Pointer Tagging for Memory Safety
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cyclone: a Type-Safe Dialect of C∗
Cyclone: A Type-Safe Dialect of C∗ Dan Grossman Michael Hicks Trevor Jim Greg Morrisett If any bug has achieved celebrity status, it is the • In C, an array of structs will be laid out contigu- buffer overflow. It made front-page news as early ously in memory, which is good for cache locality. as 1987, as the enabler of the Morris worm, the first In Java, the decision of how to lay out an array worm to spread through the Internet. In recent years, of objects is made by the compiler, and probably attacks exploiting buffer overflows have become more has indirections. frequent, and more virulent. This year, for exam- ple, the Witty worm was released to the wild less • C has data types that match hardware data than 48 hours after a buffer overflow vulnerability types and operations. Java abstracts from the was publicly announced; in 45 minutes, it infected hardware (“write once, run anywhere”). the entire world-wide population of 12,000 machines running the vulnerable programs. • C has manual memory management, whereas Notably, buffer overflows are a problem only for the Java has garbage collection. Garbage collec- C and C++ languages—Java and other “safe” lan- tion is safe and convenient, but places little con- guages have built-in protection against them. More- trol over performance in the hands of the pro- over, buffer overflows appear in C programs written grammer, and indeed encourages an allocation- by expert programmers who are security concious— intensive style. programs such as OpenSSH, Kerberos, and the com- In short, C programmers can see the costs of their mercial intrusion detection programs that were the programs simply by looking at them, and they can target of Witty. -
REFPERSYS High-Level Goals and Design Ideas*
REFPERSYS high-level goals and design ideas* Basile STARYNKEVITCH† Abhishek CHAKRAVARTI‡ Nimesh NEEMA§ refpersys.org October 2019 - May 2021 Abstract REFPERSYS is a REFlexive and orthogonally PERsistent SYStem (as a GPLv3+ licensed free software1) running on Linux; it is a hobby2 but serious research project for many years, mostly aimed to experiment open science ideas close to Artificial General Intelligence3 dreams, and we don’t expect use- ful or interesting results before several years of hard work. audience : LINUX free software developers4 and computer scientists interested in an experimental open science approach to reflexive systems, orthogonal persistence, symbolic artificial intelligence, knowledge engines, etc.... Nota Bene: this report contains many hyperlinks to relevant sources so its PDF should rather be read on a computer screen, e.g. with evince. Since it describes a circular design (with many cycles [Hofstadter:1979:GEB]), we recommend to read it twice (skipping footnotes and references on the first read). This entire document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. *This document has git commit fb17387fbbb7e200, was Lua-LATEX generated on 2021-May-17 18:55 MEST, see gitlab.com/bstarynk/refpersys/ and its doc/design-ideas subdirectory. Its draft is downloadable, as a PDF file, from starynkevitch.net/Basile/refpersys-design.pdf ... †See starynkevitch.net/Basile/ and contact [email protected], 92340 Bourg La Reine (near Paris), France. ‡[email protected], FL 3C, 62B PGH Shah Road, Kolkata 700032, India. -
Spindle Documentation Release 2.0.0
spindle Documentation Release 2.0.0 Jorge Ortiz, Jason Liszka June 08, 2016 Contents 1 Thrift 3 1.1 Data model................................................3 1.2 Interface definition language (IDL)...................................4 1.3 Serialization formats...........................................4 2 Records 5 2.1 Creating a record.............................................5 2.2 Reading/writing records.........................................6 2.3 Record interface methods........................................6 2.4 Other methods..............................................7 2.5 Mutable trait...............................................7 2.6 Raw class.................................................7 2.7 Priming..................................................7 2.8 Proxies..................................................8 2.9 Reflection.................................................8 2.10 Field descriptors.............................................8 3 Custom types 9 3.1 Enhanced types..............................................9 3.2 Bitfields..................................................9 3.3 Type-safe IDs............................................... 10 4 Enums 13 4.1 Enum value methods........................................... 13 4.2 Companion object methods....................................... 13 4.3 Matching and unknown values...................................... 14 4.4 Serializing to string............................................ 14 4.5 Examples................................................. 14 5 Working -
Union Types for Semistructured Data
