Evidence of Titan's Climate History from Evaporite Distribution

Total Page:16

File Type:pdf, Size:1020Kb

Evidence of Titan's Climate History from Evaporite Distribution Icarus 243 (2014) 191–207 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence of Titan’s climate history from evaporite distribution ⇑ Shannon M. MacKenzie a, , Jason W. Barnes a, Christophe Sotin b, Jason M. Soderblom c, Stéphane Le Mouélic d, Sebastien Rodriguez e, Kevin H. Baines f, Bonnie J. Buratti b, Roger N. Clark g, Phillip D. Nicholson h, Thomas B. McCord i a Department of Physics, University of Idaho, Moscow, ID 83844-0903, USA b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA c Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02139-4307, USA d Université de Nantes/UMR6112, Laboratoire de Planétologie et Géodynamique, 2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France e Laboratoire AIM, Centre d’e~tude de Saclay, DAPNIA/Sap, Centre de l’orme des Mérisiers, bât. 709, 91191 Gif/Yvette Cedex, France f Space Science and Engineering Center, University of Wisconsin-Madison, 1225 West Dayton St., Madison, WI 53706, USA g U.S. Geological Survey, Denver, CO 80225, USA h Cornell University, Astronomy Department, Ithaca, NY 14853, USA i Bear Fight Institute, P.O. Box 667, 22 Fiddler’s Road, Winthrop, WA 98862, USA article info abstract Article history: Water–ice-poor, 5-lm-bright material on Saturn’s moon Titan has previously been geomorphologically Received 9 March 2014 identified as evaporitic. Here we present a global distribution of the occurrences of the 5-lm-bright spec- Revised 12 August 2014 tral unit, identified with Cassini’s Visual Infrared Mapping Spectrometer (VIMS) and examined with Accepted 13 August 2014 RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. Available online 16 September 2014 The 5-lm-bright material covers 1% of Titan’s surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial Keywords: basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-lm-bright Titan material and lakebeds, imply that there was enough liquid present at some time to create the observed Titan, surface Spectroscopy 5-lm-bright material. We address the climate implications surrounding a lack of evaporitic material at Infrared observations the south polar basins: if the south pole basins were filled at some point in the past, then where is the Geological processes evaporite? Ó 2014 Elsevier Inc. All rights reserved. 1. Introduction (Stofan et al., 2007; Hayes et al., 2008; Sotin et al., 2012), to fluvial features thought to be drainage networks (e.g., Lorenz et al., 2008a; Titan, unique among other satellites in our Solar System, has a Lunine et al., 2008; Burr et al., 2009, 2013; Langhans et al., 2012). thick atmosphere in which a volatile (methane, though ethane is The equatorial region, however, is characterized by expansive dune thought to also play an important role) precipitates and evaporates fields (e.g. Elachi et al., 2006; Soderblom et al., 2007; Lunine et al., in the same fashion as water in Earth’s hydrological cycle (Roe, 2008; Radebaugh et al., 2008; Rodriguez et al., 2014), intermittent 2012). Our understanding of Titan’s surface and climate has mountain chains (e.g., Radebaugh et al., 2007; Cook et al., 2014), evolved from the once widely expected global surface ocean and a noticeable lack of permanent surface liquid (but see thought to sustain the photolytic processes in the atmosphere Griffith et al. (2012)). Rain has been observed to wet the midlati- (e.g., Lunine et al., 1983; Flasar, 1983) to a world only sparsely cov- tude and near-equatorial surface (Turtle et al., 2011a), but standing ered by liquid deposits but hosting a collection of strikingly Earth- bodies similar in extent and stability to the polar lakes have yet to like surface morphologies (e.g., dunes and channels) thanks to data be conclusively identified. The most equator-ward lake candidates, now available from Cassini-Huygens. These observations reveal Sionscaig and Urmia, are located between 39°S and 42°S and, while Titan to be generally wet at the poles and dry at the equator. hypothesized to have standing liquid, are yet to be confirmed as At the poles, Titan’s liquid bodies range from seas (surface area either long-lived or ephemeral (Vixie et al., 2014). Mitchell greater than 100,000 km2, only in the north) to smaller lakes (2008) were able to reproduce a dry equatorial climate with a global circulation model (GCM) where a limited reservoir of meth- ane exchanges between the atmosphere and surface. ⇑ Corresponding author. E-mail address: [email protected] (S.M. MacKenzie). http://dx.doi.org/10.1016/j.icarus.2014.08.022 0019-1035/Ó 2014 Elsevier Inc. All rights reserved. 