coulomb-, Hubbard- och Heisenbergväxelverkan samt elektromagnetisk dipolväxelverkan påverkar spektra och tillståndstätheter hos Diracmaterial. I take this opportunity to dedicate my thesis to my mother and father. I would not have come this far in my life without their continuous support throughout my life. vi Abstract The discovery of graphene in 2004 has led to a surge of activities focused on the theoretical and experimental studies of materials hosting linearly dis- persive quasiparticles during the last decade. Rapid expansion in the list of materials having similar properties to graphene has led to the emergence of a new class of materials known as the Dirac materials. The low energy quasi- particles in this class of materials are described by a Dirac-like equation in contrast to the Schrödinger equation which governs the low energy dynamics in any conventional materials such as metals. The Dirac fermions, as we call these low-energy quasiparticles, in a wide range of materials ranging from the d-wave superconductors, graphene to the surface states of topological insula- tors share the common property. The particles move around as if they have lost their mass. This feature results in a completely new set of physical ef- fects consisting of various transport and thermodynamic quantities, that are absent in conventional metals. This thesis is devoted to studying the properties of bosonic analogs of the commonly known Dirac materials [1, 2] where the quasiparticle are fermionic. In chapter one, we discuss the microscopic origin of the Dirac equation in several fermionic and bosonic systems. We observe identical features of the Dirac materials with quasiparticles of either statistics when the interparticle interaction is absent. Dirac materials with both types of quasiparticles possess the nodal excitations that are described by an effective Dirac-like equation. The possible physical effects due to the linear dispersions in fermionic and bosonic Dirac materials are also outlined. In chapter two, we propose a system of superconducting grains arranged in honeycomb lattice as a realization for Bosonic Dirac Materials (BDM). The underlying microscopic dynamics, which give rise to the emergence of Dirac structure in the spectrum of the collective phase oscillations, is discussed in detail. Similarities and differences of BDM systems to the conventional Dirac materials with fermionic quasiparticles are also mentioned. Chapter three is dedicated to the detailed analysis of the interaction ef- fects on the stability and renormalization of the conical Dirac band structure. We find that the type of interaction dictates the possible fate of renormal- ized Dirac cone in both fermionic and bosonic Dirac materials. We study interaction effects in four different individual systems : (a) Dirac fermions in graphene interacting via Coulomb interactions, (b) Dirac fermions subjected to an onsite Hubbard repulsion, (c) Coulomb repulsion in charged Cooper pairs in honeycomb lattice and (d) Dirac magnons interacting via Heisenberg exchange interaction. The possibility of interaction induced gap opening at the Dirac nodal point described is also discussed in these cases. Chapter four mainly concerns the study of a related topic of the synthetic gauge fields. We discuss the possibility of Landau quantization in neutral particles. Possible experimental evidence in toroidal cold atomic traps is also mentioned. A connection to Landau levels in case of magnons is also described. We finally conclude our thesis in chapter five and discuss the possible future directions that can be taken as an extension for our works in interacting Dirac materials. vii Preface The work presented in this thesis was carried out at the group of Condensed Matter Physics in Nordic Institute for Theoretical Physics (Nordita) and Royal Institute of Technology (KTH), Stockholm, Sweden. I take this opportunity to express my sincere gratitude to the academic members in the Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico, USA where part of my thesis work was performed. I also am grateful to the academic members at the University of Connecticut, Storrs, USA for their generous cooperation and help during my visit. List of papers included in the thesis Paper I S. Banerjee, J. Fransson, A.M. Black-Schaffer, H. Ågren, and A. V. Balatsky; Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material, Phys. Rev. B 93, 134502, 2016 Paper II S. S.
Recommended publications
  • Arxiv:1803.11480V3 [Cond-Mat.Str-El] 23 May 2020 Submitted To: J
    Interacting Dirac Materials S. Banerjee1;2;3, D.S.L. Abergel2, H. Ågren3;4, G. Aeppli5;6;7, A.V. Balatsky2;8 1 Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg Germany 2Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden 3Division of Theoretical Chemistry and Biology, Royal Institute of Technology, SE-10691 Stockholm, Sweden 4 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden 5 Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 6 Laboratory for Solid State Physics, ETH Zurich, Zurich, CH-8093, Switzerland 7 Institut de Physique, EPF Lausanne, Lausanne, CH-1015, Switzerland 8 Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA E-mail: [email protected] 26 May 2020 Abstract. We investigate the extent to which the class of Dirac materials in two-dimensions provides general statements about the behavior of both fermionic and bosonic Dirac quasiparticles in the interacting regime. For both quasiparticle types, we find common features for the interaction induced renormalization of the conical Dirac spectrum. We perform the perturbative renormalization analysis and compute the self-energy for both quasiparticle types with different interactions and collate previous results from the literature whenever necessary. Guided by the systematic presentation of our results in Table 1, we conclude that long- range interactions generically lead to an increase of the slope of the single-particle Dirac cone, whereas short-range interactions lead to a decrease. The quasiparticle statistics does not qualitatively impact the self-energy correction for long-range repulsion but does affect the behavior of short-range coupled systems, giving rise to different thermal power-law contributions.
