Chapter 3: Mainstreaming

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3: Mainstreaming 2011 Cook Islands 4th National Report to the Convention on Biological Diversity i Cook Islands 4th National Report to the Convention on Biological Diversity 2011 Approved by the Cabinet of the Cook Islands Government on the 8th of April 2011 [CM (11) 0125] Acknowledgements The National Environment Service would like to gratefully express our gratitude to the NES staff, Biodiversity Steering Committee, those individuals, experts, institutions and community groups who kindly gave valuable assistance and information during the compilation of this report. This report was prepared by Kelvin Passfield and Teariki Rongo Compiled and edited by Joseph Brider and Elizabeth Munro with the assistance of Tania Temata Cover photograph courtesy of James Mataa Prepared for the National Environment Service © 2011 Foreword Executive Summary This report is presented in 4 chapters. Chapter 1 provides background on the process of developing the Cook Island National Biodiversity Strategy and Action Plan (NBSAP). The Cook Islands was one of the first countries to commit to the CBD by signing it at the Earth Summit in 1992, and the Cook Island National Biodiversity Strategy and Action Plan (NBSAP) was one of the first to be completed for the Pacific Region. This in itself was a positive step towards implementation of the CBD. The NBSAP was prepared based on feedback from stakeholder workshops. However, progress on implementation of the NBSAP has been limited, and significant progress has been made only in several areas in regard to meeting the targets of the CBD. Chapter 2 deals with progress on implementation of the NBSAP. The most significant achievement has been the improvement in the status of threatened species, and this target has been achieved through the upgrading of the Rarotongan Flycatcher (Pomarea dimidiata) from critically endangered to endangered on the IUCN red list of threatened species, in addition to this a number of other targets have been partially achieved. The Cook Islands Biodiversity database, listing the country’s biodiversity is a significant and on-going step towards achieving article 7 of the CBD. Chapter 3 relates to mainstreaming of biodiversity considerations throughout both Government and non-government institutions. This was attempted through the incorporation of the NBSAP into the National Environment Strategic Action Framework (NESAF) and the subsequent inclusion of the NESAF into the National Sustainable Development Plan (NSDP). Despite this, the policy framework did not translate to on the ground mainstreaming of biodiversity concerns. A table is presented showing the role of various institutions in biodiversity. Chapter 4 looks at the CBD targets, and shows the status of the Cook Islands in meeting these targets. Success has been achieved in relation to Goal 2, promoting the conservation of species diversity. Areas where achievements have not met the targets include percent coverage of protected areas, and effective mainstreaming of biodiversity. Another area where more effort is required is in the formulation and implementation of effective management plans for major alien species that threaten ecosystems, habitats or species. Though many targets have not been met, overall, the Cook Islands have made considerable progress towards meeting their obligations under the CBD. The main problem lies not with lack of progress, but in trying to find where this progress has been made. There is a need to improve the monitoring and evaluation system in order to identify progress. The preparation of a report such as this should be an ongoing activity, with progress against goals recorded as it is made. This will make the preparation of future reports much more straightforward, and easily completed using the capacity within the National Environment Service. TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................ VIII LIST OF TABLES ............................................................................................................ IX GLOSSARY OF ACRONYMS ........................................................................................ XII CHAPTER 1: OVERVIEW OF BIODIVERSITY STATUS, TRENDS AND THREATS ..... 1 1.1 INTRODUCTION ................................................................................................................................. 1 1.2 STATUS OF BIODIVERSITY IN THE COOK ISLANDS ...................................................................... 1 1.2.1 Geography ......................................................................................................................................... 1 1.2.2 Biological and Habitat Diversity ............................................................................................ 2 1.2.3 Off­Shore Fisheries ...................................................................................................................... 14 1.2.4 The Cook Islands Biodiversity Database ........................................................................... 16 1.2.5 Endemic and threatened species. ......................................................................................... 18 1.3. PROTECTED AREAS ....................................................................................................................... 26 1.4 THREATS ANALYSIS ...................................................................................................................... 29 1.4.1 Endangered Species .................................................................................................................... 