Fe–Mn Concretions and Nodules to Sequester Heavy Metals in Soils

Total Page:16

File Type:pdf, Size:1020Kb

Fe–Mn Concretions and Nodules to Sequester Heavy Metals in Soils Chapter 11 Fe–Mn Concretions and Nodules to Sequester Heavy Metals in Soils Dionisios Gasparatos Contents 11.1 Introduction ..................................................................................................................... 444 11.2 Redox Process and Environmental Issues ....................................................................... 446 11.3 Genesis and Properties of Pedogenic Fe-Mn Concretions and Nodules ......................... 448 11.3.1 Formation Process and Environmental Conditions ........................................... 448 11.3.2 Morphological Properties .................................................................................. 449 11.3.3 Mineralogical Composition ............................................................................... 456 11.3.4 Geochemistry .................................................................................................... 457 11.4 Role of Pedogenic Fe-Mn Concretions and Nodules in the Environmental Geochemistry of the Soil ................................................................................................ 460 11.4.1 Iron .................................................................................................................... 460 11.4.2 Manganese......................................................................................................... 461 11.4.3 Copper ............................................................................................................... 462 11.4.4 Zinc ................................................................................................................... 463 11.4.5 Cobalt ................................................................................................................ 463 11.4.6 Nickel ................................................................................................................ 464 11.4.7 Lead ................................................................................................................... 464 11.4.8 Chromium ......................................................................................................... 465 11.4.9 Arsenic .............................................................................................................. 466 11.5 Application of Pedogenic Fe-Mn Concretions and Nodules to Remediating Metal Contaminated Soils ..................................................................... 467 11.6 Conclusions ..................................................................................................................... 468 References .................................................................................................................................. 469 D. Gasparatos ( *) Laboratory of Soils and Agricultural Chemistry , Agricultural University of Athens , Iera Odos 75 , Athens , 11855 , Greece e-mail: [email protected] E. Lichtfouse et al. (eds.), Environmental Chemistry for a Sustainable World: 443 Volume 2: Remediation of Air and Water Pollution , DOI 10.1007/978-94-007-2439-6_11, © Springer Science+Business Media B.V. 2012 444 D. Gasparatos Abstract Over the last two decades, considerable attention has been paid to the management of metal-contaminated soils. Fe-Mn concretions and nodules can be used to sequester metals by adsorption. Fe-Mn concretions and nodules are discrete bodies with variable compositions formed in the soil system under alternating oxidizing and reducing conditions. This chapter highlights the high adsorption capacity of soil Fe-Mn concretions and nodules for many metal contaminants. The geochemical association of various metals with either Mn or Fe rich phase in Fe-Mn concretions and nodules are a primary environmental procedure that controls the dynamics of these contaminants in the soil system. The formation of Fe-Mn concre- tions and nodules is the most effi cient and durable process for metal contaminants sequestration in the soils. Since the formation of soil concretions has a potentially benefi cial effect on metals availability, the application of these environmental materials as geochemical reactors to improve the effi ciency of in situ technologies for remediating metal contaminated soils is strongly recommended. Keywords Soil • Contamination • Redox process • Fe – Mn oxides • Heavy metals • Remediation technologies • Fe-Mn concretions and nodules • High sorption capacity • Arsenic • Toxic metal sequestration • Environmental geochemistry • Lead • Chromium 11.1 Introduction In terrestrial ecosystems the soil is of central signifi cance because as a very important “ecological crossroad” it is the place where many kinds of interactions take place between solids, liquids, gases and the biota (Fig. 11.1 ). Soil, in an environmental context, is not only a sink to dispose off undesirable materials, but