University Micrdrilms International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

University Micrdrilms International 300 N GRAZING RATE AND SYSTEM TRIAL OVER FIVE YEARS IN A MEDIUM-HEIGHT GRASSLAND OF NORTHERN TANZANIA Item Type text; Dissertation-Reproduction (electronic); maps Authors O'Rourke, James T Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 08:14:47 Link to Item http://hdl.handle.net/10150/298474 INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy. University Micrdrilms International 300 N. /EEB ROAD. ANN ARBOR. Ml 48106 18 BEDFORD ROW, LONDON WC1 R 4EJ. ENGLAND 7 909479 ••ROURKE, JAMES TOM GRAZING RATI: AND 5Y!»TE.M TRIAL OVER FIVE VEARS IN A MEDIUM-HEIGHT GRASSLAND L1F NORTHERN TANZANIA. THE UNIVERSITY LJF A4 1ZDNA, PH.D., 1976 University Microfilms International 300 N ZEEB ROAD, ANN ARBOR, Ml 48106 GRAZING RATE AND SYSTEM TRIAL OVER FIVE YEARS IN A MEDIUM-HEIGHT GRASSLAND OF NORTHERN TANZANIA by James Tom O'Rourke A Dissertation Submitted to the Faculty of the SCHOOL OF RENEWABLE NATURAL RESOURCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN RANGE MANAGEMENT In the Graduate College THE UNIVERSITY OF ARIZONA 19 7 8 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by James Tom O'Rourke entitled GRAZING RATE AND SYSTEM TRIAL OVER FIVE YEARS IN A MEDIUM-HEIGHT GRASSLAND OF NORTHERN TANZANIA be accepted as fulfilling the dissertation requirement for the degree of Doctor of Philosophy a / 2-. I ^ b Dissertation director Datia As members of the Final Examination Committee, we certify that we have read this dissertation and agree that it may be presented for final defense. CLu<j /J?, /?7J? /ft. <<, 7^ V la < J J . /<? 7/ '7, /713 Final approval and acceptance of this dissertation is contingent on the candidate's adequate performance and defense thereof at the final oral examination. STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: '/ fstc/2 A< ACKNOWLEDGMENTS This study was conducted within the Masai Livestock Improvement Project under the Tanzanian Ministry of Agriculture, with support from the U. S. Agency for International Development, Mr. E. G. Van Voorthuizen very generously donated his data and reports on the Ardai grazing trials up to 1972. Mr. Zacharia Shirima and his crew at Ardai are commended for their ability to keep the trials running cn a day-to-day basis in the face of very limited financial and moral support. During my stay in Tanzania, this crew consisted of Messrs. John Mroso, Joseph Lendiy, Sirily Macha, Dwo Pius, Lengai Metipyeki, Songoyo Loitare, Zylabu Bennet, Loitare Loputu, Lomaito Sumayani, Sambweti Loiluda, Joshua Sheukindo, Saringe Melita, Mrefu Mafuta, Lucas Kanja, Saidi Msumari, Salaya Lawasare, Gunda Mbogo, Hamisi Rashidi, Mathew Loiluda, and Mshindo. Hiese people also assisted in monthly collection of livestock weights. Range Officers Lendiy, Kyambwa, Williams, Lyaruu, Kinwari, Katitu, Mollel, Isae, and Marandu and Messrs. Kisaka, Senga, Kikaho, Shirima, and Mshindo contributed at various times in collection of vegetative data. Drs. Phil Ogden, John Cassidy, and Dennis Herlocker, Mr. Bill Muldowny, and Vr. Warren Putnam reviewed various aspects of the research proposals. iii iv Data analysis assistance was provided, in part, by Mr. Harry Goforth and Mrs. Susan Ciolek-Torrello. Ms. Linda White aided in the literature search, and proof reading assistance was provided by Mr. John Masanja and Mrs. Susan Tolley. Drs. Phil Ogden, Lamar Smith, Ervin Schmutz, and Jack Stroehlein smoothed out my idiosyncracies in writing style. Most sincerely goes my appreciation to Nancy, Chuck, Kevin, and Valerie for putting up with my Ph. D. adventures and absenteeism in family life while making sacrifices in their own goals, for a much longer period than should have been necessary. TABLE OF CONTENTS Page LIST OF TABLES vii LIST OF ILLUSTRATIONS ix ABSTRACT x INTRODUCTION 1 Justification . 