29 1.4.2 Threatened Ecosystems ............................................................................................................ 34 1.4.3 Biodiversity Capacity Gaps ................................................................................................ 38 CHAPTER 2: STATUS OF IMPLEMENTATION OF NBSAP ......................................... 43 2.2 OTHER NBSAP ACTIVITIES. ........................................................................................................ 46 2.2.1 NBSAP Add­On Project .............................................................................................................. 46 2.3. PROGRESS ....................................................................................................................................... 46 CHAPTER 3: MAINSTREAMING ................................................................................... 64 3.1 INCORPORATION OF THE NBSAP INTO THE NATIONAL ENVIRONMENT STRATEGIC ACTION FRAMEWORK (NESAF) ................................................................................................................ 64 3.2 TE KAVEINGA NUI AND NATIONAL SUSTAINABLE DEVELOPMENT PLAN ........................... 66 3.3 BUDGETARY SUPPORT TO BIODIVERSITY CONSERVATION .................................................... 67 3.4 INSTITUTIONAL FRAMEWORKS FOR BIODIVERSITY CONSERVATION ................................... 67 3.4.1 National Environment Service ............................................................................................... 67 3.4.2 Ministry of Marine Resources ................................................................................................. 68 3.4.3 Ministry of Agriculture .............................................................................................................. 69 3.4.4 Non Government Organizations ........................................................................................... 70 3.5. SUCCESS OF MAINSTREAMING ..................................................................................................... 75 CHAPTER 4: PROGRESS TOWARDS THE 2010 CBD TARGETS .............................. 78 4.1 OVERALL ASSESSMENT OF PROGRESS TOWARDS THE 2010 TARGETS............................... 78 CONCLUSION ................................................................................................................ 93 REFERENCES ............................................................................................................... 94 APPENDIX 1 HABITAT MAPS FOR THE ISLANDS OF THE COOK ISLANDS. ........ 101 APPENDIX 2 THREATS TO FLORA ........................................................................... 105 APPENDIX 3 THREATS TO FAUNA ........................................................................... 107 APPENDIX 4 THREATS TO ECOSYSTEMS ............................................................... 108 APPENDIX 5 NATIVE SPECIES ASSISTANCE PROVIDED UNDER THE NBSAP ADD- ON ................................................................................................................................ 110 APPENDIX 6 COOK ISLANDS NCSA ANALYSIS ...................................................... 111 List of Figures Figure Page 1. The Cook Islands in relation to the neighbouring Pacific Island States. .................... 1 2. The Cook Islands map showing the 200‐nautical mile Exclusive Economic Zone Boundary. ............................................................................................................................................. 2 3. Reef, lagoon, coastal and mountain ecosystems on Rarotonga. .................................... 4 4. Wetland ecosystems, Lake Tiriara on Mangaia. ................................................................... 5 5. Ridge to reef view of Aitutaki. ....................................................................................................
Recommended publications
  • Study Guide Entomology & Nematology Department
    STUDY GUIDE ENTOMOLOGY & NEMATOLOGY DEPARTMENT DPM COMPREHENSIVE EXAMINATIONS The Entomology & Nematology Comprehensive Examinations consist of 3 sections: pest identification (30%), pest biology and management (40%), and core concepts and synthesis (30%). These examinations are limited to information about invertebrate animal pests, principally insects and nematodes, but also plant feeding mites and terrestrial molluscs. A. Pest identification Students will be presented with insects, mites, molluscs, and nematodes that they must identify. Some may be recognizable by sight, but others may require keys for identification. Students will be provided with identification aids (keys), where necessary, and be expected to use them to identify the subjects accurately. The unknowns will be selected from the list of important insect, mite, mollusc, and nematode pests (Table 1) though we will emphasize those with a single or double asterisk [* or **]), as these normally are the more important pests. Included in this list are some that pose a threat but are not currently found in Florida. B. Pest biology and management Students will answer 8-10 questions on insect, mite, mollusc, and nematode pest biology (sampling, distribution, life cycle, damage) and management. The animals for which students are responsible to know biology and management are listed in Table 1 (preceded by double asterisk [**]). C. Core Concepts and Synthesis Section: Students will answer 3 or 4 questions that cover core areas of Entomology/Nematology and demonstrate knowledge of core areas, but also analysis and problem solving. Suggested reference/reading material is listed in Table 2. You might want to read through these in preparation for the Comprehensive Examinations.
