Combinations Comprising DHODH Inhibitors and COX Inhibitors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tanibirumab (CUI C3490677) Add to Cart
5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor -
PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
WO 2017/085561 Al 26 May 20 17 (26.05.2017) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/085561 Al 26 May 20 17 (26.05.2017) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/00 (2006.01) A61K 31/415 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 47/34 (2017.01) A61P 19/02 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 9/08 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/IB2016/001815 KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 16 November 2016 (16.1 1.2016) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62255778 16 November 2015 (16. 11.2015) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: MEDINCELL [FR/FR]; 1, avenue Charles TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Cros, 34830 Jacou (FR). -
The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. -
Nonsteroidal Anti-Inflammatory Drugs for Dysmenorrhoea (Review)
Cochrane Database of Systematic Reviews Nonsteroidal anti-inflammatory drugs for dysmenorrhoea (Review) Marjoribanks J, Ayeleke RO, Farquhar C, Proctor M Marjoribanks J, Ayeleke RO, Farquhar C, Proctor M. Nonsteroidal anti-inflammatory drugs for dysmenorrhoea. Cochrane Database of Systematic Reviews 2015, Issue 7. Art. No.: CD001751. DOI: 10.1002/14651858.CD001751.pub3. www.cochranelibrary.com Nonsteroidal anti-inflammatory drugs for dysmenorrhoea (Review) Copyright © 2015 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 4 BACKGROUND .................................... 5 OBJECTIVES ..................................... 6 METHODS ...................................... 6 Figure1. ..................................... 8 Figure2. ..................................... 10 Figure3. ..................................... 12 RESULTS....................................... 14 Figure4. ..................................... 16 Figure5. ..................................... 18 Figure6. ..................................... 24 ADDITIONALSUMMARYOFFINDINGS . 25 DISCUSSION ..................................... 26 AUTHORS’CONCLUSIONS . 27 ACKNOWLEDGEMENTS . 27 REFERENCES ..................................... 28 CHARACTERISTICSOFSTUDIES . 40 DATAANDANALYSES. 130 Analysis 1.1. Comparison 1 NSAIDs vs placebo, Outcome 1 Pain relief dichotomous data. 136 -
Clinical Efficacy and Tolerability of Cimicoxib in Dogs with Osteoarthritis: a Multicentre Prospective Study
Open Journal of Veterinary Medicine, 2014, 4, 78-90 Published Online May 2014 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2014.45010 Clinical Efficacy and Tolerability of Cimicoxib in Dogs with Osteoarthritis: A Multicentre Prospective Study Joanna Murrell1*, Erik Grandemange2, Frédérique Woehrle2, Julie Menard3, Kate White4 1School of Veterinary Sciences, University of Bristol, Bristol, UK 2Vétoquinol S.A., Centre de Recherche, Lure, France 3Vétoquinol S.A., Paris, France 4School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK Email: *[email protected] Received 10 March 2014; revised 10 April 2014; accepted 25 April 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Background: Cimicoxib is a coxib recently licensed in Europe for pain and inflammation associated with osteoarthritis (OA), and the management of perioperative pain due to orthopaedic or soft tissue surgery. Purpose: This prospective study was to complete the product information for the end users by providing additional scientific data obtained after a thirty-day treatment course of cimicoxib in dogs with OA, and to collect owners’ feedback. Data were collected from nine Euro- pean countries with 492 client owned dogs recruited to the trial. Dogs were treated once daily with 2 mg/kg cimicoxib orally. Immediately before, at Day (D) 15 and D30 after the start of treat- ment veterinarians and owners scored body condition, appetite, locomotion, lameness, pain on palpation and manipulation of the joint and joint effusion (veterinarians) and dog demeanor and well being (owners). -
Metabolism Pathways of Arachidonic Acids: Mechanisms and Potential Therapeutic Targets
Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets Bei Wang1,2,3, Lujin Wu1,2, Jing Chen1,2, Lingli Dong3, Chen Chen 1,2, Zheng Wen1,2, Jiong Hu4, Ingrid Fleming4 and Dao Wen Wang1,2 The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions. -