192 S.M. MacKenzie et al. / Icarus 243 (2014) 191–207 And yet, sizable volumes of liquid are still thought to have also observed ephemeral lakes in the south polar region. These played an important role in forming the equatorial region. As Huy- dry beds imply that the distribution of Titan’s liquid is not static. gens discovered during its descent to the titanian surface on Janu- Moore and Howard (2010) propose that the landscape elements ary 14, 2005, fluvial features such as rounded cobbles, channels, with crenulated margins and small lacustrine features similar to and valleys also dot the equatorial landscape (Tomasko et al., those identified by Hayes et al. (2008, 2011) observed in RADAR 2005). The subsurface structure controlling fluvial drainage net- images of Tui and Hotei Regiones indicate that the previous pres- works in southwestern Xanadu (Burr et al., 2009) agrees with the ence of liquid, i.e. that the two equatorial features may be fossil wind flow derived from aeolian driven dune morphology (Lorenz seas. Thus, because the small lacustrine features observed within and Radebaugh, 2009). Rainfall has been proposed as the source Tui and Hotei would require long-lived surface liquid for their cre- the liquid responsible for carving fluvial features (Lorenz and ation, there seems to be evidence for a previous global liquid dis- Lunine, 2005; Turtle et al., 2011b). While storms have been tribution that differs from what is presently observed. observed in the equatorial region (Turtle et al., 2011a), Cassini The 5-lm-bright VIMS spectral unit has been observed on Titan has yet to directly observe actively flowing channels. The average since the first Cassini flybys where Tui Regio is clearly differenti- global rainfall on Titan has been suggested to be 1 cm/yr ated from other surface features (Barnes et al., 2005). However, (Lorenz and Lunine, 1996; Rannou et al., 2006), but such a low rate from observations of a region of small lakes and dry lake beds by could be reconciled with the observed fluvial features if precipita- VIMS during T69 (2010 June 5), Barnes et al. (2011) established tion were to occur in intense but infrequent storms (‘‘methane the connection between lakebeds and 5-lm-bright material: this monsoons’’ akin to what terrestrial deserts experience though an unique spectral unit coincided with the shores of filled lakes and order of magnitude smaller (Jaumann et al., 2008; Schneider the bottoms of dry lakes identified by RADAR (Hayes et al., et al., 2012)). 2008). Within this small region, there are also examples of dry Clouds have been frequently observed in the active atmosphere and filled lakes that do not exhibit a 5-lm-bright signature. of Titan, ranging from the enormous winter polar vortex, to bands Barnes et al. (2011) demonstrated how evaporite formation would of tropospheric clouds around certain latitudes (e.g. Griffith, 2009; be consistent with these observations of the water–ice poor, Hirtzig et al., 2009; Rodriguez et al., 2009, 2011; Brown et al., 2010; uniquely 5-lm-bright material: the compounds making up the Le Mouélic et al., 2012), to the low lying fog (Brown et al., 2009). deposits would have re-crystallized upon solute evaporation Stratospheric and high tropospheric clouds have been deduced to (accounting for the uniquely bright, water–ice poor spectrum) be composed of methane and ethane, but fog is necessarily made and the formation process would only occur in saturated solutions of methane alone (Brown et al., 2009). Precipitation has been indi- (explaining the spectral differences between such geographically rectly observed after cloud coverage via the surface darkening, close lakes and lakebeds). While we prefer this evaporitic brightening, and subsequent return to the original spectrum by interpretation for 5-lm-bright material formation, other, lacus- Cassini’s Visual Infrared Mapping Spectrometer (VIMS) (Barnes trine-related explanations could be possible, such as sedimentary et al., 2013) and Imaging Science Subsystem (ISS) (Turtle et al., deposits forming at the bottom of lakebeds. Thus, we discuss the 2009, 2011a; Barnes et al., 2013). 5-lm-bright material as ‘‘evaporite candidates’’ to reinforce the The present distribution of Titan’s lakes is asymmetric: there connection between lakebeds and 5-lm-bright material for ease are more in number and extent at the north pole than at the south of comprehension. (Aharonson et al., 2009). In the north, for example, the largest body In this paper, we identify all other examples of the 5-lm-bright is Kraken Mare, a sea covering 400,000 km2 (Turtle et al., 2009), spectral unit in the VIMS data. While brightness at 5 lm alone is while in the south, the largest is Ontario Lacus which covers only not diagnostic enough to say definitively that an observed signa- 15,000 km2 (Hayes et al., 2010). Global Circulation Models (GCMs) ture is from specifically evaporitically formed material, the have found that some kind of seasonal exchange or link between strength of the geomorphological correlation between lakebeds the north and south poles may be taking place (e.g., Tokano, and this spectral unit (first demonstrated by Barnes et al.