    [Show full text]
  • Thysanoptera (Insecta) of Barrow Island, Western Australia
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 83 287–290 (2013) SUPPLEMENT Thysanoptera (Insecta) of Barrow Island, Western Australia Laurence A. Mound CSIRO Ecosystem Sciences, Canberra, ACT 2601, Australia. Email: [email protected] ABSTRACT – Almost 50 species of the insect order Thysanoptera are here listed from Barrow Island, Western Australia, of which several are known only from this island. This cannot be interpreted as indicating that any species is endemic to the island, because almost nothing is known of the Thysanoptera fauna of the nearby mainland. KEYWORDS: Thysanoptera, thrips, Barrow Island INTRODUCTION taxa that have been recognised from the available samples. The Australian fauna of the insect order Thysanoptera is far from exhaustively known. Within the order Thysanoptera, two suborders The number of correctly identified species from are recognised, both of which are well represented this continent was less than 20 in 1915, about 225 on Barrow Island. The Tubulifera comprises in 1960, and almost 400 by 1995. However, even a single family, Phlaeothripidae, whereas the Terebrantia includes five families in Australia the total of 830 species now listed (ABRS 2012) (Mound et al. 2012), of which three were found in seems likely to represent little more than 50% of the Barrow Island samples. Nomenclatural details the real fauna (Mound et al. 2012). Field studies of Thysanoptera taxa are not given here, but are have been concentrated primarily on parts of New fully web-available (ThripsWiki 2013; ABRS 2012). South Wales, eastern Queensland and Central Australia. Only limited field work has been carried BARROW ISLAND THYSANOPTERA- out in most of Western Australia, moreover the TEREBRANTIA northern tropics of Australia as well as the forests of Tasmania and Victoria remain little sampled.
    [Show full text]
  • ATIU SWIFTLET KOPEKA (Aerodramus Sawtelli): SPECIES STATUS REPORT 2020
    ATIU SWIFTLET KOPEKA (Aerodramus sawtelli): SPECIES STATUS REPORT 2020 Atiu Swiftlet James J. S. Johnson Author: Te Ipukarea Society Te Ipukarea Society, PO Box 649, Rarotonga Cook Islands Funded with the support of: The Ridge to Reef Project through the National Environment Service, funded by Global Environment Facility (GEF) and facilitated by United Nations Development Programme (UNDP) Species status report – Kopeka, Atiu Swiftlet (Aerodramus sawtelli) Summary The Atiu swiftlet (Aerodramus sawtelli), known locally as the kopeka, is endemic to the island of Atiu within the Cook Islands and is listed under the IUCN Red List as ‘Vulnerable’ (BirdLife International, 2016; IUCN 2020). Under the Ridge to Reef project (R2R), the Atiu Swiftlet was listed as a key terrestrial species for conservation activities (UNDP Project document, undated). Projects relevant to the kopeka that were initially planned to be implemented under R2R included: support for the kopeka conservation effort; support collaborative work amongst key stakeholders such as National Environment Service (NES), National Heritage Trust (NHT), the Atiu Island Council and Traditional Leaders to create and implement a Species Conservation Plan for this species; and to measure the population at the end of the project to gauge the overall results of the species conservation plan. The R2R baseline figures for the kopeka were recorded at 420 individuals in 2015. Species target goals upon completion of the R2R project were for ‘no net decline in population numbers’. During the four-year R2R programme 2015-19, later extended to 2021, no updated population surveys were conducted. In 2016 -2017, estimated population numbers were around 600 adults (M.
