The Coyote - an Advanced Pilot Training Aircraft

Total Page:16

File Type:pdf, Size:1020Kb

The Coyote - an Advanced Pilot Training Aircraft The Coyote - an Advanced Pilot Training Aircraft AIAA Graduate Team Aircraft Competition 2017-2018 May 2018 The Beep Beep Hunting Club AIAA number Signature Rapha¨elDubois 918763 Thibault Laurent 919210 Bao Long Le Van 908407 Nayan Levaux 908300 Guillaume Noiset 908299 Axel Piret 908234 Arthur Scheffer 919169 Vincent Schmitz 908516 Team Advisors Grigorios Dimitriadis Ludovic Noels Contents 1 Introduction . 1 2 Mission description & design objectives . 1 3 Choice of configuration . 2 3.1 Number of engines . 2 3.2 Wing planform . 4 3.3 Empennage arrangement . 4 3.4 Cruise altitude . 6 4 Methodology . 6 5 Components design . 7 5.1 Statistical survey . 7 5.2 Weight estimates . 9 5.2.1 Final results . 10 5.3 Wing design . 10 5.3.1 Aspect ratio . 11 5.3.2 Sweep angle . 11 5.3.3 Taper ratio . 12 5.3.4 Thickness ratio . 12 5.3.5 Airfoil selection . 12 5.3.6 Geometric and aerodynamic twist . 12 5.3.7 Lift coefficient and wing area . 12 5.3.8 3D lift curve slope, zero-lift angle & incidence angle . 14 5.3.9 Maximum lift coefficient . 15 5.3.10 Final geometry . 16 5.4 High-lift devices . 17 5.4.1 Leading edge extension . 17 5.4.2 Flaperons . 17 5.4.3 Leading edge flaps . 19 5.5 Propulsion . 19 5.5.1 Engine selection . 19 5.5.2 Fuel consumption and detailed description of the mission segments . 21 5.5.3 Final fuel consumption estimates . 23 5.6 Fuselage, fuel tanks and general layout . 23 5.6.1 Fuselage dimensions . 23 5.6.2 General layout and fuel tanks locations . 24 5.6.3 Tanks capacity estimates . 25 5.7 Centre of gravity estimates . 25 5.8 V-tail design & imposing equilibrium . 28 5.8.1 Sizing . 28 5.8.2 Aspect ratio, taper and sweep angle . 29 5.8.3 Airfoil selection . 30 5.8.4 Aerodynamic coefficients for a V-tail configuration [15] . 30 5.8.5 Enforcing equilibrium . 30 5.8.6 Final geometry . 31 5.9 Landing gear design . 32 6 Aerodynamic study . 34 6.1 Methodology . 35 6.2 Component Buildup Method . 35 6.2.1 Subsonic parasite drag . 36 6.2.2 Supersonic parasite drag . 38 6.2.3 Transonic parasite drag . 38 6.2.4 Induced drag . 39 6.3 Tranair . 40 6.3.1 Qualitative results . 40 6.3.2 Wing lift curve and drag polar . 41 6.4 Aerodynamic centre of the wing . 43 6.5 Tools comparison . 44 6.6 Aircraft total drag . 44 6.6.1 Maximum Mach and L=D diagram . 45 7 Structure design . 47 7.1 Flight envelope . 47 7.2 Aerodynamic and structural loading . 49 7.2.1 Aerodynamic forces . 49 7.2.2 Structural loads . 50 7.3 Rear fuselage . 52 7.3.1 Materials selection . 52 7.3.2 Analytic study . 53 7.3.3 FEM study . 55 7.4 Wing . 57 7.4.1 Materials selection . 58 7.4.2 Analytic study . 58 7.4.3 FEM Analysis . 61 7.5 Further improvements . 63 8 Static stability margins . 64 8.1 Margins estimates . 64 8.2 Computation points . 66 9 Dynamic stability and handling qualities . 68 9.1 Handling characteristics . 69 9.1.1 Longitudinal flying qualities . 70 9.1.2 Lateral flying qualities . 71 9.2 Stability Augmentation . 72 9.3 Future Work . 74 10 Performance . 74 10.1 Level turn . 74 10.2 Climb & ceiling . 77 10.3 Minimum runway length . 79 10.4 Range . 81 10.5 Compliance with the objectives . 81 11 Trade-off study . 83 12 Cost estimates . 85 12.1 Non-recurring costs . 85 12.2 Recurring costs . 86 12.3 Operations and maintenance costs . 87 12.4 Detailed cost and unit price . 88 13 Conclusion . 89 Appendices 90 A 90 1 Aesthetic views . 90 2 Additional figures . 94 3 Summary table . 95 List of Figures 1 Schematic description of the design mission divided into consistent segments. The altitude is measured from the MSL. 2 2 Overview of the design method. Adapted from [11]. 8.