Recommended publications
  • Cassini RADAR Images at Hotei Arcus and Western Xanadu, Titan: Evidence for Geologically Recent Cryovolcanic Activity S
    GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009 Click Here for Full Article Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity S. D. Wall,1 R. M. Lopes,1 E. R. Stofan,2 C. A. Wood,3 J. L. Radebaugh,4 S. M. Ho¨rst,5 B. W. Stiles,1 R. M. Nelson,1 L. W. Kamp,1 M. A. Janssen,1 R. D. Lorenz,6 J. I. Lunine,5 T. G. Farr,1 G. Mitri,1 P. Paillou,7 F. Paganelli,2 and K. L. Mitchell1 Received 21 October 2008; revised 5 January 2009; accepted 8 January 2009; published 24 February 2009. [1] Images obtained by the Cassini Titan Radar Mapper retention age comparable with Earth or Venus (500 Myr) (RADAR) reveal lobate, flowlike features in the Hotei [Lorenz et al., 2007]). Arcus region that embay and cover surrounding terrains and [4] Most putative cryovolcanic features are located at mid channels. We conclude that they are cryovolcanic lava flows to high northern latitudes [Elachi et al., 2005; Lopes et al., younger than surrounding terrain, although we cannot reject 2007]. They are characterized by lobate boundaries and the sedimentary alternative. Their appearance is grossly relatively uniform radar properties, with flow features similar to another region in western Xanadu and unlike most brighter than their surroundings. Cryovolcanic flows are of the other volcanic regions on Titan. Both regions quite limited in area compared to the more extensive dune correspond to those identified by Cassini’s Visual and fields [Radebaugh et al., 2008] or lakes [Hayes et al., Infrared Mapping Spectrometer (VIMS) as having variable 2008].
    [Show full text]
  • Titan's Near Infrared Atmospheric Transmission and Surface
    40th Lunar and Planetary Science Conference (2009) 1863.pdf TITAN’S NEAR INFRARED ATMOSPHERIC TRANSMISSION AND SURFACE REFLECTANCE FROM THE CASSINI VISUAL AND INFRARED MAPPING SPECTROMETER. P. Hayne1,2 and T. B. McCord2, J. W. Barnes3, 1University of California, Los Angeles (595 Charles Young Drive East, Los Angeles, CA 90095; [email protected]), 2The Bear Fight Center (Winthrop, WA), 3University of Idaho (Moscow, ID). 1. Introduction: Titan’s near infrared spectrum is At the top of the atmosphere, the outgoing intensity is dominated by absorption by atmospheric methane. then Direct transmission of radiation from the surface ⎛ A 1 ⎞ (1) I↑ / I= A ⋅ e −τ(1/ μ1 + 1/ μ 2 ) +β ⋅ ⎜ e −τ/ μ1 + ⎟ through the full atmosphere is nearly zero, except in top 0 ⎜ μ μ ⎟ several methane “windows”. In these narrow spectral ⎝ 1 2 ⎠ regions, Titan’s surface is visible, but our view is akin where A is the (monochromatic) surface albedo, β ≡ to peering through a dirty window pane, due to both Γ/I0 is the ratio of the diffuse emergent intensity to the direct incident intensity at the top of the atmosphere, N2-induced pressure broadening of adjacent CH4 lines and multiple scattering by stratospheric haze particles. and μ2 is the cosine of the emergence angle. To solve Measured reflectance values in the methane windows Equation (1), we make an initial guess τ for the total are therefore only partially representative of true sur- optical depth, so that face albedo. ⎡ ⎛ A 1 ⎞⎤ (2) τ≈ − μ′lnII / −β ⋅⎜ ⋅e −τ/ μ1 + ⎟ + μ′ln A Using a simple radia- ⎢ 0 ⎜ ⎟⎥ ⎣ ⎝ μ1 μ 2 ⎠⎦ tive transfer model, we where μ′ ≡ /1 ( 1+ 1 ).