    [Show full text]
  • Systematics of Polistes (Hymenoptera: Vespidae), with a Phylogenetic Consideration of Hamilton’S Haplodiploidy Hypothesis
    Ann. Zool. Fennici 43: 390–406 ISSN 0003-455X Helsinki 29 December 2006 © Finnish Zoological and Botanical Publishing Board 2006 Systematics of Polistes (Hymenoptera: Vespidae), with a phylogenetic consideration of Hamilton’s haplodiploidy hypothesis Kurt M. Pickett*, James M. Carpenter & Ward C. Wheeler Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10023, USA * Current address: Department of Biology, University of Vermont, Room 120A Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, USA Received 30 Nov. 2005, revised version received 21 Nov. 2006, accepted 4 May 2006 Pickett, K. M., Carpenter, J. M. & Wheeler, W. C. 2006: Systematics of Polistes (Hymenoptera: Vespidae), with a phylogenetic consideration of Hamilton’s haplodiploidy hypothesis. — Ann. Zool. Fennici 43: 390–406. A review of previously published cladistic analyses of Polistes is presented. The two most recent analyses of Polistes are shown to be largely consistent phylogenetically. Although the taxonomy implied by each differs, this difference is shown to be mostly due to taxon sampling. After the review, a phylogenetic analysis of Polistes — the most data-rich yet undertaken — is presented. The analysis includes new data and the data from previously published analyses. The differing conclusions of the previous studies are discussed in light of the new analysis. After discussing the status of subge- neric taxonomy in Polistes, the new phylogeny is used to test an important hypothesis regarding the origin of social behavior: the haplodiploidy hypothesis of Hamilton. Prior phylogenetic analyses so while these studies achieved their goal, with within Polistes resolutions leading to rejection of Emery’s Rule, they had little to say about broader phylogenetic Cladistic analysis of species-level relationships patterns within the genus.
    [Show full text]
  • Biology of Leaf Gall-Inducing Thlibothrips Manipurenis Muraleedharan, 1982 on Ardisia Sp
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Entomologie = Contributions to Entomology Jahr/Year: 2012 Band/Volume: 62 Autor(en)/Author(s): Taptamani Heishnam, Varatharajan Rameiyer, Raman A. Artikel/Article: Biology of leaf gall-inducing Thlibothrips manipurenis Muraleedharan, 1982 on Ardisia sp. (Myrsinaceae) in north-eastern India (Thysanoptera: Tubulifera: Phlaeothripidae). 69-76 ©www.senckenberg.de/; download www.contributions-to-entomology.org/ Beitr. Ent. Keltern ISSN 0005 - 805X 62 (2012) 1 S. 69 - 76 15.05.2012 Biology of leaf gall-inducingThlibothrips manipurenis Muraleedharan, 1982 onA rdisia sp. (Myrsinaceae) in north­ eastern India (Thysanoptera: Tubulifera: Phlaeothripidae) With 11 figures Heishnam Taptamani, Ramaiyer VAratharajan and A nantanarayanan Raman Summary Biology of the epiphyllous roll-gall-inducing Thlibothrips manipurensis was studied on Ardisia sp. under laboratory conditions. T manipurensis laid eggs linearly along the margins of tender leaves. Eggs hatched in 6.8 d and the larval duration was 3.4 and 8.2 d for larvae I and II, respectively. After 20.2 h as prepupa, T manipurensis grew into pupa; adult emergence occurred in 4 d. Each female laid 34±7 eggs and the mean longevity of the adult was 10.2 d. Increase in thrips numbers correlated with the age of the gall: 15 individ- uals/gall occurred in young (4—10 d) galls, whereas 28 occurred in mature (20 d) galls, and 36 in old (25 d) galls. Male-female ratio in old galls was 1:5. Mature galls included a homogeneous tissue structure, made of 12-15 layers of parenchyma cells with no distinction into spongy and palisade cells.
