Eck, Cathy Van. "Beyond the Curtain: the 'True Nature' of Microphones

Total Page:16

File Type:pdf, Size:1020Kb

Eck, Cathy Van. Eck, Cathy van. "Beyond the Curtain: The ‘True Nature’ of Microphones and Loudspeakers." Between Air and Electricity: Microphones and Loudspeakers as Musical Instruments. New York: Bloomsbury Academic, 2017. 9–24. Bloomsbury Collections. Web. 29 Sep. 2021. <http:// dx.doi.org/10.5040/9781501327636.ch-002>. Downloaded from Bloomsbury Collections, www.bloomsburycollections.com, 29 September 2021, 05:40 UTC. Copyright © Cathy van Eck 2017. You may share this work for non-commercial purposes only, provided you give attribution to the copyright holder and the publisher, and provide a link to the Creative Commons licence. 1 Beyond the Curtain: The ‘True Nature’ of Microphones and Loudspeakers An empty stage: Listening according to the Konzertreform The audience sits quietly in the concert hall. The lights are dimmed. The music starts, but the performers are not visible. The musical performance reaches the audience only through sound, devoid of visual cues. Due to the invisibility of this musical performance – forcing the audience to focus on sound rather than sight – the poignancy of the performance becomes augmented (Wolfrum 1915, 5, 10). The picture at the beginning of this chapter (Figure 1.1) was taken in a concert hall in Heidelberg (Germany) in 1903 and depicts the set-up in the concert hall as used for this kind of invisible musical performance. The orchestra and choir are hidden behind panels and curtains, with the aim of eliminating Figure 1.1 Konzertreform: to hide the choir and the orchestra panels were installed in the concert hall ‘Stadthalle’ in 1903 Heidelberg, Germany (Schuster 1903/04). 10 Between Air and Electricity anything that might distract the eye and the ear of the audience (von Seydlitz 1903, 97). All distracting movements of the performers, for example the ‘prima donna coquetry by certain conductors’ (Wolfrum 1915, 5), take place behind a curtain, and only that part of the audience which needed to ‘learn’ from the performance, such as music students, was permitted to sit on the other side of this curtain, able to view the conductor and musicians. These conceptualizations of a concert practice which would focus as much as possible on only the audible elements of music were formulated and put into practice by several musicians at the beginning of the twentieth century, mainly in Germany, in the context of what contemporary theoreticians termed Konzertreform. Whereas the core idea of this movement – presenting music with the performers hidden behind curtains – did not persist, many of the postulations of this Konzertreform formed part of a drastically changing concert practice, from the end of the nineteenth through the beginning of the twentieth century. By the end of the nineteenth century, the audience was expected to be as silent as possible during the musical performance and not to talk out loud anymore, hum with the music or beat the rhythm with hands, head, or feet (Johnson 1996, 232– 233). Additionally, applause during symphonies was abandoned and only allowed to happen at the end of a piece of music, instead of after each movement or even during the music itself (Ross 2010). Apparently, all of this audience behaviour was previously considered normal, or at least possible, during concerts, otherwise the formulation of such rules would have been unnecessary. Many other common features of classical music concerts nowadays were introduced in relation to the Konzertreform. For example, a large foyer between the entrance and the concert hall, creating a division between the social activities of the audience and the activity of listening, was deemed necessary (Marsop 1903, 433). In this way, the social interaction which used to take place within the concert hall during the performance could now take place outside. A sound signalling the start of the performance was initiated, giving the audience the chance to become completely silent (von Seydlitz 1903, 100). Concerts should take place in darkened concert halls, so that audience members would not be visually distracted. The aim of all these sanctions was to ‘give the sense of hearing full priority for the audience member, through putting to rest the eye, his biggest enemy’1 (Holzamer-Heppenheim 1902, 1293). Most of the aforementioned claims have become enduring conventions for classical music concerts. The extreme practice of hiding the musicians behind curtains during the concert as described at the beginning of this chapter should be regarded as a by- product of a larger aim or programme to achieve more focus on the purely sonic aspect of the music. Many of the proclaimers of the Konzertreform were inspired by the sonic phenomenon of the famous invisible orchestra in Richard Wagner’s theatre in Bayreuth (Marsop 1903, 428–429). The curtains hiding the musicians had not only a visual aspect but served an acoustical purpose as well. Making use of the good acoustic conditions in the Bayreuth theatre (nowadays called Richard Wagner Festspielhaus) as well as the indirect sound of the orchestra, due to the orchestra pit being recessed, the sound was perceived as ‘cleaned’ by this so-called ‘sound-wall’ (von Seydlitz 1903, 99). Sound waves could not reach the audience directly because of the curtain, which transformed the sound of the orchestra into something mellower. As a result, the hidden musical Beyond the Curtain 11 instruments could be located easily neither by the ears nor by the eyes of the audience. The aim was to avoid focusing in a specific direction, and thus to achieve a listening situation in which the audience would be completely overwhelmed by sound alone, absent of any material source recognizable as the cause of this sound. Considering that up to that time church organists were one of the few instrumentalists hidden from the audience, placed in the back of the church on a balcony, it might come as no surprise that this concert practice – as it was developed during the end of the nineteenth and the beginning of the twentieth century – has been called a religious ritual, eliciting remarks that the listening attitude might be compared with silent praying (Tröndle 2009, 47). The only important feature of a music performance was the contact between the listener and the sound of the music; all other elements were considered to be a distraction. The possibility of music performances existing in the form of sound alone arose, and for many audience members, such as the advocates of the Konzertreform, this situation was preferable to that of a conventional concert. A concert at home: The invention of sound reproduction technologies Whereas the ideas of the Konzertreform did not endure in actual practice, listening to music without any distraction of, for example, musicians’ movements or audience members’ noises became possible in another way. In listening to music on a record or on radio, listening conditions similar to the ones set into practice by the Konzertreform became mainstream. In fact, the ideas developed around the phenomenon of the classical music concert, resulting in the sound of a musical performance being the most or even the only important element of music, were essential to the development of a music performance culture mediated through radios, gramophones and CD players at home. These devices are all commonly called sound reproduction technologies due to their primary function. This technology was developed in a cultural context calling for the emancipation of sound, which was understood as sound being recognized as the only element necessary for a complete perception of music, instead of the integral musical performance, all visual aspects included. The idea that nothing fundamental was missing when visual aspects of musical performance are excluded was therefore a necessary context for the successful rise of music recordings as replete musical experience during the last century. Listening to a musical performance on the radio can therefore feasibly be considered as a successor of listening to a concert in a concert hall where the performers are hidden (Schwab 1971, 186). It is often averred that inventions like the phonograph or the radio force the audience to listen to music without viewing its source and effected ‘the physical separation of listening from performing’ (Chanan 1995, 7). I would argue, however, that the ideals of the Konzertreform clearly reveal that this new mode of perceiving music was not necessarily preceded by the invention of new technology, but can be seen as an aesthetic development which took place during the nineteenth century, concurrent with the invention of sound reproduction technologies such as telephones, phonographs and 12 Between Air and Electricity radios. Although these kinds of devices did not instigate a new way of perceiving music, they did make it much easier to listen only to the sound of music instead of perceiving the whole performance, including its visual elements. A singular sound can only exist at a specific time and at a specific place, since it is formed by waves of pressure that are by definition in constant motion. Before the invention of sound reproduction technology, music never took place without the presence of musicians and their musical instruments, or – in the case of music automata – at the very least the presence of the musical instruments. Listening to music was directly connected to this presence of musical instruments. TheKonzertreform attempted to disconnect the audience as much as possible from this presence by hiding the instruments behind a curtain, but it was through sound reproduction technology that, for the first time, they no longer needed to be present in the same space or at the same time as the listener. What all sound reproduction devices have in common is that they release sound from its direct connection to a certain time and space. This is done in two ways: either by storing sound (taking it out of its time) and by transporting or amplifying sound (taking sound out of its place).