1 Objectives 2 LITERATURE REVIEW 5 Forage Use in East Africa 5 Rules of Thumb for Forage Use 5 Suggested Grazing Schemes 7 Nomadic Use 9 Wildlife Use 10 Effects of Forage Use on Soil Moisture ......... 11 Effects of Forage Use on Plant Succession 11 Forage Nutritive Value , . : 12 General Forage Nutritive Value , 12 Protein Values 13 Forage and Nutrient Selectivity 16 Mineral Values 17 Fat Requirements 18 Starch Equivalent 19 Grazing Studies 19 Grazing Studies in Areas Receiving Less Than 800 mm Rainfall 19 Grazing Studies in Areas Receiving More Than 800 mm Rainfall 24 Night Grazing 32 Summary 33 STUDY AREA 39 Location 39 Relief 39 Soils and Associated Vegetation 39 Climate 44 Traditional Masai Land Use 50 v vi TABLE OF CONTENTS—Continued Page METHODS 53 Pasture and Water Facilities 53 Livestock Management—June 1969-July 1972 54 Livestock Management—July 1972-July 1973 56 Vegetation Sampling Procedures—July 1968-July 1973 .... 58 Statistical Analysis 61 RESULTS AND DISCUSSION 65 Vegetation 65 Forage Production 65 Forage Utilization 69 Plant Species Composition 73 Total Plant Frequency 82 Litter 86 Bare Soil, Rock, and Erosion Pavement 86 Livestock 87 Forage Nutritive Content 87 Weight Changes of Livestock by Season 88 Total Weight Changes per Animal and per Hectare .... 91 Night Grazing 97 CONCLUSIONS 100 APPENDIX A. PLANTS ENCOUNTERED ON ARDAI TRANSECTS 102 APPENDIX B. ESTABLISHMENT AND OPERATING COSTS OVER FIVE YEARS AT THE ARDAI RANCH 105 APPENDIX C. NUTRITIVE VALUES FOUND THROUGHOUT EAST AFRICA ON SPECIES OCCURRING AT ARDAI 109 APPENDIX D. TREATMENT MEANS AND SIGNIFICANT DIFFERENCES WITHIN VARIABLES 124 REFERENCES 129 LIST OF TABLES Table Page 1. Monthly precipitation from November 1968, through April 1973, at the Ardai Ranch 48 2. Grazing system established at Ardai beginning July 1, 1972 57 3. Vegetation sampling scheme at Ardai from 1968 to 1973 for forage production, forage remaining, and frequency . 59 4. Source, degrees of freedom, and expected mean squares of analysis of variance utilized when data existed to test between pastures within rotation 63 5. Source, degrees of freedom, and expected mean squares of analysis of variance utilized when data did not exist to test between pastures within rotation 64 6. Forage production in kg/ha for east and west pastures at Ardai, Tanzania, from 1968 to 1973 66 7. Bermuda grass, Cynodon dactylon, composition on north and south blocks at Ardai, Tanzania, from 1968 to 1973 . 74 8. Couch grass, Digitaria sealarum, composition on north and south blocks at Ardai, Tanzania, from 1968 to 1973 . 77 9. Total plant, litter, and bare soil percentage frequency in 1973 after five years on rotationally and continuously grazed paddocks under three levels of intensity at Ardai, Tanzania 83 10. Cumulative steer weight gain from July 1, 1969 to January 1, 1970, in kg/animal and kg/animal/ha on Ardai paddocks grazed continuously and in rotation under three intensities of use 92 11. Cumulative steer weight gain from September 1, 1970, to July 1, 1972 in kg/animal and kg/animal/ha on Ardai paddocks grazed continuously and in rotation under three intensities of use 93 vii viii LIST OF TABLES—Continued Table Page 12.
