Journal of Economic Entomology, 110(2), 2017, 319–332 doi: 10.1093/jee/tow304 Advance Access Publication Date: 8 March 2017 Apiculture & Social Insects Review Ecology, Life History, and Management of Tropilaelaps Mites Lilia I. de Guzman,1,2 Geoffrey R. Williams,3,4,5 Kitiphong Khongphinitbunjong,6 and Panuwan Chantawannakul7 1USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, Louisiana 70820 (
[email protected]. gov), 2Corresponding author, e-mail:
[email protected], 3Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland (
[email protected]), 4Agroscope, Swiss Bee Research Centre, 3003 Bern, Switzerland, 5Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, 6School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand (
[email protected]), and 7Department of Biology, Faculty of Science, Chiang Mai University 50200, Chiang Mai, Thailand (
[email protected]) Subject Editor: John Trumble Received 19 October 2016; Editorial decision 2 December 2016 Abstract Parasitic mites are the major threat to the Western honey bee, Apis mellifera L. For much of the world, Varroa destructor Anderson & Trueman single-handedly inflicts unsurmountable problems to A. mellifera beekeeping. However, A. mellifera in Asia is also faced with another genus of destructive parasitic mite, Tropilaelaps. The life history of these two parasitic mites is very similar, and both have the same food requirements (i.e., hemo- lymph of developing brood). Hence, parasitism by Tropilaelaps spp., especially Tropilaelaps mercedesae and Tropilaelaps clareae, also results in death of immature brood or wing deformities in infested adult bees. The possible introduction of Tropilaelaps mites outside their current range heightens existing dilemmas brought by Varroa mites.