Recommended publications
  • Wing Root & Landing Gear Door Seal Replacement
    Wing Root & Landing Gear Door Seal Replacement One of the oldest original components remaining on my Baron (and likely other members planes) was surely the stiff and ragged wing root seal. In researching this component I learned that the wing root and tail seals were installed on the wings and tails before the marriage to the airframe. What lies below the top skin of the wing and tail is a length of rubber “finger” (Figure 1) as an integral part of the seal. Figure 1 This “finger” holds the seal in place and was likely glued at the factory, grabbing the backside of the wing and tail skin. With time and age these original rubber seals have taken quite a beating. With an extended winter annual downtime this year I chose to tackle this really tedious project while waiting for other components that were out for overhaul. A word of caution, this is as tedious as it gets if you choose to dig out the finger from below the top surface skins using the very narrow gap between the skin and the fuselage. Here is a pirep from a Bonanza A36 owner on how he tackled his seal replacement: “I cut the majority of the old seal off using razor blade, leaving a small lip sticking above the wing. I then used a small pick bent at a 90 degree angle, with about a 3/8" 'hook' on the end. Using the hook, I stuck it under the wing skin, between the skin and the old rubber wing seal lip under the skin, and forced it along the chord of the wing.
    [Show full text]
  • Turkey Aerospace & Defense
    TURKEY AEROSPACE & DEFENSE 2016 AEROSPACE TURKEY TURKEY AEROSPACE & DEFENSE 2016 Aerospace - Defense - Original Equipment Manufacturers Platforms - Clusters - Multinationals - Sub-Tier Suppliers Distinguished GBR Readers, Since the inception of the Undersecretariat for Defense Industries 30 years ago, significant steps have been taken to achieve the goals of having the Turkish armed forces equipped with modern systems and technologies and promoting the development of the Turkish defense industry. In the last decade alone, the aerospace and defense (A&D) sector's total turnover quadrupled, while exports have increased fivefold, reaching $5.1 billion and $1.65 billion in 2014, respectively. The industry's investment in research and development (R&D) reached almost $1 billion in 2014. The total workforce in the A&D industry reached 30,000 personnel, of which 30% are engineers. Even more remarkable, Turkey is now at the stage of offering its own platforms for both the local market and to international allies, and has commenced a series of follow up local programs. Although this progress has been achieved under the circumstances of a healthy and consistent political environment and in parallel with sustained growth in the Turkish economy, the proportion of expenditure for defense in the national budget and as a percentage of Turkey’s GDP has been stable. With the help of the national, multinational and joint defense industry projects that have been undertaken in Turkey by the undersecretariat, the defense industry has become a highly capable community comprising large-scale main contractors, numerous sub- system manufacturers, small- and medium-sized enterprises, R&D companies who are involved in high-tech, niche areas, research institutes, and universities.
    [Show full text]
  • Eurofighter World Editorial 2016 • Eurofighter World 3
    PROGRAMME NEWS & FEATURES DECEMBER 2016 GROSSETO EXCLUSIVE BALTIC AIR POLICING A CHANGING AIR FORCE FIT FOR THE FUTURE 2 2016 • EUROFIGHTER WORLD EDITORIAL 2016 • EUROFIGHTER WORLD 3 CONTENTS EUROFIGHTER WORLD PROGRAMME NEWS & FEATURES DECEMBER 2016 05 Editorial 24 Baltic policing role 42 Dardo 03 Welcome from Volker Paltzo, Germany took over NATO’s Journalist David Cenciotti was lucky enough to CEO of Eurofighter Jagdflugzeug GmbH. Baltic Air Policing (BAP) mis - get a back seat ride during an Italian Air Force sion in September with five training mission. Read his eye-opening first hand Eurofighters from the Tactical account of what life onboard the Eurofighter Title: Eurofighter Typoon with 06 At the heart of the mix Air Wing 74 in Neuburg, Typhoon is really like. P3E weapons fit. With the UK RAF evolving to meet new demands we speak to Bavaria deployed to Estonia. Typhoon Force Commander Air Commodore Ian Duguid about the Picture: Jamie Hunter changing shape of the Air Force and what it means for Typhoon. 26 Meet Sina Hinteregger By day Austrian Sina Hinteregger is an aircraft mechanic working on Typhoon, outside work she is one of the country’s best Eurofighter World is published by triathletes. We spoke to her Eurofighter Jagdflugzeug GmbH about her twin passions. 46 Power base PR & Communications Am Söldnermoos 17, 85399 Hallbergmoos Find out how Eurofighter Typhoon wowed the Tel: +49 (0) 811-80 1587 crowds at AIRPOWER16, Austria’s biggest Air [email protected] 12 Master of QRA Show. Editorial Team Discover why Eurofighter Typhoon’s outstanding performance and 28 Flying visit: GROSSETO Theodor Benien ability make it the perfect aircraft for Quick Reaction Alert.
