All-Orders Renormalon Resummations for Some QCD Observables

Total Page:16

File Type:pdf, Size:1020Kb

All-Orders Renormalon Resummations for Some QCD Observables View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server DTP/95/36 April 1995 All-Orders Renormalon Resummations for some QCD Observables C.N.Lovett-Turner and C.J.Maxwell Centre for Particle Theory, University of Durham South Road, Durham, DH1 3LE, England Exact large-N results for the QCD Adler D -function and Deep Inelastic Scattering f sum rules are used to resum to all orders the p ortion of QCD p erturbative co ecients 1 containing the highest p ower of b= (11N {2N ), for SU(N ) QCD with N quark avours. f f 6 These terms corresp ond to renormalon singularities in the Borel plane and are exp ected asymptotically to dominate the co ecients to all orders in the 1=N expansion. Remark- f ably,we note that this is already apparent in comparisons with the exact next-to-leading order (NLO) and next-to-NLO (NNLO) p erturbative co ecients. The ultra-violet (UV ) and infra-red (IR) renormalon singularities in the Borel transform are isolated and the Borel sum (principal value regulated for IR) p erformed. Resummed results are also ob- + tained for the Minkowski quantities related to the D -function, the e e R-ratio and the analogous -lepton decay ratio, R . The renormalization scheme dep endence of these par- tial resummations is discussed and they are compared with the results from other groups [1{3] and with exact xed order p erturbation theory at NNLO. Prosp ects for improving the resummation by including more exact details of the Borel transform are considered. HEP-PH-9505224 1 1 Intro duction In several recent pap ers [1{3] the p ossibility of resummation to all orders of the part of p erturbative corrections contributed by QCD renormalons has b een explored. The QCD p erturbative corrections to some generic QCD Green's function or current correlator (to the Adler D -function of QCD vacuum p olarization for instance) can b e written: 2 3 k+1 D = a + d a + d a + + d a + ; (1) 1 2 k where a = is the renormalization group (RG) improved coupling; and the p erturba- s tive co ecients d can themselves b e written as p olynomials of degree k in the number k of quark avours, N ;we shall assume massless quarks. f [k ] [k 1] [0] k k 1 d = d N + d N + + d : (2) k f k k f k [k r ] The \N -expansion" co ecients, d , will consist of sums of multinomials in the ad- f k 2 joint and fundamental Casimirs, C =N , C =(N {1)=2N , of SU(N ) QCD; and will have A F k r s s the structure C C . The terms in this \N -expansion" will corresp ond to Feynman f A F diagrams with di ering numb ers of vacuum p olarization lo ops. By explicit evaluation of [k ] diagrams with chains of such lo ops inserted, it has b een p ossible to obtain the leading d k co ecient exactly to all orders for the Adler D -function [4{6] (and hence its Minkowski + continuations, the e e QCD R-ratio and the -decay ratio, R ); the Gross Llewellyn- Smith (GLS) sum rule corrections [6]; and heavy quark decay widths and p ole masses [k ] [7]. A general pro cedure enabling d to b e obtained from knowledge of the one-lo op k correction with a ctitious gluon mass has b een develop ed [1, 2]. In a recent pap er [8]we p ointed out that the large order b ehaviour of p erturbative co ecients is most transparently discussed in terms of an expansion of the p erturbative co ecients in p owers of b=(11C {2N )=6, the rst QCD b eta-function co ecient: A f (k ) (k 1) (0) k k 1 d = d b + d b + + d : (3) k k k k 11 This \b-expansion" is uniquely obtained by substituting N =( C 3b) in equation (2). f A 2 [k ] (k ) [k ] k d =(1=3) d and so exact knowledge of the leading-N d to all orders implies exact f k k k (k ) knowledge of the d . k In QCD one exp ects the large-order growth of p erturbative co ecients to b e driven by Borel plane singularities at z =z =2`=b, with `=1; 2; 3;:::. The singularities on the ` negative real axis are the so-called ultra-violet renormalons, UV , and those on the p ositive ` real axis are the infra-red renormalons, IR . These singularities result in the large-order ` k b ehaviour of the co ecients d b k !. Indeed we showed in reference [8] that, given a set k of renormalon singularities