Giant Zamia Discovered!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pseudophoenix Sargentii (Buccaneer Palm)
Pseudophoenix sargentii (Buccaneer Palm) Pseudophoenix sargentii is an attractive small palm, resembling the royal palm but can be distinquised by its trunk which is more smooth and glossy.It is a solitary, monoecious palm. It holds an open crown of pinnate leaves which can measure up to 2 m long. In habitat, it is usually found along the coast in alkaline soil. The fruit is red, hence the common name ''cherry palm<span style="line-height:20.7999992370605px">''</span><span style="line- height:1.6em">.</span> Landscape Information French Name: Palmier de guinée Pronounciation: soo-doh-FEE-niks sar-JEN- tee-eye Plant Type: Palm Origin: South Florida, the Bahamas, Belize, Cuba Heat Zones: Hardiness Zones: 10, 11, 12 Uses: Specimen, Indoor, Container Size/Shape Growth Rate: Slow Tree Shape: Upright, Palm Canopy Symmetry: Symmetrical Canopy Density: Open Canopy Texture: Fine Height at Maturity: 8 to 15 m Spread at Maturity: 3 to 5 meters Time to Ultimate Height: 10 to 20 Years Plant Image Pseudophoenix sargentii (Buccaneer Palm) Botanical Description Foliage Leaf Arrangement: Spiral Leaf Venation: Parallel Leaf Persistance: Evergreen Leaf Type: Odd Pinnately compund Leaf Blade: 50 - 80 Leaf Margins: Entire Leaf Textures: Medium Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green Flower Flower Showiness: True Flower Size Range: 0 - 1.5 Flower Type: Panicle Flower Sexuality: Monoecious (Bisexual) Flower Scent: Pleasant Flower Color: Green, Yellow Seasons: Year Round Trunk Trunk Has Crownshaft: True Plant Image Trunk -
Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades. -
Pseudophoenix Sargentii) on Elliott Key, Biscayne National Park
Status update: Long-term monitoring of Sargent’s cherry palm (Pseudophoenix sargentii) on Elliott Key, Biscayne National Park FEBRUARY 2021 Acknowledgments Thank you to Biscayne National Park for more than three decades of support for this collaborative project on Pseudophoenix sargentii augmentation and demographic monitoring. Monitoring in 2021 was funded by the Florida Dept. of Agriculture and Consumer Services, Division of Plant Industry, under Agreement #027132. For assistance with field work and logistics we would like to thank Morgan Wagner, Michael Hoffman, Brian Lockwood, Shelby Moneysmith, Vanessa McDonough, and Astrid Santini from Biscayne National Park, Eliza Gonzalez from Montgomery Botanical Center, Dallas Hazelton from Miami-Dade County, and volunteer biologists Joseph Montes de Oca and Elizabeth Wu. Thank you to the cooperators whose excellent past work on this project has laid the foundation upon which we stand today, especially Carol Lippincott, Rob Campbell, Joyce Maschinski, Janice Duquesnel, Dena Garvue, and Sam Wright. Janice Duquesnel provided important details about the 1991-1994 outplanting efforts. Suggested citation Possley, J., J. Lange, S. Wintergerst and L. Cuni. 2021. Status update: long-term monitoring of Pseudophoenix sargentii on Elliott Key, Biscayne National Park. Unpublished report from Fairchild Tropical Botanic Garden, funded by Florida Dept. of Agriculture and Consumer Services Agreement #027132. Background Pseudophoenix sargentii H.Wendl. ex Sarg., known by the common names ‘Sargent’s cherry palm’ and ‘buccaneer palm,’ is a slow-growing palm native to coastal habitats throughout the Caribbean basin, where it grows on exposed limestone or in humus or sand over limestone. Over the past century, the species has declined throughout its range, due to in part to overharvesting for use in landscaping. -
APGA – USFS Gene Conservation Partnership 2015-2016 Scouting / Collecting Trip for Zamia Integrifolia Phase 1 Report
APGA – USFS Gene Conservation Partnership 2015-2016 Scouting / Collecting Trip for Zamia integrifolia Phase 1 Report M. Patrick Griffith Montgomery Botanical Center 11901 Old Cutler Road Coral Gables, FL 33156 [email protected] Michael Calonje Montgomery Botanical Center Doug Goldman USDA - NRCS - ENTSC - NPDT 2901 E. Gate City Blvd. (E. Lee St.) Suite 2100 Greensboro, NC 27401 Adam Black Peckerwood Garden 20571 Farm to Market 359 Hempstead, TX 77445 April 8, 2016 Summary Fieldwork was performed in February and March 2016 for collections development and survey of Zamia integrifolia. This project was focused on populations at the extreme northeast and northwest of the reported range of the species, both of which were not yet represented in living collections. Documented localities were visited, as well as other accessible sites with suitable habitat. The westernmost known population (Taylor County, FL), was located, surveyed, documented