    [Show full text]
  • Automated Generic Parameterized Design of Aircraft Fairing and Windshield
    Automated generic parameterized design of aircraft fairing and windshield Vijaykumar Govindharajan Aakash Narender Singh LIU-IEI-TEK-A-12/01271-SE Department of Management and Engineering Division of Flumes Department of Management and Engineering SE-581 83 Linköping, Sweden i ii Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25 years starting from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/her own use and to use it unchanged for non-commercial research and educational purpose.
    [Show full text]
  • Corvettes and Opvs Countering Manpads Air Forces Directory Corvettes and Opvs Countering Manpads Air Forces Directory Singapore
    VOLUME 26/ISSUE 1 FEBRUARY 2018 US$15 ASIA PAcific’s LARGEST CIRCULATED DEFENCE MAGAZINE SINGAPORE’S ARMED FORCES ASIA-PACIFIC MAIN BATTLE TANKS MALE /HALE UAVS CORVETTES AND OPVS COUNTERING MANPADS AIR FORCES DIRECTORY www.asianmilitaryreview.com B:216 mm T:213 mm S:197 mm AQS-24 B:291 mm S:270 mm T:286 mm THE VALUE OF ENSURING AN UNDERSEA ADVANTAGE KNOWS NO BORDERS. Mines don’t recognize borders, nor should the most advanced mine hunting solutions. Only Northrop Grumman’s advanced AQS-24 family of sensors deliver unparalleled performance with complete adaptability. From hardware versatility (deployable from helicopter or unmanned surface vessel) to increased speed in mission execution, the AQS-24 is the future of mine warfare. That’s why we’re a leader in advanced undersea technology. www.northropgrumman.com/minehunter ©2017 Northrop Grumman Corporation 02 | ASIAN MILITARY REVIEW | ©2017 Northrop Grumman Corporation Project Manager: Vanessa Pineda Document Name: NG-MSH-Z35767-B.indd Element: P4CB Current Date: 9-18-2017 11:09 AM Studio Client: Northrop Grumman Bleed: 216 mm w x 291 mm h Studio Artist: DAW Product: MSH Trim: 213 mm w x 286 mm h Proof #: 3-RELEASE Proofreader Creative Tracking: NG-MSH-Z35767 Safety: 197 mm w x 270 mm h Print Scale: None Page 1 of 1 Print Producer Billing Job: NG-MSH-Z35767 Gutter: None InDesign Version: CC 2015 Title: AQS-24 Intl Aus - Asian Military Review Color List: None Art Director Inks: Cyan, Magenta, Yellow, Black Creative Director Document Path: Mechanicals:Northrop_Grumman:NG-MSH:NG-MSH-Z35767:NG-MSH-Z35767-B.indd
    [Show full text]
  • Air Defence in Northern Europe
    FINNISH DEFENCE STUDIES AIR DEFENCE IN NORTHERN EUROPE Heikki Nikunen National Defence College Helsinki 1997 Finnish Defence Studies is published under the auspices of the National Defence College, and the contributions reflect the fields of research and teaching of the College. Finnish Defence Studies will occasionally feature documentation on Finnish Security Policy. Views expressed are those of the authors and do not necessarily imply endorsement by the National Defence College. Editor: Kalevi Ruhala Editorial Assistant: Matti Hongisto Editorial Board: Chairman Prof. Pekka Sivonen, National Defence College Dr. Pauli Järvenpää, Ministry of Defence Col. Erkki Nordberg, Defence Staff Dr., Lt.Col. (ret.) Pekka Visuri, Finnish Institute of International Affairs Dr. Matti Vuorio, Scientific Committee for National Defence Published by NATIONAL DEFENCE COLLEGE P.O. Box 266 FIN - 00171 Helsinki FINLAND FINNISH DEFENCE STUDIES 10 AIR DEFENCE IN NORTHERN EUROPE Heikki Nikunen National Defence College Helsinki 1997 ISBN 951-25-0873-7 ISSN 0788-5571 © Copyright 1997: National Defence College All rights reserved Oy Edita Ab Pasilan pikapaino Helsinki 1997 INTRODUCTION The historical progress of air power has shown a continuous rising trend. Military applications emerged fairly early in the infancy of aviation, in the form of first trials to establish the superiority of the third dimension over the battlefield. Well- known examples include the balloon reconnaissance efforts made in France even before the birth of the aircraft, and it was not long before the first generation of flimsy, underpowered aircraft were being tested in a military environment. The Italians used aircraft for reconnaissance missions at Tripoli in 1910-1912, and the Americans made their first attempts at taking air power to sea as early as 1910-1911.