at the exp ected p ositions in the Borel plane, the leading terms (k ) k in the b-expansion, d b , should, if expanded in p owers of N , asymptotically repro duce f k [k r ] the d co ecients of equation (2) up to O (1=k ) accuracy.We conversely checked that k (k ) k the exact d b results corresp onded to a set of renormalon singularities at the exp ected k p ositions. We shall demonstrate in section 2 of the present pap er that, for the Adler D -function and the GLS sum rule, the N -expansion co ecients obtained by expanding f (1) (2) 2 3 d b and d b are in go o d (10{20% level) agreement with those of the exact O (a ) next- 1 2 to-next-to-leading order (NNLO) p erturbative calculations for these quantities, so that 2 the anticipated asymptotic dominance of the leading-b term is already apparentinlow orders. Given the dominance of the leading-b terms, an obvious prop osal is to sum them to all orders. That is to split D into two comp onents: (L) (NL) D = D + D (4) where `L' and `NL' sup erscripts refer to leading and non-leading terms in the b-expansion. 1 X (k ) (L) k k +1 D d b a (5) k k =1 and 1 k 1 X X (`) (NL) k +1 ` D a d b : (6) k k=1 `=0 The summation of terms can b e achieved by using the Borel sum. The Borel integral can itself b e split into two comp onents and is well de ned for the UV singularities on the ` (L) negative axis, which contribute p oles to the Borel transform of D . The integral can b e p erformed explicitly in terms of exp onential integral functions and other elementary (L) functions. The piece of the Borel integral for D involving the IR singularities on ` the p ositive real axis is formally divergent; but a principal value or other prescription can b e used to go around the p oles. The sp eci cation of this prescription is intimately linked to the pro cedure needed to combine the non-p erturbativevacuum condensates in the op erator pro duct expansion (OPE) with the p erturbation theory in order to arriveat awell-de ned result for D [9]. In recent pap ers by Neub ert [3] and by Ball, Beneke and Braun [1, 2] a summation of the leading-b terms has also b een considered. In these pap ers it has b een motivated as a generalisation of the BLM scale xing prescription [10 ] and termed \nave non- ab elianization" [11]. The Neub ert pro cedure uses weighted integrals over a running cou- pling. For the Euclidean Adler D -function this representation is equivalent to splitting the Borel integral into ultra-violet renormalon and infra-red renormalon singularities and principal value regulating the latter. When one continues to Minkowski space to obtain + the e e R-ratio and the -decay ratio, R , there are several inequivalentways to p erform the continuation of the running coupling representation; and hence apparent additional non-p erturbativeambiguities are claimed. In our view only a consideration of the singu- larities in the Borel integral provides a satisfactory way of combining p erturbative e ects with non-p erturbative condensates, along the lines discussed in reference [9]; and these extra uncertainties are spurious. + Our intention in this pap er is to fo cus on the Adler D -function, the e e R-ratio, R and the GLS sum rule (the latter was not considered in references [1{3]). For all of these quantities there exist exact NNLO xed order p erturbative calculations and our interest is in comparing the leading-b resummation with these exact xed order results. The large-b results provide partial information ab out the Borel transform and the question is how this can b est b e utilised. We discuss the renormalization scheme (RS) dep endence of (L) (NL) (L) the split b etween D and D in equation (4), the relative contribution of D b eing RS-dep endent. This RS uncertainty needs to b e kept in mind and is carefully discussed. 3 The organisation of the pap er is as follows. In section 2 we shall discuss the b-expansion for the Adler D -function and the GLS sum rule and will consider the extent to which the dominance of the leading-b term is RS-dep endent. In section 3 the exact large-b results are used to determine partially the Borel transforms for these quantities; and, having split them into UV and IR renormalon pieces, a resummation along the lines discussed ab ove is p erformed.