    [Show full text]
  • The Lakes and Seas of Titan • Explore Related Articles • Search Keywords Alexander G
    EA44CH04-Hayes ARI 17 May 2016 14:59 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations The Lakes and Seas of Titan • Explore related articles • Search keywords Alexander G. Hayes Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853; email: [email protected] Annu. Rev. Earth Planet. Sci. 2016. 44:57–83 Keywords First published online as a Review in Advance on Cassini, Saturn, icy satellites, hydrology, hydrocarbons, climate April 27, 2016 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Analogous to Earth’s water cycle, Titan’s methane-based hydrologic cycle This article’s doi: supports standing bodies of liquid and drives processes that result in common 10.1146/annurev-earth-060115-012247 Annu. Rev. Earth Planet. Sci. 2016.44:57-83. Downloaded from annualreviews.org morphologic features including dunes, channels, lakes, and seas. Like lakes Access provided by University of Chicago Libraries on 03/07/17. For personal use only. Copyright c 2016 by Annual Reviews. on Earth and early Mars, Titan’s lakes and seas preserve a record of its All rights reserved climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan’s surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales.
    [Show full text]
  • The Exploration of Titan with an Orbiter and a Lake Probe
    Planetary and Space Science ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss The exploration of Titan with an orbiter and a lake probe Giuseppe Mitri a,n, Athena Coustenis b, Gilbert Fanchini c, Alex G. Hayes d, Luciano Iess e, Krishan Khurana f, Jean-Pierre Lebreton g, Rosaly M. Lopes h, Ralph D. Lorenz i, Rachele Meriggiola e, Maria Luisa Moriconi j, Roberto Orosei k, Christophe Sotin h, Ellen Stofan l, Gabriel Tobie a,m, Tetsuya Tokano n, Federico Tosi o a Université de Nantes, LPGNantes, UMR 6112, 2 rue de la Houssinière, F-44322 Nantes, France b Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC University Paris 06, University Paris-Diderot, Meudon, France c Smart Structures Solutions S.r.l., Rome, Italy d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, United States e Dipartimento di Ingegneria Meccanica e Aerospaziale, Università La Sapienza, 00184 Rome, Italy f Institute of Geophysics and Planetary Physics, Department of Earth and Space Sciences, Los Angeles, CA, United States g LPC2E-CNRS & LESIA-Obs., Paris, France h Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States i Johns Hopkins University, Applied Physics Laboratory, Laurel, MD, United States j Istituto di Scienze dell‘Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy k Istituto di Radioastronomia (IRA), Istituto Nazionale
    [Show full text]
  • AVIATR—Aerial Vehicle for In-Situ and Airborne Titan Reconnaissance a Titan Airplane Mission Concept
    Exp Astron DOI 10.1007/s10686-011-9275-9 ORIGINAL ARTICLE AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan airplane mission concept Jason W. Barnes · Lawrence Lemke · Rick Foch · Christopher P. McKay · Ross A. Beyer · Jani Radebaugh · David H. Atkinson · Ralph D. Lorenz · Stéphane Le Mouélic · Sebastien Rodriguez · Jay Gundlach · Francesco Giannini · Sean Bain · F. Michael Flasar · Terry Hurford · Carrie M. Anderson · Jon Merrison · Máté Ádámkovics · Simon A. Kattenhorn · Jonathan Mitchell · Devon M. Burr · Anthony Colaprete · Emily Schaller · A. James Friedson · Kenneth S. Edgett · Angioletta