Recommended publications
  • Multichannel Sound Technology in Home and Broadcasting Applications
    Report ITU-R BS.2159-4 (05/2012) Multichannel sound technology in home and broadcasting applications BS Series Broadcasting service (sound) ii Rep. ITU-R BS.2159-4 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Stereo Pickups & Phono Cartridges: 1958
    Stereo Pickups & Phono cartridges: 1958 - today - stereophonic sound customer . Pickup Technology by some popular stereo Pickups & Cartridges 1958 - today Some well-known stereo Pick-up from 1958 to today " URLs OF popular cartridge & pickup fire " The influence OF A so-called ' Compensation Capacitor ' on frequency response OF mm of cartridges. " the influence of a compensation condenser on the frequency response of a mm pick-up. 1958 This is typical frequency response OF 1st generation Ceramics stereo Pickup Typical frequency response of one of the first ceramic(s) stereophonic sound customers: Fig. 2.1 file:///C|/HiFiStuff/CartridgeDatabase/PickupTechnology.htm (1 of 17)6/3/2005 11:12:39 AM Stereo Pickups & Phono cartridges: 1958 - today - stereophonic sound customer Ceramics Pickup cartridge by ELAC: BST 1 (1958) [ 2.2 ] Ceramic(s) pick-up . Fig. 2.2 refers tons of A Fig. 2.2 refers to the fundamental basic construction OF structure of a piezoelectric pick- piezoelectric pickup that up, as it was usually planned with which usually supplied crystal elements from with low turntables cost. Seignettesalz Most OF thesis pickups (Kaliumnatriumtartrat) for have seignette salt crystals inexpensive record players. To based on potassium the unfavorable influence of sodium tartrate. Regarding temperature and air humidity on the disadvantageous such a crystal connection ceramic influence OF temperature (s) offers against it by far more and humidity, more favorable characteristics. Fig. however, ceramics instead shows 2.1 the frequency OF that crystal compound response of a piezokeramischen does more offer much pick-up made of barium titanate more better properties. (asking IO 3 ). Fig.
    [Show full text]
  • Film Essay for "This Is Cinerama"
    This Is Cinerama By Kyle Westphal “The pictures you are now going to see have no plot. They have no stars. This is not a stage play, nor is it a feature picture not a travelogue nor a symphonic concert or an opera—but it is a combination of all of them.” So intones Lowell Thomas before introduc- ing America to a ‘major event in the history of entertainment’ in the eponymous “This Is Cinerama.” Let’s be clear: this is a hyperbol- ic film, striving for the awe and majesty of a baseball game, a fireworks show, and the virgin birth all rolled into one, delivered with Cinerama gave audiences the feeling they were riding the roller coaster the insistent hectoring of a hypnotically ef- at Rockaway’s Playland. Courtesy Library of Congress Collection. fective multilevel marketing pitch. rama productions for a year or two. Retrofitting existing “This Is Cinerama” possesses more bluster than a politi- theaters with Cinerama equipment was an enormously cian on the stump, but the Cinerama system was a genu- expensive proposition—and the costs didn’t end with in- inely groundbreaking development in the history of motion stallation. With very high fixed labor costs (the Broadway picture exhibition. Developed by inventor Fred Waller from employed no less than seventeen union projectionists), an his earlier Vitarama, a multi-projector system used primari- unusually large portion of a Cinerama theater’s weekly ly for artillery training during World War II, Cinerama gross went back into the venue’s operating costs, leaving sought to scrap most of the uniform projection standards precious little for the producers.
    [Show full text]
  • An Anthology of Reprinted Articles on Stereophonic Techniques Copyright © 1986 Audio Engineering Society, Inc
    An anthology of reprinted articles on stereophonic techniques Copyright © 1986 Audio Engineering Society, Inc. Library of Congress Catalog Card No. 86-070767. ISBN No. 0-937803-08-1. First printing, 1986 April (all rights reserved). Except for brief passages to be used in review or as citation of authority, no part of this book may be reproduced without prior permission from: Publications Office, Audio Engineering Society, Inc., 60 East 42nd Street, New York, New York 10165. Stereophonic recording and playback dominate the that cover certain historical aspects of the subject. commercial media of records, tapes, and FM broad­ Included here is B. Hertz’s description of Ader’s historic casting, and it is to the credit of both our technology stereo transmissions from the stage of the Paris and our binaural hearing capabilities that a single pair Opera in 1881. Welch and Reed’s description of the of channels can produce auditory perspectives so Columbia Multiplex Grand phonograph is included, convincingly. since it was undoubtedly the first instrument which In the days before loudspeakers and amplifiers, could actually record stereo. Further historical papers headphones and carbon microphones were used to cover the work of Blumlein—truly the father of stereo— transmit stereo from the stage of the Paris Opera to and the many engineers at Bell Labs. listeners in an adjoining space. This was over 100 The second section of the anthology deals with years ago, and the dream of auditory perspective for analysis and experimentation in stereophonic phe­ the consumer was not to be fulfilled until Walt Dis­ nomena.