also a transmitter of many contaminant chemicals as metals to surface-ground water, atmosphere and living organisms (Kabata-Pendias 2001 ; Gasparatos et al. 2005a ) . Therefore the metal contaminants content of soil governs the composition of these elements in plants and animals. As a consequence of industrialization during the last centuries, the contamina- tion of soils with toxic metals has become a major environmental concern in many parts of the world. These metals are considered as hazardous pollutants with a long residence time in soils due to their toxicity and lack of biodegradability (Alloway 1995 ; Adriano 2001 ) . Toxic metals may be retained by soil components through a number of processes such as electrostatic adsorption, formation of inner-sphere sorption complexes or multinuclear surface complexes, and precipitation of new mineral phases. In soil, Fe and Mn oxides, oxyhydroxides and hydroxides (for the sake of brevity all are called oxides) constitute only a small fraction of the total solid phase but with their high sorption capacity often control the location, mobility and bioavailability of metal contaminants (McKenzie 1980 ; Contin et al. 2007 ; Manceau et al. 2007 ) . Because of their high surface area and high surface-charge density, the Fe and Mn compounds 11 Fe–Mn Concretions and Nodules to Sequester Heavy Metals in Soils 445 Fig. 11.1 Schematic view of the soil as an “ecological crossroad” – it is the place where many kinds of Atmosphere interactions take place between solids (Lithosphere), liquids (Hydrosphere), gases (Atmosphere) and the biota (Biosphere) (Adapted from Lin et al. 2005 ) BiospherePedosphere Hydrosphere (Soils) Lithosphere are useful for retarding transport of inorganic contaminants in groundwater systems (Stipp et al. 2002 ) and to some extent for purifying the soil fi nes from heavy metals (Lombi et al. 2002, 2004 ) . Since Fe and Mn oxides are able to bind metals, the use of Fe- Mn rich materials could be appropriate to treat soils contaminated with toxic metals (McKenzie 1980 ; Mench et al. 1994 ; Puschenreiter et al. 2005 ) . Natural Fe and Mn compounds in soils may display several features with a wide variety of sizes and shapes such as nodules, concretions, coatings, laths, spindles etc. (Latrille et al. 2001 ; Manceau et al. 2007 ) . Among them, a special place is occu- pied by the group of Fe-Mn concretions and nodules due to the ability of their Fe and Mn oxides to concentrate and control the distribution and mobility of metals in soils (Childs 1975 ; Suarez and Langmuir 1976 ; Zaidelman and Nikiforova 1998 ) . A number of investigations have focused on soil Fe-Mn concretions and nodules (Dawson et al. 1985 ; Palumbo et al. 2001 ; Liu et al. 2002 ) . Furthermore, several studies have shown the high adsorption capacity of soil Fe-Mn concretions and nodules for many toxic metal pollutants and in some cases they are considered the primary environmental material that controls metal dynamics in the soil system (Manceau et al. 2003 ; Gasparatos et al. 2005b ; Gasparatos 2007 ) . This review was compiled in an effort to assess the general extent of scientifi c knowledge regarding the properties of Fe-Mn concretions and nodules and their role in the metals sequestration. A literature research was conducted in order to identify (a) the ability of Fe-Mn concretions and nodules on metals immobilization and (b) potentially viable in situ remediation technologies using the Fe – Mn oxides (main components of concretions and nodules) for soils where metals are the principal contaminants of concern. 446 D. Gasparatos Over 100 papers were reviewed and synthesized to summarize the geochemical role of Fe – Mn concretions and nodules to control metals dynamics in the soil system. 11.2 Redox Process and Environmental Issues Redox-related environmental issues have increased in importance in the last decades. The importance of the redox potential, as a main biogeochemical variable, in con- trolling the speciation and toxicity of a wide variety of elements have been recently reviewed (Borch et al. 2010 ) . Redox processes are chemical reactions that include a transfer of electrons and consequently a change in valence state of elements that are either oxidized to a higher valence state or reduced to a lower valence state. Oxidation – reduction reactions in soils affect the biogeochemical cycles of many major and trace elements. Many elements can exist in nature in more than one valence or oxidation state. Elements that occur in more than one valence state in natural environments and may be present as contaminants are listed in Table 11.1 . The chemical speciation, bioavailability, toxicity, and mobility of these elements
Recommended publications