Coradini · Alberto Adriani · Kunio M. Sayanagi · Michael J. Malaska · David Morabito · Kim Reh Received: 22 June 2011 / Accepted: 10 November 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com J. W. Barnes (B) · D. H. Atkinson · S. A. Kattenhorn University of Idaho, Moscow, ID 83844-0903, USA e-mail: [email protected] L. Lemke · C. P. McKay · R. A. Beyer · A. Colaprete NASA Ames Research Center, Moffett Field, CA, USA R. Foch · Sean Bain Naval Research Laboratory, Washington, DC, USA R. A. Beyer Carl Sagan Center at the SETI Institute, Mountain View, CA, USA J. Radebaugh Brigham Young University, Provo, UT, USA R. D. Lorenz Johns Hopkins University Applied Physics Laboratory, Silver Spring, MD, USA S. Le Mouélic Laboratoire de Planétologie et Géodynamique, CNRS, UMR6112, Université de Nantes, Nantes, France S. Rodriguez Université de Paris Diderot, Paris, France Exp Astron Abstract We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVI- ATR). With independent delivery and direct-to-Earth communications, AVI- ATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program.
    [Show full text]
  • Cassini Observations of Flow-Like Features in Western Tui Regio, Titan, J.W
    Cassini observations of flow-like features in western Tui Regio, Titan, J.W. Barnes, R.H. Brown, J. Radebaugh, Buratti B. J., C. Sotin, Le Mouelic S., S. Rodriguez, Turtle E. P., J. Perry, R. Clark, et al. To cite this version: J.W. Barnes, R.H. Brown, J. Radebaugh, Buratti B. J., C. Sotin, et al.. Cassini observations of flow-like features in western Tui Regio, Titan,. Geophysical Research Letters, American Geophysical Union, 2006, 33, pp.l16204. 10.1029/2006gl026843. hal-00112109 HAL Id: hal-00112109 https://hal.archives-ouvertes.fr/hal-00112109 Submitted on 3 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L16204, doi:10.1029/2006GL026843, 2006 Cassini observations of flow-like features in western Tui Regio, Titan Jason W. Barnes,1 Robert H. Brown,1 Jani Radebaugh,1 Bonnie J. Buratti,2 Christophe Sotin,3 Stephane Le Mouelic,3 Sebastien Rodriguez,3 Elizabeth P. Turtle,1 Jason Perry,1 Roger Clark,4 Kevin H. Baines,2 and Phillip D. Nicholson5 Received 8 May 2006; revised 19 July 2006; accepted 24 July 2006; published 30 August 2006.
    [Show full text]
  • Production and Global Transport of Titan's Sand Particles
    Barnes et al. Planetary Science (2015) 4:1 DOI 10.1186/s13535-015-0004-y ORIGINAL RESEARCH Open Access Production and global transport of Titan’s sand particles Jason W Barnes1*,RalphDLorenz2, Jani Radebaugh3, Alexander G Hayes4,KarlArnold3 and Clayton Chandler3 *Correspondence: [email protected] Abstract 1Department of Physics, University Previous authors have suggested that Titan’s individual sand particles form by either of Idaho, Moscow, Idaho, 83844-0903 USA sintering or by lithification and erosion. We suggest two new mechanisms for the Full list of author information is production of Titan’s organic sand particles that would occur within bodies of liquid: available at the end of the article flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan’s equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan’s sands to constrain the global hydrocarbon cycle. We chose to follow an unconventional format with respect to our choice of section head- ings compared to more conventional practice because the multifaceted nature of our work did not naturally lend itself to a logical progression within the precribed system.