Edinburgh Research Explorer Union Types for Semistructured Data Citation for published version: Buneman, P & Pierce, B 1999, Union Types for Semistructured Data. in Union Types for Semistructured Data: 7th International Workshop on Database Programming Languages, DBPL’99 Kinloch Rannoch, UK, September 1–3,1999 Revised Papers. Lecture Notes in Computer Science, vol. 1949, Springer-Verlag GmbH, pp. 184-207. https://doi.org/10.1007/3-540-44543-9_12 Digital Object Identifier (DOI): 10.1007/3-540-44543-9_12 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Union Types for Semistructured Data General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Union Typ es for Semistructured Data Peter Buneman Benjamin Pierce University of Pennsylvania Dept of Computer Information Science South rd Street Philadelphia PA USA fpeterbcpiercegcisupenn edu Technical -
A Proposal for a Standard Systemverilog Synthesis Subset
A Proposal for a Standard Synthesizable Subset for SystemVerilog-2005: What the IEEE Failed to Define Stuart Sutherland Sutherland HDL, Inc., Portland, Oregon [email protected] Abstract frustrating disparity in commercial synthesis compilers. Each commercial synthesis product—HDL Compiler, SystemVerilog adds hundreds of extensions to the Encounter RTL Compiler, Precision, Blast and Synplify, to Verilog language. Some of these extensions are intended to name just a few—supports a different subset of represent hardware behavior, and are synthesizable. Other SystemVerilog. Design engineers must experiment and extensions are intended for testbench programming or determine for themselves what SystemVerilog constructs abstract system level modeling, and are not synthesizable. can safely be used for a specific design project and a The IEEE 1800-2005 SystemVerilog standard[1] defines specific mix of EDA tools. Valuable engineering time is the syntax and simulation semantics of these extensions, lost because of the lack of a standard synthesizable subset but does not define which constructs are synthesizable, or definition for SystemVerilog. the synthesis rules and semantics. This paper proposes a standard synthesis subset for SystemVerilog. The paper This paper proposes a subset of the SystemVerilog design reflects discussions with several EDA companies, in order extensions that should be considered synthesizable using to accurately define a common synthesis subset that is current RTL synthesis compiler technology. At Sutherland portable across today’s commercial synthesis compilers. HDL, we use this SystemVerilog synthesis subset in the training and consulting services we provide. We have 1. Introduction worked closely with several EDA companies to ensure that this subset is portable across a variety of synthesis SystemVerilog extensions to the Verilog HDL address two compilers. -
Presentation on Ocaml Internals
OCaml Internals Implementation of an ML descendant Theophile Ranquet Ecole Pour l’Informatique et les Techniques Avancées SRS 2014 [email protected] November 14, 2013 2 of 113 Table of Contents Variants and subtyping System F Variants Type oddities worth noting Polymorphic variants Cyclic types Subtyping Weak types Implementation details α ! β Compilers Functional programming Values Why functional programming ? Allocation and garbage Combinatory logic : SKI collection The Curry-Howard Compiling correspondence Type inference OCaml and recursion 3 of 113 Variants A tagged union (also called variant, disjoint union, sum type, or algebraic data type) holds a value which may be one of several types, but only one at a time. This is very similar to the logical disjunction, in intuitionistic logic (by the Curry-Howard correspondance). 4 of 113 Variants are very convenient to represent data structures, and implement algorithms on these : 1 d a t a t y p e tree= Leaf 2 | Node of(int ∗ t r e e ∗ t r e e) 3 4 Node(5, Node(1,Leaf,Leaf), Node(3, Leaf, Node(4, Leaf, Leaf))) 5 1 3 4 1 fun countNodes(Leaf)=0 2 | countNodes(Node(int,left,right)) = 3 1 + countNodes(left)+ countNodes(right) 5 of 113 1 t y p e basic_color= 2 | Black| Red| Green| Yellow 3 | Blue| Magenta| Cyan| White 4 t y p e weight= Regular| Bold 5 t y p e color= 6 | Basic of basic_color ∗ w e i g h t 7 | RGB of int ∗ i n t ∗ i n t 8 | Gray of int 9 1 l e t color_to_int= function 2 | Basic(basic_color,weight) −> 3 l e t base= match weight with Bold −> 8 | Regular −> 0 in 4 base+ basic_color_to_int basic_color 5 | RGB(r,g,b) −> 16 +b+g ∗ 6 +r ∗ 36 6 | Grayi −> 232 +i 7 6 of 113 The limit of variants Say we want to handle a color representation with an alpha channel, but just for color_to_int (this implies we do not want to redefine our color type, this would be a hassle elsewhere). -
Protecting the Stack with Metadata Policies and Tagged Hardware
2018 IEEE Symposium on Security and Privacy Protecting the Stack with Metadata Policies and Tagged Hardware Nick Roessler Andre´ DeHon University of Pennsylvania University of Pennsylvania [email protected] [email protected] Abstract—The program call stack is a major source of ex- stack data, or hijack the exposed function call mechanism in ploitable security vulnerabilities in low-level, unsafe languages a host of other malicious ways. like C. In conventional runtime implementations, the underlying Consequently, protecting the stack abstraction is critical stack data is exposed and unprotected, allowing programming errors to turn into security violations. In this work, we design for application security. Currently deployed defenses such as W X and stack canaries [2] make attacks more difficult to novel metadata-tag based, stack-protection security policies for ⊕ a general-purpose tagged architecture. Our policies specifically conduct, but do not protect against more sophisticated attack exploit the natural locality of dynamic program call graphs to techniques. Full memory safety can be retrofitted onto existing achieve cacheability of the metadata rules that they require. C/C++ code through added software checks, but at a high cost Our simple Return Address Protection policy has a performance overhead of 1.2% but just protects return addresses. The two of 100% or more in runtime overhead [3]. These expensive richer policies we present, Static Authorities and Depth Isola- solutions are unused in practice due to their unacceptably high tion, provide object-level protection for all stack objects. When overheads [4]. enforcing memory safety, our Static Authorities policy has a There is a long history of accelerating security policies with performance overhead of 5.7% and our Depth Isolation policy hardware to bring their overheads to more bearable levels has a performance overhead of 4.5%. -
Meant to Provoke Thought Regarding the Current "Software Crisis" at the Time
1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in DATA STRUCTURES Topic Objective: At the end of this topic student will be able to: At the end of this topic student will be able to: Learn about software engineering principles Discover what an algorithm is and explore problem-solving techniques Become aware of structured design and object-oriented design programming methodologies Learn about classes Learn about private, protected, and public members of a class Explore how classes are implemented Become aware of Unified Modeling Language (UML) notation Examine constructors and destructors Learn about the abstract data type (ADT) Explore how classes are used to implement ADT Definition/Overview: Software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software, and the study of these approaches. That is the application of engineering to software. The term software engineering first appeared in the 1968 NATO Software Engineering Conference and WWW.BSSVE.INwas meant to provoke thought regarding the current "software crisis" at the time. Since then, it has continued as a profession and field of study dedicated to creating software that is of higher quality, cheaper, maintainable, and quicker to build. Since the field is still relatively young compared to its sister fields of engineering, there is still much work and debate around what software engineering actually is, and if it deserves the title engineering. It has grown organically out of the limitations of viewing software as just programming. Software development is a term sometimes preferred by practitioners in the industry who view software engineering as too heavy-handed and constrictive to the malleable process of creating software. -
Obstacl: a Language with Objects, Subtyping, and Classes
OBSTACL: A LANGUAGE WITH OBJECTS, SUBTYPING, AND CLASSES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY By Amit Jayant Patel December 2001 c Copyright 2002 by Amit Jayant Patel All Rights Reserved ii I certify that I have read this dissertation and that in my opin- ion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. John Mitchell (Principal Adviser) I certify that I have read this dissertation and that in my opin- ion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. Kathleen Fisher I certify that I have read this dissertation and that in my opin- ion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. David Dill Approved for the University Committee on Graduate Studies: iii Abstract Widely used object-oriented programming languages such as C++ and Java support soft- ware engineering practices but do not have a clean theoretical foundation. On the other hand, most research languages with well-developed foundations are not designed to support software engineering practices. This thesis bridges the gap by presenting OBSTACL, an object-oriented extension of ML with a sound theoretical basis and features that lend themselves to efficient implementation. OBSTACL supports modular programming techniques with objects, classes, structural subtyping, and a modular object construction system. OBSTACL's parameterized inheritance mechanism can be used to express both single inheritance and most common uses of multiple inheritance. -
A Fast, Verified, Cross-Platform Cryptographic Provider
EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider Jonathan Protzenko∗, Bryan Parnoz, Aymeric Fromherzz, Chris Hawblitzel∗, Marina Polubelovay, Karthikeyan Bhargavany Benjamin Beurdouchey, Joonwon Choi∗x, Antoine Delignat-Lavaud∗,Cedric´ Fournet∗, Natalia Kulatovay, Tahina Ramananandro∗, Aseem Rastogi∗, Nikhil Swamy∗, Christoph M. Wintersteiger∗, Santiago Zanella-Beguelin∗ ∗Microsoft Research zCarnegie Mellon University yInria xMIT Abstract—We present EverCrypt: a comprehensive collection prone (due in part to Intel and AMD reporting CPU features of verified, high-performance cryptographic functionalities avail- inconsistently [78]), with various cryptographic providers able via a carefully designed API. The API provably supports invoking illegal instructions on specific platforms [74], leading agility (choosing between multiple algorithms for the same functionality) and multiplexing (choosing between multiple im- to killed processes and even crashing kernels. plementations of the same algorithm). Through abstraction and Since a cryptographic provider is the linchpin of most zero-cost generic programming, we show how agility can simplify security-sensitive applications, its correctness and security are verification without sacrificing performance, and we demonstrate crucial. However, for most applications (e.g., TLS, cryptocur- how C and assembly can be composed and verified against rencies, or disk encryption), the provider is also on the critical shared specifications. We substantiate the effectiveness of these techniques with -
In-Fat Pointer: Hardware-Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject Granularity Protection
In-Fat Pointer: Hardware-Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject Granularity Protection Shengjie Xu Wei Huang David Lie [email protected] [email protected] [email protected] University of Toronto University of Toronto University of Toronto Canada Canada Canada ABSTRACT 1 INTRODUCTION Programming languages like C and C++ are not memory-safe be- Memory corruption vulnerabilities in programs written in non- cause they provide programmers with low-level pointer manipu- memory-safe programming languages like C and C++ have been lation primitives. The incorrect use of these primitives can result a research focus for more than a decade [40]. When a pointer is in bugs and security vulnerabilities: for example, spatial memory dereferenced, errors, causing memory-safety violations, can result safety errors can be caused by dereferencing pointers outside the in the unintended disclosure or corruption of memory. Such errors legitimate address range belonging to the corresponding object. are a powerful primitive for attackers to mount further attacks, While a range of schemes to provide protection against these vul- such as code reuse attacks [34] and data-only attacks [18]. Memory- nerabilities have been proposed, they all suffer from the lack of one safety violations usually result from spatial memory errors, where or more of low performance overhead, compatibility with legacy incorrect pointer arithmetic causes an address to point outside the code, or comprehensive protection for all objects and subobjects. intended memory range when it is dereferenced. We present In-Fat Pointer, the first hardware-assisted defense To detect all spatial memory errors, the value of the pointer that can achieve spatial memory safety at subobject granularity must be checked against pointer bounds, which are metadata that while maintaining compatibility with legacy code and low over- describes the memory range over which the pointer may safely head. -
Fast and Generic Metadata Management with Mid-Fat Pointers
Fast and Generic Metadata Management with Mid-Fat Pointers ∗ ∗ Taddeus Kroes Koen Koning [email protected] [email protected] Cristiano Giuffrida Herbert Bos Erik van der Kouwe [email protected] [email protected] [email protected] Vrije Universiteit Amsterdam ABSTRACT there is an increasing need for generic and composable de- Object metadata management schemes are a fundamental fense frameworks, which can combine multiple defenses but building block in many modern defenses and significantly disable others to tune the performance-security trade-off affect the overall run-time overhead of a software harden- according to the deployment requirements [23]. Second, we ing solution. To support fast metadata lookup, many meta- need fast pointer-to-object metadata lookup schemes to em- data management schemes embed metadata tags directly in- power such frameworks [12]. A promising strategy to design side pointers. However, existing schemes using such tagged such schemes efficiently is to embed tags inside pointers. pointers either provide poor compatibility or restrict the Two tagged pointer schemes dominate the literature. Fat generality of the solution. pointers change the size and representation of pointers to In this paper, we propose mid-fat pointers to implement support arbitrary metadata tags [4, 14, 19]. This solution fast and generic metadata management while retaining most can support generic defenses with no restrictions, but it is of the compatibility benefits of existing schemes. The key plagued by compatibility problems since pointers radically idea is to use spare bits in a regular 64-bit pointer to encode change their format [6,7]. Low-fat pointers carefully place arbitrary metadata and piggyback on software fault isola- objects in the memory address space to implement the other tion (SFI) already employed by many modern defenses to extreme: no changes in pointer size and representation, and efficiently decode regular pointers at memory access time.