Recommended publications
  • And Some Well-Known Sequences
    1 2 Journal of Integer Sequences, Vol. 5 (2002), 3 Article 02.1.6 47 6 23 11 The function M (s; a; z) and some well-known v m sequences Aleksandar Petojevi¶c Aleja Mar·sala Tita 4/2 24000 Subotica Yugoslavia Email address: [email protected] Abstract In this paper we de¯ne the function vMm(s; a; z), and we study the special cases 1Mm(s; a; z) and nM¡1(1; 1; n + 1). We prove some new equivalents of Kurepa's hypothesis for the left factorial. Also, we present a generalization of the alternating factorial numbers. 1 Introduction Studying the Kurepa function +1 tz ¡ 1 K(z) = !z = e¡t dt (Re z > 0); t ¡ 1 Z0 G. V. Milovanovi¶c gave a generalization of the function +1 tz+m ¡ Q (t; z) M (z) = m e¡tdt (Re z > ¡(m + 1)); m (t ¡ 1)m+1 Z0 where the polynomials Qm(t; z), m = ¡1; 0; 1; 2; ::: are given by m m + z Q (t; z) = 0 Q (t; z) = (t ¡ 1)k: ¡1 m k Xk=0 µ ¶ This work was supported in part by the Serbian Ministry of Science, Technology and Development under Grant # 2002: Applied Orthogonal Systems, Constructive Approximation and Numerical Methods. 1 +1 The function fMm(z)gm=¡1 has the integral representation 1 z(z + 1) ¢ ¢ ¢ (z + m) z¡1 m (1¡»)=» 1 ¡ » Mm(z) = » (1 ¡ ») e ¡ z; d»; m! 0 » Z ³ ´ where ¡(z; x), the incomplete gamma function, is de¯ned by +1 ¡(z; x) = tz¡1e¡t dt: (1) Zx Special cases include M¡1(z) = ¡(z) and M0(z) = K(z); (2) where ¡(z) is the gamma function +1 ¡(z) = tz¡1e¡t dt: Z0 The numbers Mm(n) were introduced by Milovanovi¶c [10] and Milovanovi¶c and Petojevi¶c [11].
    [Show full text]
  • ON the Vmm(S;A, Z)
    Novi Sad J. Math. 99 Vol. 34, No. 1, 2004, 99-106 ON THE vMm(s; a; z) FUNCTION Aleksandar Petojevi´c1 1 Abstract. In this paper we study the special cases fvMm(s; m+n; z)gn=2 1 and fvMm(s; a; n)gn=1, where vMm(s; a; z) is the function defined in [8]. Also, we give connections between vMm(s; a; z) function and figured num- bers, Stirling numbers of the first kind and Riemann Zeta function. AMS Mathematics Subject Classification (2000): 11B34 Key words and phrases: vMm(s; a; z) function, factorial function, Rie- mann Zeta function, figured number, Stirling number 1. Introduction In 1971, Kurepa (see [4, 5]) defined so-called the left factorial !n by: nX¡1 !0 = 0; !n = k!(n 2 N) k=0 and extended it to the complex half-plane Re (z) > 0 as Z +1 tz ¡ 1 !z = e¡t dt: 0 t ¡ 1 Such function can be also extended analytically to the whole complex plane by !z =!(z + 1) ¡ Γ(z + 1), where Γ(z) is the gamma function defined by Z +1 Γ(z) = tz¡1e¡t dt (Re (z) > 0): 0 Recently, Milovanovi´c[6] defined and studied a sequence of the factorial +1 functions fMm(z)gm=¡1 where M¡1(z) = Γ(z) and M0(z) = !z. Namely, Z +1 z+m t ¡ Qm(t; z) ¡t (1.1) Mm(z) = m+1 e dt (Re (z) > ¡(m + 1)); 0 (t ¡ 1) where the polynomials Qm(t; z), m = ¡1; 0; 1; 2;:::, are given by µ ¶ Xm m + z Q (t; z) = 0;Q (t; z) = (t ¡ 1)k: ¡1 m k k=0 1University of Novi Sad, Teacher Training Faculty, Podgoriˇcka 4, 25000 Sombor, Serbia and Montenegro, E-mail: [email protected] 100 A.
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • Diagrammatic Monte-Carlo for Weak-Coupling Expansion of Non
    Diagrammatic Monte-Carlo for weak-coupling expansion of non-Abelian lattice field theories: large-N U (N) U (N) principal chiral model∗ × P. V. Buividovich† and A. Davody‡ Institute of Theoretical Physics, University of Regensburg, D-93053 Germany, Regensburg, Universit¨atsstrasse 31 (Dated: November 1st, 2017) We develop numerical tools for Diagrammatic Monte-Carlo simulations of non-Abelian lattice field theories in the t’Hooft large-N limit based on the weak-coupling expansion. First we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows to study it directly in the large-N and infinite-volume limits using the Diagrammatic Monte-Carlo approach. On the exactly solvable example of a large-N O (N) sigma model in D = 2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of re- summed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly non- perturbative dynamical mass gap. We then develop a Diagrammatic Monte-Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared- finite weak-coupling expansion for large-N U (N) × U (N) nonlinear sigma model (principal chiral model) in D = 2. We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders.