    [Show full text]
  • Axial Magnetoelectric Effect in Dirac Semimetals
    PHYSICAL REVIEW LETTERS 126, 247202 (2021) Axial Magnetoelectric Effect in Dirac Semimetals Long Liang ,1 P. O. Sukhachov ,2 and A. V. Balatsky1,3 1Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden 2Department of Physics, Yale University, New Haven, Connecticut 06520, USA 3Department of Physics and Institute for Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA (Received 13 December 2020; revised 1 March 2021; accepted 18 May 2021; published 17 June 2021) We propose a mechanism to generate a static magnetization via the “axial magnetoelectric effect” Ã (AMEE). Magnetization M ∼ E5ðωÞ × E5ðωÞ appears as a result of the transfer of the angular momentum of the axial electric field E5ðtÞ into the magnetic moment in Dirac and Weyl semimetals. We point out similarities and differences between the proposed AMEE and a conventional inverse Faraday effect. As an example, we estimated the AMEE generated by circularly polarized acoustic waves and find it to be on the scale of microgauss for gigahertz frequency sound. In contrast to a conventional inverse Faraday effect, magnetization rises linearly at small frequencies and fixed sound intensity as well as demonstrates a nonmonotonic peak behavior for the AMEE. The effect provides a way to investigate unusual axial electromagnetic fields via conventional magnetometry techniques. DOI: 10.1103/PhysRevLett.126.247202 — Ã Introduction. We are now witnessing a surge of interest M ∼ E5ðωÞ × E5ðωÞ: ð1Þ in quantum matter with an unusual relativisticlike dis- persion relation [1–4]. We mention bosonic (acoustic Therefore, we call this phenomenon the “axial magneto- waves, photonic crystals, and magnons) and fermionic electric effect” (AMEE).
    [Show full text]
  • Introduction to Quantum Materials Leon Balents, KITP
    Introduction to Quantum Materials Leon Balents, KITP QS3 School, June 11, 2018 Quantum Materials • What are they? Materials where electrons are doing interesting quantum things • The plan: • Lecture 1: Concepts in Quantum Materials • Lecture 2: Survey of actual materials Themes of modern QMs • Order • Topology • Entanglement • Correlations • Dynamics Order: symmetry • Symmetry: a way to organize matter • A symmetry is some operation that leaves a system (i.e. a material) invariant (unchanged • In physics, we usually mean it leaves the Hamiltonian invariant U<latexit sha1_base64="z44s+OqrR28LnNVtYut8w3Yl5bw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR9CIUvfRYwbSFNpbNZpIu3WzC7kYptT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zMCzLOlHacb2tldW19Y7O0Vd7e2d3btysHLZXmkoJHU57KTkAUcCbA00xz6GQSSBJwaAfDm6nffgCpWCru9CgDPyGxYBGjRBupb1e8+15I4hgkbmAPX+FG3646NWcGvEzcglRRgWbf/uqFKc0TEJpyolTXdTLtj4nUjHKYlHu5gozQIYmha6ggCSh/PDt9gk+MEuIolaaExjP198SYJEqNksB0JkQP1KI3Ff/zurmOLv0xE1muQdD5oijnWKd4mgMOmQSq+cgQQiUzt2I6IJJQbdIqmxDcxZeXSeus5jo19/a8Wr8u4iihI3SMTpGLLlAdNVATeYiiR/SMXtGb9WS9WO/Wx7x1xSpmDtEfWJ8/44aScA==</latexit> †HU = H Order and symmetry • Why symmetry? • It is persistent: it only changes through a phase transition • It has numerous implications: • Quantum numbers and degeneracies • Conservation laws • Brings powerful mathematics of group theory • The set of all symmetries of a system form its symmetry group. Materials with different symmetry groups are in different phases Ising model • A canonical example z z x z z H = J σ σ hx σ σ<latexit sha1_base64="qkGFhco5brjSZMvHUYBkOShCXm8=">AAACF3icbVDLSsNAFJ34rPUVdSnIYBHcWBIRdFl047KCfUATy2Q6SYfOI8xMlBq68yf8Bbe6dyduXbr1S5w+BG09cOFwzr3ce0+UMqqN5306c/MLi0vLhZXi6tr6xqa7tV3XMlOY1LBkUjUjpAmjgtQMNYw0U0UQjxhpRL2Lod+4JUpTKa5NPyUhR4mgMcXIWKnt7gWaJhzd3MNA0aRrkFLyDh79qG235JW9EeAs8SekBCaott2voCNxxokwmCGtW76XmjBHylDMyKAYZJqkCPdQQlqWCsSJDvPRHwN4YJUOjKWyJQwcqb8ncsS17vPIdnJkunraG4r/ehGf2mziszCnIs0MEXi8OM4YNBIOQ4Idqgg2rG8Jwora2yHuIoWwsVEWbSj+dASzpH5c9r2yf3VSqpxP4imAXbAPDoEPTkEFXIIqqAEMHsATeAYvzqPz6rw57+PWOWcyswP+wPn4BguHoBk=</latexit>