Recommended publications
  • Illustrated Flora of East Texas --- Taxa in Volume 1 (May 2004)
    Illustrated Flora of East Texas --- Taxa in Volume 1 (May 2004) Family Genus Species Var. or Subsp. Native or Intro Ferns & Fern Allies Psilotaceae Psilotum nudum N Isoetaceae Isoetes butleri N Isoetaceae Isoetes melanopoda N Lycopodiaceae Lycopodiella alopecuroides N Lycopodiacae Lycopodiella appressa N Lycopodiaceae Lycopodiella prostrata N Lycopodiaceae Palhinhaea cernua N Lycopodiaceae Pseudolycopodiella caroliniana N Selaginellaceae Selaginella apoda var. apoda N Selaginellaceae Selaginella arenicola subsp. riddellii N Equisetaceae Equisetum hyemale subsp. affine N Equisetaceae Equisetum laevigatum N Anemiaceae Anemia mexicana N Aspleniaceae Asplenium platyneuron N Aspleniaceae Asplenium resiliens N Azollaceae Azolla caroliniana N Azollaceae Azolla mexicana N Blechnaceae Woodwardia areolata N Blechnaceae Woodwardia virginica N Dennstaedtiaceae Pteridium aquilinum var. pseudocaudatum N Dryopteridaceae Athyrium filix-femina subsp. asplenioides N Dryopteridaceae Cyrtomium falcatum I Dryopteridaceae Cystopteris protrusa N Dryopteridaceae Dryopteris celsa N Dryopteridaceae Dryopteris ludoviciana N Dryopteridaceae Nephrolepis exaltata I Dryopteridaceae Onoclea sensibilis N Dryopteridaceae Polystichum acrostichoides N Dryopteridaceae Tectaria heracleifolia N Dryopteridaceae Woodsia obtusa subsp. obtusa N Dryopteridaceae Woodsia obtusa subsp. occidentalis N Lygodiaceae Lygodium japonicum I Marsileaceae Marsilea macropoda N Marsileaceae Marsilea vestita N Marsileaceae Pilularia americana N Ophioglossaceae Botrychium biternatum N Ophioglossaceae
    [Show full text]
  • Additional Information
    Current Survey Introduced Flora Records Vegetation Condition *Acetosa vesicaria Excellent 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000
    [Show full text]
  • Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae
    OPEN ACCESS JCTS Article SERIES B Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae R.W. Sanders and T.C. Wood Core Academy of Science, Dayton, TN Abstract The morphological adaptations of carnivorous plants and taxonomic distributions of those adaptations are reviewed, as are the conflicting classifications of the plants based on the adaptations, reproductive morphology, and DNA sequences. To begin developing a creationist understanding of the origin of plant carnivory, we here focus specifically on pitcher plants of Nepenthaceae and Sarraceniaceae because their popularity as cultivated curiosities has generated a literature resource amenable to baraminological analysis. Hybridization records were augmented by total nucleotide differences to assess species similarities. Nonhybridizing species falling within the molecular range of hybridizing species were included in the monobaramin of the hybridizing species. The combined data support each of the three genera of the Sarraceniaceae as a monobaramin, but the three could not be combined into a larger monobaramin. With the Nepenthaceae, the data unequivocally place 73% of the species in a single monobaramin, strongly suggesting the whole genus (and, thus, family) is a monobaramin. The lack of variation in the carnivorous habit provides no evidence for the intrabaraminic origin of carnivory from non-carnivorous plants. An array of fascinating symbiotic relationships of pitchers in some species with unusual bacteria, insects, and vertebrates are known and suggest the origin of carnivory from benign functions of the adaptive structures. However, these symbioses still do not account for the apparent complex design for carnivory characteristic of all species in the two families. Editor: J.W.