    [Show full text]
  • Renormalization Scheme and Gauge (In) Dependence of the Generalized
    Published for SISSA by Springer Received: January 24, 2018 Accepted: January 28, 2018 Published: February 26, 2018 Renormalization scheme and gauge (in)dependence of the generalized Crewther relation: what are the real JHEP02(2018)161 grounds of the β-factorization property? A.V. Garkusha,a;1 A.L. Kataevb;c and V.S. Molokoedovb;c aHigher School of Economics, Math Department, Myasnitskaya street 20, Moscow, 101000, Russia bInstitute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow, 117312, Russia cMoscow Institute of Physics and Technology, Institusky per. 9, Dolgoprudny, Moscow region, 141700, Russia E-mail: [email protected], [email protected], viktor [email protected] Abstract: The problem of scheme and gauge dependence of the factorization property of the renormalization group β-function in the SU(Nc) QCD generalized Crewther relation (GCR), which connects the flavor non-singlet contributions to the Adler and Bjorken po- 4 larized sum rule functions, is investigated at the O(as) level of perturbation theory. It is known that in the gauge-invariant renormalization MS-scheme this property holds in the QCD GCR at least at this order. To study whether this factorization property is true in all gauge-invariant schemes, we consider the MS-like schemes in QCD and the QED-limit of the GCR in the MS-scheme and in two other gauge-independent subtraction schemes, namely in the momentum MOM and the on-shell OS schemes. In these schemes we con- firm the existence of the β-function factorization in the QCD and QED variants of the GCR.
    [Show full text]
  • Arxiv:2001.00578V2 [Math.HO] 3 Aug 2021
    Errata and Addenda to Mathematical Constants Steven Finch August 3, 2021 Abstract. We humbly and briefly offer corrections and supplements to Mathematical Constants (2003) and Mathematical Constants II (2019), both published by Cambridge University Press. Comments are always welcome. 1. First Volume 1.1. Pythagoras’ Constant. A geometric irrationality proof of √2 appears in [1]; the transcendence of the numbers √2 √2 i π √2 , ii , ie would follow from a proof of Schanuel’s conjecture [2]. A curious recursion in [3, 4] gives the nth digit in the binary expansion of √2. Catalan [5] proved the Wallis-like infinite product for 1/√2. More references on radical denestings include [6, 7, 8, 9]. 1.2. The Golden Mean. The cubic irrational ψ =1.3247179572... is connected to a sequence 3 ψ1 =1, ψn = 1+ ψn 1 for n 2 − ≥ which experimentally gives rise to [10] p n 1 lim (ψ ψn) 3(1 + ) =1.8168834242.... n − ψ →∞ The cubic irrational χ =1.8392867552... is mentioned elsewhere in the literature with arXiv:2001.00578v2 [math.HO] 3 Aug 2021 regard to iterative functions [11, 12, 13] (the four-numbers game is a special case of what are known as Ducci sequences), geometric constructions [14, 15] and numerical analysis [16]. Infinite radical expressions are further covered in [17, 18, 19]; more gen- eralized continued fractions appear in [20, 21]. See [22] for an interesting optimality property of the logarithmic spiral. A mean-value analog C of Viswanath’s constant 1.13198824... (the latter applies for almost every random Fibonacci sequence) was dis- covered by Rittaud [23]: C =1.2055694304..
    [Show full text]
  • Arxiv:Math/0312202V1
    PUBLICATIONS DE L’INSTITUT MATHEMATIQUE´ Nouvelle s´erie, tome 57 (71), 1995, 19–28 Duro- Kurepa memorial volume ON KUREPA’S PROBLEMS IN NUMBER THEORY Dedicated to the memory of Prof. Duro- Kurepa A. Ivi´c, Z.ˇ Mijajlovi´c Abstract. We discuss some problems in number theory posed by Duro- Kurepa, including the so-called left factorial hypothesis that an odd prime p does not divide 0! + 1! + ··· +(p − 1)!. 1. Introduction D.- Kurepa posed several problems in number theory that drew attention of many workers in number theory. Certainly, the most known of his problems is the so called left factorial hypothesis, which is still an open problem. However, Kurepa asked several other questions that are less known, but we think that they are interesting as well. The aim of this paper is to review some of these problems, and to present some of the known results concerning them. We shall assume the following notation. We shall denote by N the set of + natural numbers (nonnegative integers), N denotes positive integers, while Zn arXiv:math/0312202v1 [math.NT] 10 Dec 2003 denotes the ring of integers modulo n. The greatest common divisor of integers a and b is denoted by (a,b). The Galois field of p elements, where p is a prime, is denoted by GF(p). If m and n are integers, by rest(m, n) we shall denote the remainder obtained from division of m by n. 2. The left factorial function D.- Kurepa defined in [Ku71] an arithmetic function K(n) that he denoted by !n and called it the left factorial, by n−1 K(n)=!n = i!, n N +.