    [Show full text]
  • Dirac Fermion Optics and Plasmonics in Graphene Microwave Devices
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Dirac fermion optics and plasmonics in graphene microwave devices Graef, Holger 2019 Graef, H. (2019). Dirac fermion optics and plasmonics in graphene microwave devices. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/143704 https://doi.org/10.32657/10356/143704 This work is licensed under a Creative Commons Attribution‑NonCommercial 4.0 International License (CC BY‑NC 4.0). Downloaded on 10 Oct 2021 13:04:16 SGT Dirac fermion optics and plasmonics in graphene microwave devices Holger Graef School of Electrical & Electronic Engineering A thesis submitted to Sorbonne Universités and to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2019 Statement of Originality I hereby certify that the work embodied in this thesis is the result of original research, is free of plagiarised materials, and has not been submitted for a higher degree to any other University or Institution. 25/07/2019 . Date Holger Graef Supervisor Declaration Statement I have reviewed the content and presentation style of this thesis and declare it is free of plagiarism and of sufficient grammatical clarity to be examined. To the best of my knowledge, the research and writing are those of the candidate except as acknowledged in the Author Attribution Statement. I confirm that the investigations were conducted in accord with the ethics policies and integrity standards of Nanyang Technological University and that the research data are presented honestly and without prejudice. 23/07/2019 .
    [Show full text]
  • Microscopic Theory of Exciton Dynamics in Two-Dimensional Materials
    thesis for the degree of doctor of philosophy Microscopic Theory of Exciton Dynamics in Two-Dimensional Materials Samuel Brem Department of Physics Chalmers University of Technology G¨oteborg, Sweden 2020 Microscopic Theory of Exciton Dynamics in Two-Dimensional Materials Samuel Brem © Samuel Brem, 2020. ISBN 978-91-7905-391-8 Doktorsavhandlingar vid Chalmers tekniska h¨ogskola Ny serie nr 4858 ISSN 0346-718X Department of Physics Chalmers University of Technology SE-412 96 G¨oteborg Sweden Telephone + 46 (0)31-772 1000 Cover illustration: Artistic impression of momentum-indirect excitons composed of elec- trons and holes at different valleys of conduction and valence band. Created with the software Blender. Printed at Chalmers Reproservice G¨oteborg, Sweden 2020 ii Microscopic Theory of Exciton Dynamics in Two-Dimensional Materials Samuel Brem Department of Physics Chalmers University of Technology Abstract Transition Metal Dichalcogenides (TMDs) present a giant leap forward towards the realization of nanometer-sized quantum devices. As a direct consequence of their truly two-dimensional character, TMDs exhibit a strong Coulomb-interaction, leading to the formation of stable electron-hole pairs, so-called excitons. These quasi-particles have a large impact on optical properties as well as charge-transport characteristics in TMDs. Therefore, a microscopic understanding of excitonic de- grees of freedom and their interactions with other particles becomes crucial for a technological application of TMDs in a new class of optoelectronic and pho- tonic devices. Furthermore, deeper insights into the dynamics of different types of exciton states will open the possibility to explore new quantum effects of the matter-light interaction.