    [Show full text]
  • NTSC Specifications
    NTSC Modulation Standard ━━━━━━━━━━━━━━━━━━━━━━━━ The Impressionistic Era of TV. It©s Never The Same Color! The first analog Color TV system realized which is backward compatible with the existing B & W signal. To combine a Chroma signal with the existing Luma(Y)signal a quadrature sub-carrier Chroma signal is used. On the Cartesian grid the x & y axes are defined with B−Y & R−Y respectively. When transmitted along with the Luma(Y) G−Y signal can be recovered from the B−Y & R−Y signals. Matrixing ━━━━━━━━━ Let: R = Red \ G = Green Each range from 0 to 1. B = Blue / Y = Matrixed B & W Luma sub-channel. U = Matrixed Blue Chroma sub-channel. U #2900FC 249.76° −U #D3FC00 69.76° V = Matrixed Red Chroma sub-channel. V #FF0056 339.76° −V #00FFA9 159.76° W = Matrixed Green Chroma sub-channel. W #1BFA00 113.52° −W #DF00FA 293.52° HSV HSV Enhanced channels: Hue Hue I = Matrixed Skin Chroma sub-channel. I #FC6600 24.29° −I #0096FC 204.29° Q = Matrixed Purple Chroma sub-channel. Q #8900FE 272.36° −Q #75FE00 92.36° We have: Y = 0.299 × R + 0.587 × G + 0.114 × B B − Y = −0.299 × R − 0.587 × G + 0.886 × B R − Y = 0.701 × R − 0.587 × G − 0.114 × B G − Y = −0.299 × R + 0.413 × G − 0.114 × B = −0.194208 × (B − Y) −0.509370 × (R − Y) (−0.1942078377, −0.5093696834) Encode: If: U[x] = 0.492111 × ( B − Y ) × 0° ┐ Quadrature (0.4921110411) V[y] = 0.877283 × ( R − Y ) × 90° ┘ Sub-Carrier (0.8772832199) Then: W = 1.424415 × ( G − Y ) @ 235.796° Chroma Vector = √ U² + V² Chroma Hue θ = aTan2(V,U) [Radians] If θ < 0 then add 2π.[360°] Decode: SyncDet U: B − Y = -┼- @ 0.000° ÷ 0.492111 V: R − Y = -┼- @ 90.000° ÷ 0.877283 W: G − Y = -┼- @ 235.796° ÷ 1.424415 (1.4244145537, 235.79647610°) or G − Y = −0.394642 × (B − Y) − 0.580622 × (R − Y) (−0.3946423068, −0.5806217020) These scaling factors are for the quadrature Chroma signal before the 0.492111 & 0.877283 unscaling factors are applied to the B−Y & R−Y axes respectively.
    [Show full text]
  • COMMUNICATIONS .S46 a ,Qf" U FORUM Sb
    00 HE7601 S@ COMMUNICATIONS .S46 a ,qF" U FORUM Sb HIGH-DEFINITION TELEVISION Robert Hopkins, Advanced Television Systems. Committee Kerns Powers, RCA Laboratories Craig Cuttner, Home Box Office Renville McMann, CBS December 5, 1985 Genga Arulampalam, Rapporteur MASSACHUSETTS INSTITUTE OF TECHNOLOGY Y1N MASSACHUSETTS INSTITUTE OF TECHNOLOGY COMMUNICATIONS FORUM CAMBRIDGE, MASSACHUSETTS 02139 TELEX: 92-1473 MITCAM HIGH-DEFINITION TELEVISION Robert Hopkins, Advanced Television Systems. Committee Kerns Powers, RCA Laboratories Craig Cuttner, Home Box Office Renville McMann, CBS December 5, 1985 Genga Arulampalam, Rapporteur HIGH-DEFINITION TELEVISION Renville McMann - CBS McMann began by stating that the quality of High- Definition Television (HDTV) is determined by the quality of production, transmission, and display. He said that CBS had conducted some studies using high quality cinema film in an attempt to classify and aefine picture quality relating it to picture resolution and the number of lines. As at present, standard TV images had a resolution in the range of 525 lines. However, the Japanese have been working on the NHK system which has 1125 lines. He said that what they were looking for in HDTV was improved resolution, improved color, wide screen aspect ratio, and stereophonic sound. As for wide screen aspect ratio, the current specification of 4:3 has been used for some time and yields a good picture. However, for HDTV a wider screen of 5:3 was first discussed and it was then decided that 5.33:3 woulo better allow the transmission of normal wide aspect motion pictures with minimum distortion. In the area of color rendition he said that the interference between color and luminance information should be completely eliminated, and color sharpness should be improved.