    [Show full text]
  • On the Dn(S) Polynomials
    On the Dn(s) polynomials Aleksandar Petojevi´c University of Novi Sad, Teacher Training Faculty Podgoriˇcka 4, 25000 Sombor SERBIA and MONTENEGRO E-mail: [email protected] Abstract In this paper we study a sequence of polynomials n m m s Dn(s) = n! (−1) ; (n 2 N0): m! mX=0 We give connection between fvMm(s; a; r)gr2N functions and Dn(s) polyno- mials, where vMm(s; a; z) is the function defined in [8]. 1 Introduction and Definition In 1971 Kurepa (see [4, 5]) defined so-called the left factorial !n by: n−1 !0 = 0; !n = k! (n 2 N) Xk=0 and extended it to the complex half-plane Re (z) > 0 as +1 z t − 1 t !z = e− dt: Z0 t − 1 2000 Mathematics Subject Classification : Primary 11B34. Key words and phrases : Dn(s) polynomials, vMm(s; a; z) function, factorial function. 1 Such function can be also extended analytically to the whole complex plane by !z =!(z + 1) − Γ(z + 1), where Γ(z) is the gamma function defined by +1 z t Γ(z) = t −1e− dt (Re (z) > 0): Z0 Milovanovi´c in [6] defined and studied a sequence of the factorial functions +1 fMm(z)gm=−1 where M−1(z) = Γ(z) and M0(z) = !z. Namely, +1 z+m t − Qm(t; z) −t Mm(z) = m+1 e dt (Re (z) > −(m + 1)); (1.1) Z0 (t − 1) where the polynomials Qm(t; z), m = −1; 0; 1; 2; : : :, are given by m m + z k Q−1(t; z) = 0; Qm(t; z) = (t − 1) : k Xk=0 For m = −1; 0; 1; 2; ::: and Re (z) > v−m−2 in [8] is given the generalization of Milovanovi´c's factorial function: v k−1 z + m + 1 − k vMm(s; a; z) = (−1) L[s; 2F1(a; k − z; m + 2; 1 − t)]; m + 1 Xk=1 (1.2) where v is a positive integer, s; a; z are complex variables.
    [Show full text]
  • Package 'Zseq'
    Package ‘Zseq’ February 3, 2018 Type Package Title Integer Sequence Generator Version 0.2.0 Description Generates well-known integer sequences. 'gmp' package is adopted for comput- ing with arbitrarily large numbers. Every function has hyperlink to its correspond- ing item in OEIS (The On-Line Encyclopedia of Integer Sequences) in the func- tion help page. For interested readers, see Sloane and Plouffe (1995, ISBN:978-0125586306). License GPL (>= 3) Encoding UTF-8 LazyData true Imports gmp RoxygenNote 6.0.1 NeedsCompilation no Author Kisung You [aut, cre] (<https://orcid.org/0000-0002-8584-459X>) Maintainer Kisung You <[email protected]> Repository CRAN Date/Publication 2018-02-02 23:07:14 UTC R topics documented: Zseq-package . .2 Abundant . .3 Achilles . .3 Bell .............................................4 Carmichael . .5 Catalan . .5 Composite . .6 Deficient . .7 Equidigital . .7 Evil .............................................8 Extravagant . .9 1 2 Zseq-package Factorial . .9 Factorial.Alternating . 10 Factorial.Double . 11 Fibonacci . 11 Frugal . 12 Happy............................................ 13 Juggler . 13 Juggler.Largest . 14 Juggler.Nsteps . 15 Lucas . 15 Motzkin . 16 Odious . 17 Padovan........................................... 17 Palindromic . 18 Palindromic.Squares . 19 Perfect . 19 Perrin . 20 Powerful . 21 Prime . 21 Regular . 22 Square . 23 Squarefree . 23 Telephone . 24 Thabit . 25 Triangular . 25 Unusual . 26 Index 27 Zseq-package Zseq : Integer Sequence Generator Description The world of integer sequence has long history, which has been accumulated in OEIS. Even though R is not a first pick for many number theorists, we introduce our package to enrich the R ecosystem as well as provide pedagogical toolset. We adopted gmp for flexible large number computations in that users can easily experience large number sequences on a non-exclusive generic computing platform.