    [Show full text]
  • CATALOGUE of the GRASSES of CUBA by A. S. Hitchcock
    CATALOGUE OF THE GRASSES OF CUBA By A. S. Hitchcock. INTRODUCTION. The following list of Cuban grasses is based primarily upon the collections at the Estaci6n Central Agron6mica de Cuba, situated at Santiago de las Vegas, a suburb of Habana. The herbarium includes the collections made by the members of the staff, particularly Mr. C. F. Baker, formerly head of the department of botany, and also the Sauvalle Herbarium deposited by the Habana Academy of Sciences, These specimens were examined by the writer during a short stay upon the island in the spring of 1906, and were later kindly loaned by the station authorities for a more critical study at Washington. The Sauvalle Herbarium contains a fairly complete set of the grasses col- lected by Charles Wright, the most important collection thus far obtained from Cuba. In addition to the collections at the Cuba Experiment Station, the National Herbarium furnished important material for study, including collections made by A. H. Curtiss, W. Palmer and J. H. Riley, A. Taylor (from the Isle of Pines), S. M. Tracy, Brother Leon (De la Salle College, Habana), and the writer. The earlier collections of Wright were sent to Grisebach for study. These were reported upon by Grisebach in his work entitled "Cata- logus Plant arum Cubensium," published in 1866, though preliminary reports appeared earlier in the two parts of Plantae Wrightianae. * During the spring of 1907 I had the opportunity of examining the grasses in the herbarium of Grisebach in Gottingen.6 In the present article I have, with few exceptions, accounted for the grasses listed by Grisebach in his catalogue of Cuban plants, and have appended a list of these with references to the pages in the body of this article upon which the species are considered.
    [Show full text]
  • Are Cattle Surrogate Wildlife? Savanna Plant Community Composition Explained by Total Herbivory More Than Herbivore Type
    Ecological Applications, 26(6), 2016, pp. 1610–1623 © 2016 by the Ecological Society of America Are cattle surrogate wildlife? Savanna plant community composition explained by total herbivory more than herbivore type KARI E. VEBLEN,1,2,6 LAUREN M. PORENSKY,2,3 CORINNA RIGINOS,2,4 AND TRUMAN P. YOUNG2,5 1Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah 84322 USA 2Mpala Research Centre, P.O. Box 555, Nanyuki, Kenya 3USDA-ARS Rangeland Resources Research Unit, Fort Collins, Colorado 80526 USA 4Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071 USA 5Department of Plant Sciences, University of California, Davis, California 95616 USA Abstract. The widespread replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: (1) loss or reduction in numbers of individual wildlife species or guilds and (2) addition of livestock to the system. Each can have important implications for plant community dynamics. Yet very few studies have experimentally addressed the individual, combined, and potentially interactive effects of wild vs. domestic herbivore species on herbaceous plant communities within a single system. Additionally, there is little information about whether, and in which contexts, livestock might functionally replace native herbivore wildlife or, alternatively, have fundamentally different effects on plant species composition. The Kenya Long-term Exclosure Experiment, which has been running since 1995, is composed of six treatment combinations of mega- herbivores, meso- herbivore ungulate wildlife, and cattle. We sampled herbaceous vegetation 25 times between 1999 and 2013. We used partial redundancy analysis and linear mixed models to assess effects of herbivore treatments on overall plant community composition and key plant species.