TLC-Densitometric Determination of Five Coxibs in Pharmaceutical Preparations
processes Article TLC-Densitometric Determination of Five Coxibs in Pharmaceutical Preparations Paweł Gumułka, Monika D ˛abrowskaand Małgorzata Starek * Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland; [email protected] (P.G.); [email protected] (M.D.) * Correspondence: [email protected] Received: 30 April 2020; Accepted: 18 May 2020; Published: 22 May 2020 Abstract: A class of drugs called coxibs (COX-2 inhibitors) were created to help relieve pain and inflammation of osteoarthritis and rheumatoid arthritis with the lowest amount of side effects possible. The presented paper describes a new developed, optimized and validated thin layer chromatographic (TLC)-densitometric procedure for the simultaneous assay of five coxibs: celecoxib, etoricoxib, firecoxib, rofecoxib and cimicoxib. Chromatographic separation was conducted on HPTLC F254 silica gel chromatographic plates as a stationary phase using chloroform–acetone–toluene (12:5:2, v/v/v) as a mobile phase. Densitometric detection was carried out at two wavelengths of 254 and 290 nm. The method was tested according to ICH guidelines for linearity, recovery and specificity. The presented method was linear in a wide range of concentrations for all analyzed compounds, with correlation coefficients greater than 0.99. The method is specific, precise (%RSD < 1) and accurate (more than 95%, %RSD < 2). Low-cost, simple and rapid, it can be used in laboratories for drug monitoring and quality control. Keywords: coxibs; TLC-densitometry; validation of the method; human and veterinary drugs 1. Introduction The search for new non-steroidal anti-inflammatory drugs (NSAIDs), since the synthesis of salicylic acid, has been carried out simultaneously in two main directions, obtaining compounds with higher anti-inflammatory effects, and compounds with weaker side effects. -
WO 2013/020527 Al 14 February 2013 (14.02.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/020527 Al 14 February 2013 (14.02.2013) P O P C T (51) International Patent Classification: (74) Common Representative: UNIVERSITY OF VETER¬ A61K 9/06 (2006.01) A61K 47/32 (2006.01) INARY AND PHARMACEUTICAL SCIENCES A61K 9/14 (2006.01) A61K 47/38 (2006.01) BRNO FACULTY OF PHARMACY; University of A61K 47/10 (2006.01) A61K 9/00 (2006.01) Veterinary and Pharmaceutical Sciences Brno Faculty Of A61K 47/18 (2006.01) Pharmacy, Palackeho 1/3, CZ-61242 Brno (CZ). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/CZ20 12/000073 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 2 August 2012 (02.08.2012) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, 201 1-495 11 August 201 1 ( 11.08.201 1) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 2012- 72 1 February 2012 (01.02.2012) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 2012-5 11 26 July 2012 (26.07.2012) ZW. -
Resolution of Eicosanoid/Cytokine Storm Prevents Carcinogen and Inflammation-Initiated Hepatocellular Cancer Progression
Resolution of eicosanoid/cytokine storm prevents carcinogen and inflammation-initiated hepatocellular cancer progression Anna Fishbeina,b,c,1, Weicang Wangd,e,1, Haixia Yanga,b,c,1, Jun Yangd,e,1, Victoria M. Halliseya,b,c,1, Jianjun Denga,b,c,1, Sanne M. L. Verheula,b,c, Sung Hee Hwangd,e, Allison Gartunga,b,c, Yuxin Wangd,e, Diane R. Bielenbergf, Sui Huangg, Mark W. Kieranh,i,2, Bruce D. Hammockd,e,1,3, and Dipak Panigrahya,b,c,1,3 aCenter for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; bDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; cCancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; dDepartment of Entomology and Nematology, University of California, Davis, CA 95616; eUniversity of California, Davis Comprehensive Cancer Center, University of California, Davis, CA 95616; fVascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115; gInstitute for Systems Biology, Seattle, WA 98109; hDivision of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215; and iDepartment of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 Contributed by Bruce D. Hammock, June 11, 2020 (sent for review April 21, 2020; reviewed by Kenneth Honn and Ann C. Skulas-Ray) Toxic environmental carcinogens promote cancer via genotoxic trigger proinflammatory cytokines (e.g., TNF-α and IL-6) as well and nongenotoxic pathways, but nongenetic mechanisms remain as caspase activation, leading to apoptotic cell death of multiple poorly characterized. -
Stembook 2018.Pdf
The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic