The dimension monoid of a lattice Friedrich Wehrung To cite this version: Friedrich Wehrung. The dimension monoid of a lattice. Algebra Universalis, Springer Verlag, 1998, 40, no. 3, pp.247-411. 10.1007/s000120050091. hal-00004052v2 HAL Id: hal-00004052 https://hal.archives-ouvertes.fr/hal-00004052v2 Submitted on 25 Jan 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Dimension Monoid of a Lattice Friedrich Wehrung C.N.R.S., Universite´ de Caen, Campus II, Departement´ de Mathematiques,´ B.P. 5186, 14032 CAEN cedex, FRANCE E-mail address:
[email protected] URL: http://www.math.unicaen.fr/~wehrung ccsd-00004052, version 2 - 25 Jan 2005 1991 Mathematics Subject Classification. Primary 06B05, 06B10, 06C10, 06C20, 20M14, 28B10; Secondary 16E50, 19A49 Key words and phrases. lattice, refinement monoid, dimension monoid, semilattice, primitive monoid, BCF lattice, modular lattice, complemented modular lattice, perspectivity, projectivity by decomposition, normal equivalence, normal lattice, countable meet-continuity, von Neumann regular ring Abstract. We introduce the dimension monoid of a lattice L, denoted by Dim L. The monoid Dim L is commutative and conical, the latter meaning that the sum of any two nonzero elements is nonzero.