    [Show full text]
  • Quantum Materials: Where Many Paths Meet
    NEWS & ANALYSIS MATERIALS NEWS Early promise Quantum materials: Arguably, it all began with supercon- ductivity. It was recognized in the 1950s Where many paths meet that the ability of some materials to con- duct electricity without resistance is a By Philip Ball phenomenon that demands a quantum explanation. The theory put forward by ll matter, in the end, must be explained Aside from the matter of their intrinsic John Bardeen, Leon Cooper, and Robert A by quantum mechanics, which de- properties, however, what tends to unite Schrieffer (BCS) in 1957 invoked an scribes how atoms bind and electrons in- quantum materials is who is interested interaction between mobile conduction teract at a fundamental level. Typically, the in them. The community of researchers electrons, mediated by vibrations of the quantum behavior can be approximated that 20 years ago was grappling with crystal lattice that unites them into pairs, by a classical description, in which atoms high-temperature superconductivity is called Cooper pairs. These pairs can be become balls that stick together in well- likely today to be pondering topologi- considered as quasiparticles, which—in GH¿QHGDUUDQJHPHQWVYLDVLPSOHIRUFHV cal insulators and Weyl semimetals. A contrast to electrons themselves—be- and vibrate much like balls on springs. somewhat distinct community that used long to the fundamental class of particles Sometimes, however, that is not so. In to focus around the 1980s on the exotic called bosons, which have integer values some materials, the quantum aspects as- 2D phenomenon called the quantum Hall of quantum spin. sert themselves tenaciously, and the only HIIHFWLVQRZ¿QGLQJFRPPRQFDXVH$QG This makes all the difference.
    [Show full text]
  • Strained Hgte: a Textbook 3D Topological Insulator Cl´Ement Bouvier, Tristan Meunier, Philippe Ballet, Xavier Baudry, Roman Kramer, Laurent L´Evy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-CEA Strained HgTe: a textbook 3D topological insulator Cl´ement Bouvier, Tristan Meunier, Philippe Ballet, Xavier Baudry, Roman Kramer, Laurent L´evy To cite this version: Cl´ement Bouvier, Tristan Meunier, Philippe Ballet, Xavier Baudry, Roman Kramer, et al.. Strained HgTe: a textbook 3D topological insulator. 2011. <hal-00650046> HAL Id: hal-00650046 https://hal.archives-ouvertes.fr/hal-00650046 Submitted on 9 Dec 2011 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. HgTe-low-field Strained HgTe: a textbook 3D topological insulator Cl´ement Bouvier, Tristan Meunier, Roman Kramer, and Laurent P. L´evy Institut N´eel, C.N.R.S.- Universit´eJoseph Fourier, BP 166, 38042 Grenoble Cedex 9, France Xavier Baudry and Philippe Ballet CEA, LETI, MINATEC Campus, DOPT, 17 rue des martyrs 38054 Grenoble Cedex 9, France (Dated: December 9, 2011) Topological insulators can be seen as band-insulators with a conducting surface. The surface carriers are Dirac particles with an energy which increases linearly with momentum. This confers extraordinary transport properties characteristic of Dirac matter, a class of materials which elec- tronic properties are “graphene-like”.
    [Show full text]
  • Formulation of the Relativistic Quantum Hall Effect And" Parity
    Formulation of the Relativistic Quantum Hall Effect and “Parity Anomaly” Kouki Yonaga1, Kazuki Hasebe2, and Naokazu Shibata1 1Department of Physics, Tohoku University, Sendai, 980-8578, Japan 2Sendai National College of Technology, Ayashi, Sendai, 989-3128, Japan (Dated: March 8, 2018) We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and non-relativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the “parity anomaly”. In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap. I. INTRODUCTION (a) Massless Dirac matter has attracted considerable attention in condensed matter physics for its novel properties and recent experimental realizations in solid materials. In contrast to normal single-particle excitations in solids, Dirac particles exhibit linear dispersion in a low energy region and continuously vanishing density of states at the charge-neutral point [1]. These features are actually re- alized in graphene [2, 3] and on topological insulator sur- face [4]. Besides, in the presence of a magnetic field, the relativistic quantum Hall effect was observed in graphene (b) Massive [5–7] and also on topological insulator surface recently [8, 9].
    [Show full text]
  • Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene
    PHYSICAL REVIEW X 8, 031089 (2018) Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene Hoi Chun Po,1 Liujun Zou,1,2 Ashvin Vishwanath,1 and T. Senthil2 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 4 June 2018; revised manuscript received 13 August 2018; published 28 September 2018) A remarkable recent experiment has observed Mott insulator and proximate superconductor phases in twisted bilayer graphene when electrons partly fill a nearly flat miniband that arises a “magic” twist angle. However, the nature of the Mott insulator, the origin of superconductivity, and an effective low-energy model remain to be determined. We propose a Mott insulator with intervalley coherence that spontaneously breaks Uð1Þ valley symmetry and describe a mechanism that selects this order over the competing magnetically ordered states favored by the Hund’s coupling. We also identify symmetry-related features of the nearly flat band that are key to understanding the strong correlation physics and constrain any tight- binding description. First, although the charge density is concentrated on the triangular-lattice sites of the moir´e pattern, the Wannier states of the tight-binding model must be centered on different sites which form a honeycomb lattice. Next, spatially localizing electrons derived from the nearly flat band necessarily breaks valley and other symmetries within any mean-field treatment, which is suggestive of a valley- ordered Mott state, and also dictates that additional symmetry breaking is present to remove symmetry- enforced band contacts. Tight-binding models describing the nearly flat miniband are derived, which highlight the importance of further neighbor hopping and interactions.