    [Show full text]
  • Problems of High Speed and Altitude Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018
    12/14/18 Problems of High Speed and Altitude Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Learning Objectives • Effects of air compressibility on flight stability • Variable sweep-angle wings • Aero-mechanical stability augmentation • Altitude/airspeed instability Flight Dynamics 470-480 Airplane Stability and Control Chapter 11 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html 1 http://www.princeton.edu/~stengel/FlightDynamics.html Outrunning Your Own Bullets • On Sep 21, 1956, Grumman test pilot Tom Attridge shot himself down, moments after this picture was taken • Test firing 20mm cannons of F11F Tiger at M = 1 • The combination of events – Decay in projectile velocity and trajectory drop – 0.5-G descent of the F11F, due in part to its nose pitching down from firing low-mounted guns – Flight paths of aircraft and bullets in the same vertical plane – 11 sec after firing, Attridge flew through the bullet cluster, with 3 hits, 1 in engine • Aircraft crashed 1 mile short of runway; Attridge survived 2 1 12/14/18 Effects of Air Compressibility on Flight Stability 3 Implications of Air Compressibility for Stability and Control • Early difficulties with compressibility – Encountered in high-speed dives from high altitude, e.g., Lockheed P-38 Lightning • Thick wing center section – Developed compressibility burble, reducing lift-curve slope and downwash • Reduced downwash – Increased horizontal stabilizer effectiveness – Increased static stability – Introduced
    [Show full text]
  • Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft
    Cranfield University Naveed ur Rahman Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft School of Engineering PhD Thesis Cranfield University Department of Aerospace Sciences School of Engineering PhD Thesis Academic Year 2008-09 Naveed ur Rahman Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft Supervisor: Dr James F. Whidborne May 2009 c Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. Abstract The Blended Wing Body (BWB) aircraft offers a number of aerodynamic perfor- mance advantages when compared with conventional configurations. However, while operating at low airspeeds with nominal static margins, the controls on the BWB aircraft begin to saturate and the dynamic performance gets sluggish. Augmenta- tion of aerodynamic controls with the propulsion system is therefore considered in this research. Two aspects were of interest, namely thrust vectoring (TVC) and flap blowing. An aerodynamic model for the BWB aircraft with blown flap effects was formulated using empirical and vortex lattice methods and then integrated with a three spool Trent 500 turbofan engine model. The objectives were to estimate the effect of vectored thrust and engine bleed on its performance and to ascertain the corresponding gains in aerodynamic control effectiveness. To enhance control effectiveness, both internally and external blown flaps were sim- ulated. For a full span internally blown flap (IBF) arrangement using IPC flow, the amount of bleed mass flow and consequently the achievable blowing coefficients are limited. For IBF, the pitch control effectiveness was shown to increase by 18% at low airspeeds.
    [Show full text]
  • Root Seal Installation Intro
    Root Seal Installation Intro: Replacing the wing and stabilizer seals on a plane is not a small job, but it can be done one seal at a time if trying to fit the work into a busy flying schedule. It took us two days to replace one seal. I’m not an expert and made several mistakes on the first try due to a lack of information. I would expect it to take one day or less per seal for the next ones. What follows tries to capture what we learned. Background: The wing root seals have a complex cross section with a center root and a wide lip attached to that root. The root and lip essentially grasp the wing skin out-of- sight below the seal. The root and lip must be pushed through the gap between the wing skin and fuselage such that the lip flips back under the skin and the root is trapped between the edge of the skin and the side of the fuselage. At some point before I owned my Baron, the original seal had been cut off, leaving the root and lip in place glued to the underside of the wing skin. This was a shortcut that is not uncommon but creates later problems. A new seal, after having the center root and lip removed, had been glued to the wing and fuselage using the 3M yellow contact cement. Over time the 3M cement degraded and since there was no root/lip to hold it in place, the replacement seal was torn away by the slipstream.