    [Show full text]
  • Wiregrass (Aristida Stricta)
    Wiregrass (Aristida stricta) For definitions of botanical terms, visit en.wikipedia.org/wiki/Glossary_of_botanical_terms. Wiregrass is a perennial bunchgrass found in scrub, pinelands and coastal uplands throughout much of Florida. It is the dominant groundcover species in longleaf pine savannas and is a primary food source for gopher tortoises. Birds and small wildlife eat the seeds. Historically, cattle grazed on Wiregrass’s tender new growth. Wiregrass flowers are tiny and brown. They are born on spikelike terminal panicles Flower stalks are elongated and extend above the leaves. Leaf blades are long, thin and rolled inward, giving them a wiry appearance (hence the common name). They are erect and green when young Photo courtesy of Alan Cressler, Lady Bird Johnson Wildflower Center and begin to arch and turn brown as they age. Its fruits are small, yellowish caryopses. Seeds may be dispersed by wind, gravity or on the fur of passing animals. The genus name Aristida is from the Latin arista, meaning “awn” and referring to the three awns or bristle-like structures that extend from the florets. (An alternative common name is Pineland threeawn.) The species epithet, stricta, is from the Latin strictus, meaning straight or erect. Family: Poaceae (Grass family) Native range: Nearly throughout To see where natural populations of Wiregrass have been vouchered, visit www.florida.plantatlas.usf.edu. Hardiness: Zones 8A–10B Lifespan: Perennial Soil: Moist to dry, well-drained sandy soils Exposure: Full sun to partial shade Growth habit: 1–3’+ tall and equally wide Propagation: Division, seed Garden tips: Wiregrass is fast-growing and tolerant of drought conditions and low-nutrient soils.
    [Show full text]
  • Master CAMA LMP Template 20030122
    Wet Woods Preserve Land Management Plan Wet Woods Preserve Land Management Plan Managed by: Conservation Collier Program Collier County May 2008 –May 2018 (10 yr plan) Updated: December 2015 Prepared by: Collier County Parks and Recreation Division Conservation Collier Staff Conservation Collier Program 1 Wet Woods Preserve Land Management Plan Wet Woods Preserve Land Management Plan Executive Summary Lead Agency: Collier County Board of County Commissioners, Conservation Collier Program Property included in this Plan: Wet Woods Preserve (Folio #: 00154880008) Acreage Breakdown: General Vegetative Communities Acreage Wetlands (58%) 15.53 Uplands (42%) 11.24 TOTAL 26.77 Management Responsibilities: Agency: Collier County - Conservation Collier Program Designated Land Use: Conservation and natural resource based recreation Unique Features: saltwater and freshwater marshes, mangrove forests, pine flatwoods, active bald eagle nest, seven listed plant and two listed animal species detected to date Management Goals: Goal 1: Eliminate or significantly reduce human impacts to indigenous flora and fauna Goal 2: Develop a baseline monitoring report Goal 3: Remove or control populations of invasive, exotic or problematic flora and fauna to restore and maintain natural habitats Goal 4: Continue to implement a mechanical treatment schedule to decrease woody fuels Goal 5: Restore native vegetation Goal 6: Facilitate uses of the site for educational purposes Goal 7: Provide a plan for security and disaster preparedness Public Involvement: Public meeting(s) were held in early spring of 2008 with invitations being sent to residents and businesses from surrounding lands. Conservation Collier Program 2 Wet Woods Preserve Land Management Plan Table of Contents Land Management Plan Executive Summary ................................................................ 2 List of Tables .....................................................................................................................