    [Show full text]
  • Sound Recording
    Sound Recording David Adamcyk Advanced Mixed Music Composition Microphones Types Dynamic: Operates via a diaphragm attached to a thin coil wrapped around a magnet. The magnetic flux of the coil moving in an electro-magnetic field creates a voltage. • Pros: high moisture tolerance; rugged, simple construction; can handle very high sound pressure levels (good for drums, trumpets, etc) • Cons: slower transient response, not very sensitive • examples: Shure SM57 and SM58 Condenser: Works on the principle of a capacitor: the diaphragm acts as one plate of a capacitor, and the vibrations produce changes in the distance between the plates. An electrical current (i.e. phantom power) is sent to the assembly, and as the diaphragm moves, the voltage of the current changes. • Pros: quicker frequency response than dynamic microphones, especially to high frequencies (lighter diaphragm); very sensitive; fast transient response • Cons: less rugged and more sensitive to temperature and humidity; operate using phantom power (or batteries) • Examples: AKG C-414, Neumann 184, Shure SM-81 Ribbon: Works on same principle as dynamic microphone, but the diaphragm is a thin aluminum ribbon. • Pros: although large, can pick up a lot of high frequency detail without sounding as harsh as condenser microphones; don’t require phantom power. • Cons: the most fragile of microphones • Examples: RCA 44 and the AEA R44 Microphones Directional Patterns (a.k.a. polar pattern or directionality) and Frequency Responses Note 1: Omnis generally have better low frequency response Note 2: Polar patterns are frequency dependant Note 3: The off-axis frequency response of directional mics varies significantly Source: Williams, Michael.
    [Show full text]
  • THE SORCERER's APPRENTICES: AUTHORSHIP and SOUND AESTHETICS in WALT DISNEY's FANTASIA by Daniel Fernandez a Thesis Submitted
    THE SORCERER’S APPRENTICES: AUTHORSHIP AND SOUND AESTHETICS IN WALT DISNEY’S FANTASIA by Daniel Fernandez A Thesis Submitted to the Faculty of the Dorothy F. Schmidt College of Arts and Letters In Partial Fulfillment of the Requirements for the Degree of Masters of Arts Florida Atlantic University Boca Raton, FL May 2017 Copyright by Daniel Fernandez 2017 ii ACKNOWLEDGEMENTS I would like to thank my committee members for all of their guidance and support, especially to my advisor Anthony Guneratne for his helpful suggestions during the writing of this manuscript. I am also grateful to a number of archival collections, particularly those of Yale University for providing me with some of the primary sources used for this manuscript. Likewise, I would like to acknowledge Stephanie Flint for her contribution to the translation of German source material, as well as Richard P. Huemer, Didier Ghez, Jennifer Castrup, the Broward County Library, the University of Maryland, the Fales Library at New York University, and Zoran Sinobad of the Library of Congress, for the advice, material assistance, and historical information that helped shape this project. iv ABSTRACT Author: Daniel Fernandez Title: The Sorcerer’s Apprentices: Authorship and Sound Aesthetics in Walt Disney’s Fantasia Institution: Florida Atlantic University Thesis Advisor: Dr. Anthony Guneratne Degree: Masters of Arts in Communications Year: 2017 This thesis makes three claims new to the critical literature on Walt Disney’s 1940 film Fantasia. Setting the scene by placing a spotlight on the long-serving Philadelphia Orchestra conductor Leopold Stokowski, it contextualizes his pervasive influence, as well as contributions by others that shaped Fantasia and defined the film’s stylistic elements.