  • Engineering Behavior and Classification of Lateritic Soils in Relation to Soil Genesis Erdil Riza Tuncer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Engineering behavior and classification of lateritic soils in relation to soil genesis Erdil Riza Tuncer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons Recommended Citation Tuncer, Erdil Riza, "Engineering behavior and classification of lateritic soils in relation to soil genesis " (1976). Retrospective Theses and Dissertations. 5712. https://lib.dr.iastate.edu/rtd/5712 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Crystalline Silica, Cristobalite (CAS No
    Crystalline Silica, Quartz (CAS No. 14808-60-7) Crystalline Silica, Cristobalite (CAS No. 14464-46-1) Crystalline Silica, Tridymite (CAS No. 15468-32-3) Diatomaceous earth (CAS No. 61790-53-2) This dossier on crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth presents the most critical studies pertinent to the risk assessment of these substances in their use in drilling muds and cement additives. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). For the purpose of this dossier, crystalline silica, quartz (CAS No. 14808-60-7) has been reviewed as representative of crystalline silica cristobalite and tridymite. Crystalline silica, quartz is also considered representative of diatomaceous earth, as they both consist mainly of silicon dioxide. Screening Assessment Conclusion – Crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth are classified as tier 1 chemicals and require a hazard assessment only. 1 BACKGROUND Crystalline silica is a common mineral found in the earth's crust. Materials like sand, stone, concrete and mortar contain crystalline silica. It is also used to make products such as glass, pottery, ceramics, bricks and artificial stone. Silica, in the form of sand, is used as the main ingredient in sand casting for the manufacture of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications.
    [Show full text]
  • A New Occurrence of Terrestrial Native Iron in the Earth's Surface
    geosciences Article A New Occurrence of Terrestrial Native Iron in the Earth’s Surface: The Ilia Thermogenic Travertine Case, Northwestern Euboea, Greece Christos Kanellopoulos 1,2,* ID , Eugenia Valsami-Jones 3,4, Panagiotis Voudouris 1, Christina Stouraiti 1 ID , Robert Moritz 2, Constantinos Mavrogonatos 1 ID and Panagiotis Mitropoulos 1,† 1 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15784 Athens, Greece; [email protected] (P.V.); [email protected] (C.S.); [email protected] (C.M.); [email protected] (P.M.) 2 Section of Earth and Environmental Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland; [email protected] 3 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 4 Department of Earth Sciences, Natural History Museum London, Cromwell Road, London SW7 5BD, UK * Correspondence: [email protected] † Professor Panagiotis Mitropoulos has passed away in 2017. Received: 6 April 2018; Accepted: 23 July 2018; Published: 31 July 2018 Abstract: Native iron has been identified in an active thermogenic travertine deposit, located at Ilia area (Euboea Island, Greece). The deposit is forming around a hot spring, which is part of a large active metallogenetic hydrothermal system depositing ore-bearing travertines. The native iron occurs in two shapes: nodules with diameter 0.4 and 0.45 cm, and angular grains with length up to tens of µm. The travertine laminae around the spherical/ovoid nodules grow smoothly, and the angular grains are trapped inside the pores of the travertine.
    [Show full text]
  • Density Fractionation of Forest Soils: Methodological Questions and Interpretation of Incubation Results and Turnover Time in an Ecosystem Context
    Biogeochemistry (2007) 85:69–90 DOI 10.1007/s10533-007-9100-8 ORIGINAL PAPER Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context Susan E. Crow Æ Christopher W. Swanston Æ Kate Lajtha Æ J. Rene´e Brooks Æ Heath Keirstead Received: 11 March 2006 / Accepted: 27 November 2006 / Published online: 15 March 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Soil organic matter (SOM) is often common density-based methods for dividing soil separated by physical means to simplify a com- into distinct organic matter fractions. Further, we plex matrix into discrete fractions. A frequent directly address the potential effects of dispersing approach to isolating two or more fractions is soil in a high density salt solution on the recov- based on differing particle densities and uses a ered fractions and implications for data inter- high density liquid such as sodium polytungstate pretation. Soil collected from forested sites at (SPT). Soil density fractions are often interpreted H. J. Andrews Experimental Forest, Oregon and as organic matter pools with different carbon (C) Bousson Experimental Forest, Pennsylvania was turnover times, ranging from years to decades or separated into light and heavy fractions by floa- centuries, and with different functional roles for C tation in a 1.6 g cm–3 solution of SPT. Mass and nutrient dynamics. In this paper, we discuss balance calculations revealed that between 17% the development and mechanistic basis of and 26% of the original bulk soil C and N content was mobilized and subsequently discarded during S.