    [Show full text]
  • Department of the Interior Fish and Wildlife Service
    Tuesday, February 10, 2009 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for Reticulated Flatwoods Salamander; Designation of Critical Habitat for Frosted Flatwoods Salamander and Reticulated Flatwoods Salamander; Final Rule VerDate Nov<24>2008 14:17 Feb 09, 2009 Jkt 217001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10FER2.SGM 10FER2 erowe on PROD1PC63 with RULES_2 6700 Federal Register / Vol. 74, No. 26 / Tuesday, February 10, 2009 / Rules and Regulations DEPARTMENT OF THE INTERIOR during normal business hours, at U.S. Register on or before July 30, 2008, with Fish and Wildlife Service, Mississippi the final critical habitat rule to be Fish and Wildlife Service Fish and Wildlife Office, 6578 Dogwood submitted for publication in the Federal View Parkway, Jackson, MS 39213. Register by January 30, 2009. The 50 CFR Part 17 FOR FURTHER INFORMATION CONTACT: Ray revised proposed rule was signed on [FWS–R4–ES–2008–0082; MO 9921050083– Aycock, Field Supervisor, U.S. Fish and and delivered to the Federal Register on B2] Wildlife Service, Mississippi Field July 30, 2008, and it subsequently Office, 6578 Dogwood View Parkway, published on August 13, 2008 (73 FR RIN 1018–AU85 Jackson, MS 39213; telephone: 601– 47258). We also published supplemental information on the Endangered and Threatened Wildlife 321–1122; facsimile: 601–965–4340. If proposed rule to maintain the status of and Plants; Determination of you use a telecommunications device the frosted flatwoods salamander as Endangered Status for Reticulated for the deaf (TDD), call the Federal Information Relay Service (FIRS) at threatened (73 FR 54125; September 18, Flatwoods Salamander; Designation of 2008).
    [Show full text]
  • Jan Dvorak (As Quickly Written Down by a Person with Poor Hearing…Me)
    1/22/2018 The Impact of Polyploidy on Genome Evolution in Poales and Other Monocots “I don’t have to emphasize that gene duplications are the fabric of evolution in plants.” -Jan Dvorak (as quickly written down by a person with poor hearing…me) Michael R. McKain The University of Alabama @mrmckain @mrmckain Poales Diversity Grass genomes: the choose your own adventure of genome evolution • ~22,800 species • ~11,088 species in Poaceae • Transposons (McClintock, Wessler) • GC content bias (Carels and Bernardi 2000) • Three WGD events 0 0 4 0 0 • rho (Peterson et al. 2004) 3 y c n 0 e 0 u 2 q e r F • 0 sigma (Tang et al. 2010) 0 1 • tau (Tang et al. 2010, Jiao et al. 2014) 0 %GC Givnish et al. 2010 @mrmckain Schnable et al., 2009 Zeroing in on WGD placement Banana genome Pineapple genome How has ancient polyploidy altered the genomic landscape in grasses and other Poales? D’Hont et al. 2012 Ming, VanBuren et al. 2015 Recovered sigma after grass divergence from commelinids Recovered sigma after grass+pineapple divergence from commelinids @mrmckain @mrmckain 1 1/22/2018 Phylotranscriptomic approach Coalescence-based Phylogeny of 234 Single-copy genes • Sampling 27 transcriptomes and 7 genomes • Phylogeny consistent with previous • Representation for all families (except Thurniaceae) in nuclear gene results Poales • Conflicting topology with • RNA from young leaf or apical meristem, a combination of chloroplast genome tree: Moncot Tree of Life and 1KP • Ecdeiocolea/Joinvillea sister instead of • General steps: a grade • Trinity assembly • Typha
    [Show full text]
  • The North American Species of Smilacina
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1945-05-01 The North American species of Smilacina Desma H. Galway Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Galway, Desma H., "The North American species of Smilacina" (1945). Theses and Dissertations. 8057. https://scholarsarchive.byu.edu/etd/8057 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. The North American Species of Smilacina DESMA H. GALWAY Reprinted from "THE AMERICANMIDLAND NATURALIST' Vol. 33, No. 3, pp. 644-666, May, 1945 n..unt~Pr.a Notre Dame. In d. The North AmericanSpecies of Smilacina Desma H. Galway Introduction This paper is the result of a taxonomic study of the species of the genus S milacinaoccurring naturally in North America north of Mexico. In the past it has been difficult to make satisfactory determinations of members of this genus from existing manuals, especially among western forms. West of the great plains the great diversity in environmental conditions has given rise to a diversity in form of the species that are widely distributed. Many of these forms have been given specific or varietal names recently, and as no compre- hensive work on the genus has been done since most of these were published, it is hoped that this study will be generally helpful in identifying members of the group. During the preparation of this work over 2500 herbarium specimens have been examined and annotated and comparative measurements made of many of these.