    [Show full text]
  • A-7 Strut Braced Wing Concept Transonic Wing Design
    A-7 Strut Braced Wing Concept Transonic Wing Design by Andy Ko, William H. Mason, B. Grossman and J.A. Schetz VPI-AOE-275 July 12, 2002 Prepared for: National Aeronautics and Space Administration Langley Research Center Contract No.: NASA PO #L-14266 Covering the period June 3, 2001– Nov. 30, 2001 Multidisciplinary Analysis and Design Center for Advanced Vehicles Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24061 Executive Summary The Multidisciplinary Analysis and Design (MAD) Center at Virginia Tech has investigated the strut-braced wing (SBW) design concept for the last 5 years. Studies found that the SBW configuration showed savings in takeoff gross weight of up to 19%, and savings in fuel weight of up to 25% compared to a similarly designed cantilever wing transport aircraft. In our work we assumed that computational fluid dynamics (CFD) would be used to achieve the target aerodynamic performance levels. No detailed CFD design of the wing was done. In this study, we used CFD to do the aerodynamic design for a proposed SBW demonstration using a re-winged A7 aircraft. The goal was to design a standard constant isobar transonic cruise wing, together with the strut. The wing/pylon/strut junction would be an integral part of the aerodynamic design. We did this work in consultation with NASA Langley Configuration Aerodynamics branch members through a weekly teleconference, using PDF files to allow them to visualize the progress. They provided us with the codes required to do the work, although one of the codes assumed to be available was not.
    [Show full text]
  • Aircraft Collection
    A, AIR & SPA ID SE CE MU REP SEU INT M AIRCRAFT COLLECTION From the Avenger torpedo bomber, a stalwart from Intrepid’s World War II service, to the A-12, the spy plane from the Cold War, this collection reflects some of the GREATEST ACHIEVEMENTS IN MILITARY AVIATION. Photo: Liam Marshall TABLE OF CONTENTS Bombers / Attack Fighters Multirole Helicopters Reconnaissance / Surveillance Trainers OV-101 Enterprise Concorde Aircraft Restoration Hangar Photo: Liam Marshall BOMBERS/ATTACK The basic mission of the aircraft carrier is to project the U.S. Navy’s military strength far beyond our shores. These warships are primarily deployed to deter aggression and protect American strategic interests. Should deterrence fail, the carrier’s bombers and attack aircraft engage in vital operations to support other forces. The collection includes the 1940-designed Grumman TBM Avenger of World War II. Also on display is the Douglas A-1 Skyraider, a true workhorse of the 1950s and ‘60s, as well as the Douglas A-4 Skyhawk and Grumman A-6 Intruder, stalwarts of the Vietnam War. Photo: Collection of the Intrepid Sea, Air & Space Museum GRUMMAN / EASTERNGRUMMAN AIRCRAFT AVENGER TBM-3E GRUMMAN/EASTERN AIRCRAFT TBM-3E AVENGER TORPEDO BOMBER First flown in 1941 and introduced operationally in June 1942, the Avenger became the U.S. Navy’s standard torpedo bomber throughout World War II, with more than 9,836 constructed. Originally built as the TBF by Grumman Aircraft Engineering Corporation, they were affectionately nicknamed “Turkeys” for their somewhat ungainly appearance. Bomber Torpedo In 1943 Grumman was tasked to build the F6F Hellcat fighter for the Navy.
    [Show full text]
  • 7. Transonic Aerodynamics of Airfoils and Wings
    W.H. Mason 7. Transonic Aerodynamics of Airfoils and Wings 7.1 Introduction Transonic flow occurs when there is mixed sub- and supersonic local flow in the same flowfield (typically with freestream Mach numbers from M = 0.6 or 0.7 to 1.2). Usually the supersonic region of the flow is terminated by a shock wave, allowing the flow to slow down to subsonic speeds. This complicates both computations and wind tunnel testing. It also means that there is very little analytic theory available for guidance in designing for transonic flow conditions. Importantly, not only is the outer inviscid portion of the flow governed by nonlinear flow equations, but the nonlinear flow features typically require that viscous effects be included immediately in the flowfield analysis for accurate design and analysis work. Note also that hypersonic vehicles with bow shocks necessarily have a region of subsonic flow behind the shock, so there is an element of transonic flow on those vehicles too. In the days of propeller airplanes the transonic flow limitations on the propeller mostly kept airplanes from flying fast enough to encounter transonic flow over the rest of the airplane. Here the propeller was moving much faster than the airplane, and adverse transonic aerodynamic problems appeared on the prop first, limiting the speed and thus transonic flow problems over the rest of the aircraft. However, WWII fighters could reach transonic speeds in a dive, and major problems often arose. One notable example was the Lockheed P-38 Lightning. Transonic effects prevented the airplane from readily recovering from dives, and during one flight test, Lockheed test pilot Ralph Virden had a fatal accident.
    [Show full text]