    [Show full text]
  • Lake Iron Nodules an “Index Mineral”
    LAKE IRON NODULES AN “INDEX MINERAL” TO ASSESS THE IMPACT OF SULFATE/SULFIDE ON SURFACE WATER AND SEDIMENT QUALITY OVER TIME IN NEW ENGLAND LAKES, PONDS AND RIVERS (PRE-1800S TO TODAY) Where did they get their iron from? Reference: Saugus Iron Works National Park, website photographs • JONATHAN B. HIGGINS, CPG, LSP • PRINCIPAL EARTH SCIENTIST, HIGGINS ENVIRONMENTAL ASSOCIATES, INC. MARCH 1, 2020 WHAT ARE LAKE IRON NODULES? • AN IRON-ENRICHED CONCRETION, OFTEN CONTAINING MORE THAN 30 PERCENT IRON BY WEIGHT. THERE ARE BOTH OXIC AND ANOXIC FORMS. OXIC IRON NODULES FORM AT THE SEDIMENT/WATER INTERFACE (SWI). THEY ARE COMMONLY COMPOSED OF THE MINERALS GOETHITE AND HEMATITE. ANOXIC IRON NODULES FORM IN ANOXIC SEDIMENT PORE-SPACE. THESE ARE COMMONLY EITHER SIDERITE OR THE FERROUS PHOSPHATE HYDRATED MINERALS: VIVIANITE AND STRENGITE. • IRON NODULES ARE A NATURAL SINK FOR PHOSPHORUS (CAN TAKE UP TO 4 % BY WEIGHT) IN LAKES, PONDS AND RIVERS. • PICTURED HERE ARE OXIC LAKE IRON NODULES COLLECTED BY THE PRESENTER IN NOVA SCOTIA. WHERE ARE LAKE IRON NODULES FOUND IN LAKES? Surface Water Oxic Fe (P) Minerals: Oxic Fe (P) Minerals: Goethite, Hematite Goethite, Hematite Oxic Water Anoxic Water Anoxic Fe (P) Minerals: As pore-space concretions Strengite, Vivianite Simplified Figure for Illustrative Purposes Only © Higgins Environmental Associates, Inc., Amesbury, Massachusetts, 978 834-9000. All Rights Reserved. OXIC LAKE IRON NODULE = INDEX MINERAL? • INDEX MINERALS LIKE FOSSILS SHOULD BE DISTINCTIVE, WIDELY DISTRIBUTED, AND ABUNDANT OR ABSENT UNDER CERTAIN GEOLOGIC CONDITIONS. OXIC LAKE IRON NODULES ARE: - PLANAR AND CAN GROW TO LARGER THAN THE PALM OF YOUR HAND. - DISPLAY CONCENTRIC GROWTH RINGS LIKE A TREE’S CROSS-SECTION.
    [Show full text]
  • Petrography and Origin of Illinois Nodular Cherts
    View metadata, citation and similar papers at core.ac.ukG^tA S^svjlx-^ brought to you by CORE provided by Illinois Digital Environment for Access to Learning and Scholarship... STATE OF ILLINOIS c a WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director PETROGRAPHY AND ORIGIN OF ILLINOIS NODULAR CHERTS Donald L. Biggs DIVISION OF THE ILLINOIS STATE GEOLOGICAL SURVEY JOHN C. FRYE, Chief URBANA CIRCULAR 245 1957 ILLINOIS GEOLOGICAL SURVEY LIBRARY JAN 9 1958 ILLINOIS STATE GEOLOGICAL SURVEY 3 3051 00004 4572 PETROGRAPHY AND ORIGIN OF ILLINOIS NODULAR CHERTS Donald L. Biggs ABSTRACT Seventy-eight samples of nodular chert from 18 Illinois lime- stone and dolomite formations, ranging from Cambrian through Mississippian age, were investigated todetermine the petrography and mode of origin of the nodules. Regardless of geologic age or type of host rock, the nodules were similar in mode of occurrence and in principal textural characteristics. The cherts are dominantly microcrystalline or cryptocrys- talline quartz with a lesser amount of fibrous quartz. No opal or hydrated silica was detected. Almost all the cherts contain re- sidual masses of their host rock. Field relationships and a varie- ty of evidence for replacement leads to the conclusion that the cherts are epigenetic concretions formed by metasomatic proc- esses operating during diagenesis and involving the aggregation of silica that originally had been deposited syngenetically with, and dispersed through, the host rocks. INTRODUCTION Chert is found in many limestones that crop out in Illinois and range in age from Cambrian to Mississippian. The chert may appear as nodules, len- ses, or beds, and some Devonian rocks in extreme southern Illinois are entire- ly chert.