    [Show full text]
  • Cook Islands of the Basicbasic Informationinformation Onon Thethe Marinemarine Resourcesresources Ofof Thethe Cookcook Islandsislands
    Basic Information on the Marine Resources of the Cook Islands Basic Information on the Marine Resources of the Cook Islands Produced by the Ministry of Marine Resources Government of the Cook Islands and the Information Section Marine Resources Division Secretariat of the Pacific Community (SPC) with financial assistance from France . Acknowledgements The Ministry of Marine Resources wishes to acknowledge the following people and organisations for their contribution to the production of this Basic Information on the Marine Resources of the Cook Islands handbook: Ms Maria Clippingdale, Australian Volunteer Abroad, for compiling the information; the Cook Islands Natural Heritage Project for allowing some of its data to be used; Dr Mike King for allowing some of his drawings and illustration to be used in this handbook; Aymeric Desurmont, Secretariat of the Pacific Community (SPC) Fisheries Information Specialist, for formatting and layout and for the overall co-ordination of efforts; Kim des Rochers, SPC English Editor for editing; Jipé Le-Bars, SPC Graphic Artist, for his drawings of fish and fishing methods; Ministry of Marine Resources staff Ian Bertram, Nooroa Roi, Ben Ponia, Kori Raumea, and Joshua Mitchell for reviewing sections of this document; and, most importantly, the Government of France for its financial support. iii iv Table of Contents Introduction .................................................... 1 Tavere or taverevere ku on canoes ................................. 19 Geography ............................................................................
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • Cook Islands Priority Environmental Problems (PEC) Report: a Review and Assessment of the Priority Environmental Concerns
    ISSN 1818-5614 Cook Islands priority environmental problems (PEC) report: a review and assessment of the priority environmental concerns By Island Friends Ltd. IWP-Pacific Technical Report (International Waters Project) no. 11 Global United Nations Pacific Regional Environment Development Environment Facility Programme Programme SPREP IRC Cataloguing-in-Publication Data Cook Islands priority environmental problems (PEC) report : a review and assessment of the priority environmental concerns. / [prepared by] Island Friends Ltd. – Apia, Samoa : SPREP, 2004. 106 p. ; 29 cm IWP-Pacific Technical Report (International Waters Project) no. 11 ISBN: 982-04-0274-3 ISSN: 1818-5614 1. Environmental impact analysis – Cook Islands. 2. Environmental monitoring – Cook Islands. 3. Ecological risk assessment – Cook Islands. 4. Environmental protection – Cook Islands. I. Implementation of the Strategic Action Programme of the Pacific Small Island Developing States. Project No. RAS/98/G32. III. International Waters Programme. IV. Cook Islands International Waters Programme. V. Secretariat for the Pacific Regional Environment Programme (SPREP). VI. Title. 333.714 This report was produced by SPREP’s International Waters Project that is implementing the Strategic Action Programme for the International Waters of the Pacific Small Island Developing States with funding from the Global Environment Facility. The views expressed in this report are not necessarily those of the publisher. Cover design by SPREP’s Publications Unit Editing: Ms. Talica Koroi Layout: Ms. Sasa’e Walter Printed by Marfleet Printing Co. Ltd. Apia, Samoa SPREP P O Box 240 Apia, Samoa Ph: (685) 21929 Fax: (685) 20231 Email: [email protected] Website: www.sprep.org.ws/iwp © SPREP 2004 The South Pacific Regional Environment Programme authorizes the reproduction of this material, whole or in part, provided appropriate acknowledgement is given.
    [Show full text]
  • Atiu & Takutea
    ATIU & TAKUTEA NEARSHORE MARINE ASSESSMENT 2019 © Ministry of Marine Resources (MMR) All rights for commercial reproduction and/or translation are reserved. The Cook Islands MMR authorises partial reproduction or translation of this work for fair use, scientific, educational/outreach and research purposes, provided MMR and the source document are properly acknowledged. Full reproduction may be permitted with consent of MMR management approval. Photographs contained in this document may not be reproduced or altered without written consent of the original photographer and/or MMR. Original Text: English Design and Layout: Ministry of Marine Resources Front Cover: Atiu Cliff and Goats Photo: Kirby Morejohn/MMR Inside Rear Cover: Takutea Birds Photo: Lara Ainley/MMR Rear Cover: The Grotto Photo: Kirby Morejohn/MMR Avarua, Rarotonga, Cook Islands, 2019 ATIU & TAKUTEA NEARSHORE MARINE ASSESSMENT Prepared for the Atiu Island Council and Community James Kora, Dr. Lara Ainley and Kirby Morejohn Ministry of Marine Resources This book is an abbreviated form of the 2018, Atiu and Takutea Nearshore Invertebrate and Finfish Assessment i TABLE OF CONTENTS INTRODUCTION ....................................................................................................................................... 1 Atiu ...................................................................................................................................................... 1 Takutea ...............................................................................................................................................