    [Show full text]
  • Eustachys Retusa (POACEAE) in SYSTEMS with INTENSIVE GLYPHOSATE APPLICATION1
    Morpho-architectural traits that allow the regeneration of ... 709 MORPHO-ARCHITECTURAL TRAITS THAT ALLOW THE REGENERATION OF Eustachys retusa (POACEAE) IN SYSTEMS WITH INTENSIVE GLYPHOSATE APPLICATION1 Características Morfoarquiteturais que Possibilitam a Regeneração de Eustachys retusa (Poaceae) em Sistemas com Uso Intensivo de Glifosato PANIGO, E.S.2, ALESSO, C.A.2, DELLAFERRERA, I.M.2, OLIVELLA, J.2, and PERRETA, M.G.2 ABSTRACT - Eustachys retusa has low sensitivity to glyphosate at the reproductive stage. The purpose of this study was to analyze the effect of glyphosate on adult E. retusa plants in order to identify the traits that make possible their regeneration in no-tillage systems. For this purpose, reproductive-stage specimens from wild populations were treated with glyphosate at two different rates (480 and 1,200 g a.i. ha-1) including a non-treated control. Results demonstrated that glyphosate could control E. retusa plants at reproductive stage at 1,200 g a.i. ha-1 dose. However, a certain proportion of plants can survive despite having full chlorosis as a consequence of basal bud activation (bud bank) and the presence of reserves in the rhizome. These combinations of morphological traits facilitate the recovery of foliar mass in some plants after the application of the herbicide. This behavior represents a serious problem because E. retusa plants retain the ability to regrow. This shows that, E. retusa management at reproductive stage must be complemented with other cultural and/or chemical tactics. Keywords: argentine fingergrass, herbicide, weed, tolerance, morphological changes. RESUMO - Eustachys retusa é uma praga com baixa sensibilidade ao herbicida glifosato na etapa reprodutiva.
    [Show full text]
  • Pasture Condition Guide for the Ord River Catchment
    Bulletin 4769 Department of June 2009 Agriculture and Food ISSN 1833-7236 Pasture condition guide for the Ord River Catchment Department of Agriculture and Food Pasture condition guide for the Ord River Catchment K. Ryan, E. Tierney & P. Novelly Copyright © Western Australian Agriculture Authority, 2009 Acknowledgements Photographs by S. Eyres and the Department of Agriculture and Food, Western Australia (DAFWA) Photographic Unit The information in this publication has been developed in consultation with experienced rangelands field staff providing services to the East Kimberley pastoral leases and with reference to Range Condition Guides for the West Kimberley Area, WA (Payne, Kubicki and Wilcox 1974) and Lands of the Ord–Victoria Area, WA and NT (Stewart et al. 1970). The authors would like to thank all those who provided valuable feedback on the design and content of this guide, including Andrew Craig, David Hadden and Matthew Fletcher (DAFWA Kununurra), Simon Eyres (DAFWA Photographic Unit), Alan Payne (retired DAFWA rangelands advisor), and members of the Halls Creek—East Kimberley Land Conservation District. This project was funded by Rangelands NRM WA using National Action Plan for Salinity and Water Quality funding. Rangelands NRM WA regards this project as a strategic investment which will contribute to an improved understanding and awareness of pasture condition in the Ord Catchment, leading to improved land management in that area. Rangelands NRM WA contracted the Department of Agriculture and Food WA to undertake the project. Funding for the National Action Plan for Salinity and Water Quality was provided by the Australian and Western Australian Governments. Disclaimer The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.
    [Show full text]