    [Show full text]
  • Rinded, Iron-Oxide Concretions in Navajo Sandstone Along the Trail to Upper Calf Creek Falls, Garfield County
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2019 Rinded, Iron-Oxide Concretions in Navajo Sandstone Along the Trail to Upper Calf Creek Falls, Garfield County David Loope Richard Kettler Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors 2019 Utah Geological Association Publication 48 Rinded, Iron-Oxide Concretions in Navajo Sandstone Along the Trail to Upper Calf Creek Falls, Garfield County David B. Loope and Richard M. Kettler Earth & Atmospheric Sciences, University of Nebraska Lincoln, NE 68588-0340 [email protected] Utah Geosites 2019 Utah Geological Association Publication 48 M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors Cover Image: View of a concretion along a trail in Upper Calf Creek Falls. M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors 2019 Utah Geological Association Publication 48 Presidents Message I have had the pleasure of working with many diff erent geologists from all around the world. As I have traveled around Utah for work and pleasure, many times I have observed vehicles parked alongside the road with many people climbing around an outcrop or walking up a trail in a canyon.
    [Show full text]
  • Geology of the Devonian Marcellus Shale—Valley and Ridge Province
    Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 By Catherine B. Enomoto1, James L. Coleman, Jr.1, John T. Haynes2, Steven J. Whitmeyer2, Ronald R. McDowell3, J. Eric Lewis3, Tyler P. Spear3, and Christopher S. Swezey1 1U.S. Geological Survey, Reston, VA 20192 2 James Madison University, Harrisonburg, VA 22807 3 West Virginia Geological and Economic Survey, Morgantown, WV 26508 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Ken Salazar, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • Geometry of Calcite Cemented Zones in Shallow Marine Sandstones
    '’W 4 PROFIT RF-^/w 1990-1994 PROJECT SUMMARY REPORTS RESERVOIR CHARACTERIZATION NEAR WELL FLOW Program for Research On Field Oriented Improved Recovery Technology oismsunoN of ihb documeot is iwumiteo % Edited by: Jem Olsen, Snorre Olaussen, Trond B. Jensen, Geir Helge Landa, Leif Hinderaker Norwegian Petroleum Directorate Stavanger 1995 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document PROFIT - RESERVOIR CHARACTERIZATION Geometry of calcite cemented zones in shallow marine sandstones Olav Walderhaug, Edward Prestholm and Ingrid E.L0xnevad Rogaland Research, Stavanger Abstract thought to belong to concretions. The difference between the geometry of calcite Calcite cementation in the Jurassic shallow cementation in the Ula Formation and in the marine sandstones of the Bearreraig Formation, Bridport Sands is thought to be due to a the Valtos Formation, the Bridport Sands and relatively uniform rate of siliciclastic deposition the Bencliff Grit occurs as continuously for the Ula Formation having led to a more cemented layers, as stratabound concretions and uniform distribution of biogenic carbonate as scattered concretions. All three geometrical compared to the Bridport Sands where laterally forms of calcite cementaton may occur within extensive layers of biogenic carbonate formed the same formation, whereas in other cases a during periods of very low siliciclastic formation may be dominated by only one or deposition. Based on the results of the core and two of these modes of calcite cementation. outcrop studies, a tentative identification key Calcite cemented layers and layers of for calcite cemented zones encountered in cores stratabound concretions in the studied is suggested.