    [Show full text]
  • Regional Geomorphology and History of Titan's Xanadu Province
    Icarus 211 (2011) 672–685 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Regional geomorphology and history of Titan’s Xanadu province J. Radebaugh a,, R.D. Lorenz b, S.D. Wall c, R.L. Kirk d, C.A. Wood e, J.I. Lunine f, E.R. Stofan g, R.M.C. Lopes c, P. Valora a, T.G. Farr c, A. Hayes h, B. Stiles c, G. Mitri c, H. Zebker i, M. Janssen c, L. Wye i, A. LeGall c, K.L. Mitchell c, F. Paganelli g, R.D. West c, E.L. Schaller j, The Cassini Radar Team a Department of Geological Sciences, Brigham Young University, S-389 ESC Provo, UT 84602, United States b Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723, United States c Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, United States d US Geological Survey, Branch of Astrogeology, Flagstaff, AZ 86001, United States e Wheeling Jesuit University, Wheeling, WV 26003, United States f Department of Physics, University of Rome ‘‘Tor Vergata”, Rome 00133, Italy g Proxemy Research, P.O. Box 338, Rectortown, VA 20140, USA h Department of Geological Sciences, California Institute of Technology, Pasadena, CA 91125, USA i Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA j Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA article info abstract Article history: Titan’s enigmatic Xanadu province has been seen in some detail with instruments from the Cassini space- Received 20 March 2009 craft.
    [Show full text]
  • Implications for Titan's Surface Properties
    Icarus 208 (2010) 366–384 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Correlations between VIMS and RADAR data over the surface of Titan: Implications for Titan’s surface properties F. Tosi a,*, R. Orosei a, R. Seu b, A. Coradini a, J.I. Lunine a,c, G. Filacchione d, A.I. Gavrishin e, F. Capaccioni d, P. Cerroni d, A. Adriani a, M.L. Moriconi f, A. Negrão g, E. Flamini h, R.H. Brown i, L.C. Wye j, M. Janssen k, R.D. West k, J.W. Barnes l, S.D. Wall k, R.N. Clark m, D.P. Cruikshank n, T.B. McCord o, P.D. Nicholson p, J.M. Soderblom i, The Cassini VIMS and RADAR Teams a INAF-IFSI Istituto di Fisica dello Spazio Interplanetario, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy b Università degli Studi di Roma ‘‘La Sapienza”, Facoltà di Ingegneria, Dipartimento INFOCOM, Via Eudossiana 18, I-00184 Roma, Italy c Università degli Studi di Roma ‘‘Tor Vergata”, Dipartimento di Fisica, Via della Ricerca Scientifica 1, I-00133 Roma, Italy d INAF-IASF Istituto di Astrofisica Spaziale e Fisica Cosmica, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy e South-Russian State Technical University, Prosveschenia 132, Novocherkassk 346428, Russia f CNR-ISAC Istituto di Scienze dell’Atmosfera e del Clima, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy g Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Leiria (ESTG-IPL), Campus 2 Morro do Lena – Alto do Vieiro, 2411-901 Leiria, Portugal h Agenzia Spaziale Italiana, Viale Liegi 26, I-00198 Roma, Italy i Lunar and Planetary Lab and Steward Observatory, University of Arizona, 1629 E.
    [Show full text]
  • Structural and Tidal Models of Titan and Inferences on Cryovolcanism
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications JournalofGeophysicalResearch: Planets RESEARCH ARTICLE Structural and tidal models of Titan and inferences 10.1002/2013JE004512 on cryovolcanism Key Points: F. Sohl1, A. Solomonidou2,3,4, F. W. Wagner1,5, A. Coustenis2, H. Hussmann1, and D. Schulze-Makuch6,7 • Interior models and amplitude patterns of diurnal tidal stresses 1DLR, Institute of Planetary Research, Berlin, Germany, 2LESIA, Observatoire de Paris, CNRS, UPMC University Paris 06, are calculated University Paris-Diderot-Meudon, Paris, France, 3Department of Geology and Geoenvironment, National and Kapodistrian • The diurnal tidal stress pattern 4 is compliant with cryovolcanic University of Athens, Athens, Greece, Now at Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 5 6 candidate areas California, USA, Westphalian Wilhelms-University, Institute for Planetology, Münster, Germany, School of Earth and • A warm, low-ammonia ocean could Environmental Sciences, Washington State University, Pullman, Washington, USA, 7Center for Astronomy and increase Titan’s habitable potential Astrophysics, Technical University of Berlin, Berlin, Germany Correspondence to: F. Sohl, Abstract Titan, Saturn’s largest satellite, is subject to solid body tides exerted by Saturn on the timescale [email protected] of its orbital period. The tide-induced internal redistribution of mass results in tidal stress variations, which could play a major role for Titan’s geologic surface record. We construct models of Titan’s interior that are Citation: consistent with the satellite’s mean density, polar moment-of-inertia factor, obliquity, and tidal potential Sohl, F., A. Solomonidou, F. W.