    [Show full text]
  • HARRY F. OLSON December 28, 1901-April 1, 1982
    NATIONAL ACADEMY OF SCIENCES H A R R Y F . O LSON 1901—1982 A Biographical Memoir by CYRIL M. HARRIS Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1989 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. HARRY F. OLSON December 28, 1901-April 1, 1982 BY CYRIL M. HARRIS ARRY F. OLSON, pioneer in acoustics and electronic H sound recording, died on April 1, 1982, at Princeton Medical Center at the age of eighty-one. He had been a mem- ber of the National Academy of Sciences since 1959. During his career of nearly forty years with RCA, Dr. Olson developed several types of microphones for broad- casting and recording, high-fidelity loudspeakers, phono- graph pickups and recording equipment, underwater sound equipment, and sound motion picture and public address systems; he contributed substantially to the development of the RCA magnetic tape recorder for television and the RCA music synthesizer. Harry F. Olson was born in Mt. Pleasant, Iowa, on Decem- ber 18, 1901, the first of two children. Both his father, a farmer, and mother, a talented amateur artist, were born in Sweden and had come to this country to seek new opportu- nity. Their son exhibited an interest in science and technology at an early age, which they encouraged by supplying him with a modest shop and laboratory. While still in grade school and with very little data on design, Harry built and flew model airplanes—an art then in its infancy.
    [Show full text]
  • Technical Standards for FM Radio Broadcasting in the Bahamas
    Technical Standards for FM Radio Broadcasting in The Bahamas ECS 04/2019 Issue Date: 25 March 2019 Table of Contents 1 Preliminary ..................................................................................................................... 4 1.1 Introduction ........................................................................................................... 4 1.2 Definitions ............................................................................................................. 4 1.3 Symbols.................................................................................................................. 6 1.4 Abbreviations......................................................................................................... 6 1.5 Designators ............................................................................................................ 7 1.6 Main Transmitter ................................................................................................... 7 1.7 Auxiliary Transmitters ............................................................................................ 7 2 General ........................................................................................................................... 7 3 Labeling .......................................................................................................................... 8 4. Effective Radiated Power (ERP) ...................................................................................... 8 5 Minimum Distance Separation between
    [Show full text]
  • Mono Stereo Mpx Mono and Stereo
    MONO STEREO MPX MONO AND STEREO In the FM transmission there are mainly two types of audio signals: • Mono • Stereo Stereo signals are actually more common in broadcast radio and they consist of two channels that can be labelled L and R (Left and Right) providing one channel for each of the two speakers and create the impression of sound heard from various directions, as in natural hearing. MPX The MPX FM stereo system was designed to be backward compatible and it allows broadcast signals to be received on mono equipment as well. It is composed of three parts. • The first is a normal audio signal made up of the Sum of Left and Right channels. This is the signal heard on a Mono radio and it is the same as switching the Stereo/Mono Switch on an amplifier to “Mono”. • In addition, a difference signal (Left - Right) is generated and then used to modulate a 38 kHz subcarrier using Double sideband suppressed carrier (DSBSC) modulation. This is an AM modulation of the subcarrier. • To keep the receiver decoder locked into the 38kHz subcarrier, a 19 kHz pilot tone (EXACTLY 1/2 of 38 kHz) is transmitted as well. The pilot is feeded with a 10% modulation. FM STEREO BROADCAST BAND Amplitude Frequency MPX ENCODER It is also possible to encode other information on an MPX signal together with the Left and Right audios: often the RDS signal is mixed with them. RDS stands for Radio Data System. It uses a 57kHz subcarrier to carry data at 1187.5 bits per second.
    [Show full text]
  • Surround Sound Past, Present and Future
    Surround Sound Past, Present and Future A history of multichannel audio from mag stripe to Dolby Digital Surround Sound Past, Present, and Future ilm sound, television audio, voices in religious epics, for example. and music playback formats Some formats switched this channel used to be distinctly different off by means of trigger tones when it products of industries often wasn’t needed because the track on workingFF in isolation. Recently, how- the film was particularly narrow, and ever, this has changed. The popularity thus very hissy. of surround sound in the home has Although film stereo lost favor in A history of brought these sound formats closer the 1960s and early 1970s due to together. And now new digital high costs of the magnetic formats multichannel audio multichannel technology is poised to and a slump in the film business, foster an even more consistent sound mixers continued to experi- from mag stripe approach to sound reproduction, ment with the effects channel. easing the burden on both consumer Formats such as six-track 70 mm to Dolby Digital and producer while providing high magnetic (see sidebar next page) fidelity not just to the tonality of live provided consistent signal-to-noise sound, but also to its spatiality. ratios on all channels, so mixers could use the effects channel to envelop the Origins of surround sound audience in continuous low-level ambient sounds. The effects channel The first commercially successful came to convey greater sonic realism multichannel formats were developed overall, not just the occasional in the early 1950s for the cinema.
    [Show full text]