    [Show full text]
  • Field Indicators of Hydric Soils
    United States Department of Field Indicators of Agriculture Natural Resources Hydric Soils in the Conservation Service United States In cooperation with A Guide for Identifying and Delineating the National Technical Committee for Hydric Soils Hydric Soils, Version 8.2, 2018 Field Indicators of Hydric Soils in the United States A Guide for Identifying and Delineating Hydric Soils Version 8.2, 2018 (Including revisions to versions 8.0 and 8.1) United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the National Technical Committee for Hydric Soils Edited by L.M. Vasilas, Soil Scientist, NRCS, Washington, DC; G.W. Hurt, Soil Scientist, University of Florida, Gainesville, FL; and J.F. Berkowitz, Soil Scientist, USACE, Vicksburg, MS ii In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339.
    [Show full text]
  • The Geology of Manganese Nodules
    1.0 The Geology of Manganese Nodules James R. Hein1 and Sven Petersen2 1 U.S. Geological Survey, 400 Natural Bridges Dr., Santa Cruz, CA, 95060, USA 2 Helmholtz Centre for Ocean Research Kiel (GEOMAR), 24148 Kiel, Germany MANGANESE NODULES 7 1.1 The formation and occurrence of manganese nodules Manganese nodules are mineral concretions made up of manga- • diagenetically, in which minerals precipitate from sedi- nese and iron oxides. They can be as small as golf balls or as big ment pore waters – that is, seawater that has been modi- as large potatoes. The nodules occur over extensive areas of the fied by chemical reactions within the sediment. vast, sediment-covered, abyssal plains of the global ocean in water depths of 4 000 to 6 500 metres, where temperatures are just above The metal oxides that make up the precipitate attach to a freezing, pressures are high, and no sunlight reaches (Figure 2). nucleus – perhaps something as small and common as a bit of shell or a shark’s tooth – and very slowly build up around The manganese and iron minerals in these concretions precipi- the nucleus in layers. Their mineralogy is simple: vernadite tate (form a solid) from the ambient, or surrounding, water in two (a form of manganese oxide) precipitates from seawater; ways (Figure 3): todorokite (another manganese oxide) precipitates from pore • hydrogenetically, in which the minerals precipitate from cold waters; and birnessite (a third manganese oxide) forms from ambient seawater; and the todorokite. Depth region of potential nodule development Exclusive economic zone Seabed from 0 to 2 000 metres depth Seabed from 4 000 to 6 500 metres depth - the abyssal depth at which nodules are generally formed Land area Seabed from 2 000 to 4 000 metres depth Seabed below 6 500 metres depth Figure 2.
    [Show full text]
  • Septarian Nodules from Jamaica: Comment
    The Journal of the Geological Society of Jamaica ©1999 The Geological Society of Jamaica Vol. 33, pp. 17 to 19, 1999 Septarian nodules from Jamaica: Comment SIMON F. MITCHELL1 and STEPHEN CROWLEY2 1Department of Geography and Geology, University of the West Indies, Mona, Kingston, Jamaica 2Department of Earth Sciences, University of Liverpool, Brownlow Street, PO Box 147, Liverpool, L69 3BX, United Kingdom WOOD AND DONOVAN (1996) described a septarian we have found five levels within the Jamaican succession nodule from the geological record of Jamaica as an that yield in situ septarian concretions and these are listed example of poor curation of a museum specimen. They in age order below. commented that this was the first record of a septarian 1. Upper Cretaceous, Slippery Rock Formation, nodule from Jamaica, but that its provenance was only Clarendon. The upper part of the Slippery Rock recorded as “Parish of Clarendon” and that this was poor Formation (Robinson and Lewis in Robinson et al., 1972, documentation. Porter (1997) in a comment on the paper p. 13) consists of muds with variable proportions of by Wood and Donovan (1996) remarked on a septarian ripple cross-laminated fine-grained sands. Septarian nodule that he had figured in the Gleaner in 1984. Porter concretions are fairly common within the upper part of (1984, 1997) recorded septarian nodules in the bed of the Slippery Rock Formation. They occur in the Slippery Hectors River, downstream from Craig Head in Rock River near Smithville and in the Rio Minho near Manchester, and suggested that they might be derived Grantham.
    [Show full text]