    [Show full text]
  • Artificial Graphenes: Dirac Matter Beyond
    C. R. Physique 19 (2018) 285–305 Contents lists available at ScienceDirect Comptes Rendus Physique www.sciencedirect.com Grand Prix Servant 2017 de l’Académie des sciences Artificial graphenes: Dirac matter beyond condensed matter Graphènes artificiels : matière de Dirac au-delà de la matière condensée Gilles Montambaux Laboratoire de physique des solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France a r t i c l e i n f o a b s t r a c t Article history: After the discovery of graphene and of its many fascinating properties, there has been Available online 7 November 2018 a growing interest for the study of “artificial graphenes”. These are totally different and novel systems that bear exciting similarities with graphene. Among them are lattices of Keywords: ultracold atoms, microwave or photonic lattices, “molecular graphene” or new compounds Graphene like phosphorene. The advantage of these structures is that they serve as new playgrounds Ultracold atoms Microwaves for measuring and testing physical phenomena that may not be reachable in graphene, Polaritons in particular the possibility of controlling the existence of Dirac points (or Dirac cones) Phosphorene existing in the electronic spectrum of graphene, of performing interference experiments in Bloch oscillations reciprocal space, of probing geometrical properties of the wave functions, of manipulating edge states, etc. These cones, which describe the band structure in the vicinity of the two Mots-clés : connected energy bands, are characterized by a topological “charge”. They can be moved Graphène in the reciprocal space by appropriate modification of external parameters (pressure, twist, Atomes ultra-froids sliding, stress, etc.).
    [Show full text]
  • What Is the Electron?
    What is the Electron? Edited by Volodimir Simulik Apeiron Montreal Published by C. Roy Keys Inc. 4405, rue St-Dominique Montreal, Quebec H2W 2B2 Canada http://redshift.vif.com © C. Roy Keys Inc. 2005 First Published 2005 Library and Archives Canada Cataloguing in Publication What is the electron? / edited by Volodimir Simulik. Includes bibliographical references. ISBN 0-9732911-2-5 1. Electrons. I. Simulik, Volodimir, 1957- QC793.5.E62W48 2005 539.7'2112 C2005-902252-3 Cover design by François Reeves. Cover graphic by Gordon Willliams. Table of Contents Preface ................................................................................................. i Jaime Keller – A Comprehensive Theory of the Electron from START.................................................................................... 1 Hidezumi Terazawa – The Electron in the Unified Composite Model of All Fundamental Particles and Forces .................. 29 Thomas E. Phipps, Jr. – Prospects for the Point Electron ................ 43 Martin Rivas – The Spinning Electron ............................................. 59 Claude Daviau – Relativistic Wave Equations, Clifford Algebras and Orthogonal Gauge Groups.............................. 83 H. Sallhofer – What is the Electron? .............................................. 101 Volodimir Simulik – The Electron as a System of Classical Electromagnetic and Scalar Fields...................................... 105 Malcolm H. Mac Gregor – What Causes the Electron to Weigh?...............................................................................
    [Show full text]
  • Dirac Magnons in Honeycomb Ferromagnets
    PHYSICAL REVIEW X 8, 011010 (2018) Dirac Magnons in Honeycomb Ferromagnets Sergey S. Pershoguba,1 Saikat Banerjee,1,2,3 J. C. Lashley,2 Jihwey Park,4 Hans Ågren,3 Gabriel Aeppli,4,5,6 and Alexander V. Balatsky1,2,7 1Nordita, Center for Quantum Materials, KTH Royal Institute of Technology, and Stockholm University, Roslagstullsbacken 23, S-106 91 Stockholm, Sweden 2Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3Division of Theoretical Chemistry and Biology, Royal Institute of Technology, SE-10691 Stockholm, Sweden 4Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 5Laboratory for Solid State Physics, ETH Zurich, Zurich CH-8093, Switzerland 6Institut de Physique, EPF Lausanne, Lausanne CH-1015, Switzerland 7Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA (Received 11 June 2017; published 23 January 2018) The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009)] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014)], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X ¼ F, Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene.
    [Show full text]