    [Show full text]
  • Function, the Iterated Function Being That Involved in the Solution of the Two-Loop /9-Function Equation
    Durham E-Theses A convergent reformulation of perturbative QCD Alves(1), RicardoJooGaio How to cite: Alves(1), RicardoJooGaio(2000)A convergent reformulation of perturbative QCD, Durhamtheses, DurhamUniversity.AvailableatDurhamE− T hesesOnline : http : //etheses.dur.ac.uk/4259/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk A Convergent Reformulation of perturbative QCD Ricardo Joao Gaio Alves^ Centre for Particle Theory University of Durham October 2, 2000 A thesis submitted to the University of Durham for the degree of Doctor of Philosophy The copyright of this thesis rests with the aiitlior. No quotation from it should be puhlislicd in any form, includinj; Electronic and the Internet, without the author's prior written consent. All information derived from this thesis must he acknowlcdj;ed appropriately. ^The author was the recipient of a scholarship from Programa Praxis XXI-JNICT- Portugal. 3 JUL 2Q01 Abstract We present and explore a new formulation of perturbative QCD based not on the renormalised coupling but on the dimensional transmutation parameter of the theory and the property of asymptotic scaling.
    [Show full text]
  • Arxiv:Math/0406236V9 [Math.NT] 6 Nov 2008 U N Oeo T Atclrsolutions Particular Its of Some and Sum Function ABSTRACT
    SOME CONSIDERATIONS IN CONNECTION WITH ALTERNATING KUREPA’S FUNCTION Branko J. Maleˇsevi´c 1 1Faculty of Electrical Engineering University of Belgrade, 11000 Belgrade, Serbia E-mail: [email protected] ABSTRACT. In this paper we consider the functional equation for alternating factorial sum and some of its particular solutions (alternating Kurepa’s function A(z) from [18] and function A1(z)). We determine an extension of domain of functions A(z) and A1(z) in the sense of the principal value at point [6], [22]. Using the methods from [6] and [19] we give a new representation of alternating Kurepa’s function A(z), which is an analog of Slavi´c’s representation of Kurepa’s function K(z) [6], [8]. Also, we consider some representations of functions A(z) and A1(z) via incomplete gamma function and we consider differential transcendency of previous functions too. KEYWORDS: Gamma function, Kurepa’s function, Casimir energy. MSC (2000): 30E20, 11J91, 81V99. 1 The functional equation for alternating factorial sum and its particular solutions The main object of consideration in this paper is the functional equation for alter- nating factorial sum A(z)+ A(z − 1) = Γ(z + 1), (1) − arXiv:math/0406236v9 [math.NT] 6 Nov 2008 with respect to the function A : D −→ C with domain D ⊆ C\Z , where Γ is the gamma function, C is the set of complex numbers and Z− is set of negative integer numbers. A solution of functional equation (1) over the set of natural numbers (D = N) is the function of alternating left factorial An.
    [Show full text]
  • Exploring Arbitrarily High Orders of Optimized Perturbation Theory In
    Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 910 (2016) 469–495 www.elsevier.com/locate/nuclphysb Exploring arbitrarily high orders of optimized → 1 perturbation theory in QCD with nf 162 P.M. Stevenson T.W. Bonner Laboratory, Department of Physics and Astronomy, Rice University, Houston, TX 77251, USA Received 29 June 2016; accepted 14 July 2016 Available online 19 July 2016 Editor: Tommy Ohlsson Abstract Perturbative QCD with nf flavours of massless quarks becomes simple in the hypothetical limit → 1 nf 16 2 , where the leading β-function coefficient vanishes. The Banks–Zaks (BZ) expansion in ≡ 8 1 − a0 321 (16 2 nf ) is straightforward to obtain from perturbative results in MS or any renormaliza- tion scheme (RS) whose nf dependence is ‘regular’. However, ‘irregular’ RS’s are perfectly permissible and should ultimately lead to the same BZ results. We show here that the ‘optimal’ RS determined by the Principle of Minimal Sensitivity does yield the same BZ-expansion results when all orders of perturbation theory are taken into account. The BZ limit provides an arena for exploring optimized perturbation theory at arbitrarily high orders. These explorations are facilitated by a ‘master equation’ expressing the optimization ∗2 conditions in the fixed-point limit. We find an intriguing strong/weak coupling duality a → a /a about ∗ the fixed point a . © 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 1. Introduction The initial impulse for these investigations was a concern with the compatibility of the Banks– Zaks (BZ) expansion [1–4] with renormalization-scheme (RS) invariance [5].
    [Show full text]