    [Show full text]
  • Distribution and Intensity of Water Ice Signature in South Xanadu and Tui Regio
    EPSC Abstracts Vol. 14, EPSC2020-188, 2020 https://doi.org/10.5194/epsc2020-188 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Distribution and intensity of water ice signature in South Xanadu and Tui Regio Maélie Coutelier1, Daniel Cordier1, Pascal Rannou1, and Benoît Seignovert2 1Groupe de Spectroscopie Moléclaire et Atmosphérique - UMR CNRS 7331, Université de Reims Champagne-Ardenne, Reims, France ([email protected]) 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Titan is a complexe moon of Saturn, with dense atmosphere, hydrocarbon cycle, and water-ice crust. Titan was targeted by two major space missions: Voyager and Cassini, and has been the subject of many studies. Lakes and seas of liquid hydrocarbons were discovered by Cassini's RADAR in Titan's polar regions [15, 14]. This instrument also detected on equatorial regions geomorphological structures related to the presence of liquid, like fluvial valleys incised in the bedrock, and alluvial fans [8, 3]. The existence of evaporitic terrains where also suggested [1, 4, 9], often in place of paleo-sea [12]. Water ice signal is not present everywhere on Titan, contrary to other icy moon of Saturn and Jupiter. It was detected with Cassini's VIMS instrument in Titan's dark region, often at the transition between a dark and bright unit, and mixed with a darkening material [11, 13]. Ref. [6] also highlighted an equatorial corridor of exposed water-ice using a principal component analysis (PCA) with VIMS, showing on a large scale terrains with low and high water ice content.
    [Show full text]
  • Bulletin of the Geological Society of Greece
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by National Documentation Centre - EKT journals Bulletin of the Geological Society of Greece Vol. 43, 2010 MODELLING OF VOLCANIC ERUPTIONS ON TITAN Solomonidou A. Fortes A.D. Kyriakopoulos K. https://doi.org/10.12681/bgsg.11679 Copyright © 2017 A. Solomonidou, A.D. Fortes, K. Kyriakopoulos To cite this article: Solomonidou, A., Fortes, A., & Kyriakopoulos, K. (2010). MODELLING OF VOLCANIC ERUPTIONS ON TITAN. Bulletin of the Geological Society of Greece, 43(5), 2726-2738. doi:https://doi.org/10.12681/bgsg.11679 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 20/02/2020 22:04:53 | Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 2010 Bulletin of the Geological Society of Greece, 2010 Πρακτικά 12ου Διεθνούς Συνεδρίου Proceedings of the 12th International Congress Πάτρα, Μάιος 2010 Patras, May, 2010 MODELLING OF VOLCANIC ERUPTIONS ON TITAN Solomonidou A. 1,2,3, Fortes A.D.3, Kyriakopoulos K.1 1 National & Kapodistrian University of Athens, Department of Geology and Geoenvironment, Athens, Greece ([email protected])., 2 LESIA, Observatoire de Paris – Meudon, Meudon Cedex, France ([email protected])., 3 University College London, Department of Earth Sciences, London, UK. Abstract Observations by the Visual Infrared Spectrometer instrument (VIMS) aboard the Cassini mission have indicated the possible presence of CO2 ice on the surface on Titan, in areas which exhibit high reflectance in specific spectral windows (McCord et al., 2008). Two of the bright spots of significance are located within the Xanadu region – Tui Regio (located at 20°S, 130°W) and Hotei Regio (located at 26°S, 78°W), and there is a further spot situated in proximity to Omacatl Macula (Hayne et al., 2008).
    [Show full text]