    [Show full text]
  • Ficus Microcarpa Chinese Banyan Moraceae
    Ficus microcarpa Chinese banyan Moraceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Ficus microcarpa is a popular ornamental tree grown widely in many tropical regions of the world. The pollinator wasp has been introduced to a number of places where the tree is cultivated, including Hawai'i, allowing this species to spread beyond initial plantings. F. microcarpa is a notorious invader in Hawai'i, Florida, Bermuda, and from Central to South America. Tiny seeds within small sized fruit are ingested by many fruit eating animals, such as birds. Seeds are capable of germinating and growing almost anywhere they land, even in cracks in concrete or in the crotch of other trees. The small seedling begins to grow on its host, sending down aerial roots, and eventually strangling and replacing the host tree or structure. In Hawai'i, most of the main islands are infested with F. microcarpa. Typically, this species invades disturbed urban sites to degraded secondary forests in areas nearby initial plantings. It has recently been observed growing on native wiliwili (Erythrina sandwicense) in lowland dry forests of Maui. On the main islands of Hawai'i, rapid containment once inside natural area boundaries may be the only feasible action, given the widespread distribution. On Midway Atoll, the wasp was introduced later than on the main islands and, as a result, F. microcarpa has only recently begun to spread there. With limited distribution, control here seems more feasible than on the main islands. To decrease the potential for this species to spread, it should not be introduced to new areas and could be removed in natural areas where it is limited in distribution.
    [Show full text]
  • Thysanoptera: Phlaeothripinae, Leeuweniini), with Comments on Related Old World Taxa
    Blackwell Science, LtdOxford, UKAENAustralian Journal of Entomology1326-67562004 Australian Entomological SocietyMarch 20044312837Original ArticleAustralian long-tailed gall thripsLaurence A Mound Australian Journal of Entomology (2004) 43, 28–37 Australian long-tailed gall thrips (Thysanoptera: Phlaeothripinae, Leeuweniini), with comments on related Old World taxa Laurence A Mound CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia. Abstract The Tribe Leeuweniini is a group of Old World Phlaeothripinae species that feed and usually induce irregular galls on the leaves of rainforest trees. These thrips all have the last abdominal segment unusually elongate, but this is a variable and homoplastic character state, and the tribe remains ill- defined. Worldwide, 27 species in three genera are now recognised, with five other generic names here included as synonyms of Leeuwenia Karny. From Australia, six species in two genera are recorded here occurring in the eastern rainforests. Four newly described Australian species and their host plants are: Leeuwenia diospyri sp. n. (Diospyros pentamera–Ebenaceae); L. polyosmae sp. n. (Polyosma cunninghamii–Grossulariaceae); L. scolopiae sp. n. (Scolopia braunii–Flacourtiaceae); and L. tetrastigmae sp. n. (Tetrastigma nitens–Vitaceae). The host association of L. convergens Hood is not known, but the sixth species, Neohoodiella jennibeardae Mound and Williams, breeds on two unrelated plants of which the leaves are similar in texture – Ficus coronata (Moraceae) and Rhipogonum elseyanum (Smilacaceae). Key words galls, Leeuwenia, Neohoodiella, rainforest trees. INTRODUCTION that was found living in an abandoned weevil mine on an Acacia phyllode in Queensland. In contrast to other insects, adults of the 3500 named species This paper gives some account of the six Australian mem- in the thysanopteran family Phlaeothripidae have the tenth bers of an Old World group of 27 described thrips species in abdominal segment forming a complete tube.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]