and collected. In addition, a small population even further to the west was also discovered, further extending the known range of this species. The northeasternmost location (Glynn County, GA), documented only once in 1971, was re-surveyed. This population was not found. Zamia integrifolia Project Report: Page 1 of 11. A unique lineage Zamia integrifolia L.f. is the only cycad native to the continental United States. It has great ornamental appeal and is also of great interest to science, coming from the most ancient lineage of extant seed plants. It is quite variable in habit and morphology throughout its range, from forms with narrow leaflets and few leaves in the south of its range to large specimens with wider leaflets and holding many leaves in the north-central part of its range and many other variants in between. -
Zamia Furfuracea Cardboard Plant, Cardboard Cycad1 Edward F
FPS-618 Zamia furfuracea Cardboard Plant, Cardboard Cycad1 Edward F. Gilman2 Introduction General Information The rigid, woody, medium-green foliage of cardboard plant Scientific name: Zamia furfuracea emerges from a large underground storage root and forms Pronunciation: ZAY-mee-uh fer-fer-RAY-see-uh a loose, spreading, symmetrical rosette (Fig. 1). Providing Common name(s): cardboard plant, cardboard cycad a tropical landscape effect, cardboard plant’s mounding Family: Zamiaceae growth habit is ideally suited for use in containers or as Plant type: shrub a specimen. Several can be planted together for a lush, USDA hardiness zones: 9B through 11 (Fig. 2) tropical effect. They also create a dramatic effect when Planting month for zone 9: year round mass-planted in a shrub border, eventually reaching to Planting month for zone 10 and 11: year round six or eight feet tall. Plant on three- to five-foot centers to Origin: not native to North America create a mass planting. Uses: border; mass planting; container or above-ground planter; specimen; suitable for growing indoors; accent Availability: somewhat available, may have to go out of the region to find the plant Figure 2. Shaded area represents potential planting range. Figure 1. Cardboard plant 1. This document is FPS-618, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date October 1999. Reviewed February 2014. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department; UF/IFAS Extension, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. -
A Preliminary List of the Vascular Plants and Wildlife at the Village Of
A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths. -
Seed Geometry in the Arecaceae
horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud. -
Table of Contents Than a Proper TIMOTHY K
Palms Journal of the International Palm Society Vol. 57(1) Mar. 2013 PALMS Vol. 57(1) 2013 CONTENTS Island Hopping for Palms in Features 5 Micronesia D.R. H ODEL Palm News 4 Palm Literature 36 Shedding Light on the 24 Pseudophoenix Decline S. E DELMAN & J. R ICHARDS An Anatomical Character to 30 Support the Cohesive Unit of Butia Species C. M ARTEL , L. N OBLICK & F.W. S TAUFFER Phoenix dactylifera and P. sylvestris 37 in Northwestern India: A Glimpse of their Complex Relationships C. N EWTON , M. G ROS -B ALTHAZARD , S. I VORRA , L. PARADIS , J.-C. P INTAUD & J.-F. T ERRAL FRONT COVER A mighty Metroxylon amicarum , heavily laden with fruits and festooned with epiphytic ferns, mosses, algae and other plants, emerges from the low-hanging clouds near Nankurupwung in Nett, Pohnpei. See article by D.R. Hodel, p. 5. Photo by D.R. Hodel. The fruits of Pinanga insignis are arranged dichotomously BACK COVER and ripen from red to Hydriastele palauensis is a tall, slender palm with a whitish purplish black. See article by crownshaft supporting the distinctive canopy. See article by D.R. Hodel, p. 5. Photo by D.R. Hodel, p. 5. Photo by D.R. Hodel . D.R. Hodel. 3 PALMS Vol. 57(1) 2013 PALM NEWS Last year, the South American Palm Weevil ( Rhynchophorus palmarum ) was found during a survey of the Lower Rio Grande Valley, Texas . This palm-killing weevil has caused extensive damage in other parts of the world, according to Dr. Raul Villanueva, an entomologist at the Texas A&M AgriLife Research and Extension Center at Weslaco. -
Insect Pollination of Cycads 9 10 Alicia Toon1, L
1 2 DR. ALICIA TOON (Orcid ID : 0000-0002-1517-2601) 3 4 5 Article type : Invited Review 6 7 8 Insect pollination of cycads 9 10 Alicia Toon1, L. Irene Terry2, William Tang3, Gimme H. Walter1, and Lyn G. Cook1 11 12 1The University of Queensland, School of Biological Sciences, Brisbane, Qld, 4072, 13 Australia 2 14 University of Utah, School of Biological Sciences, Salt Lake City, UT 84112, USA 15 3 USDA APHIS PPQ South Florida, P.O.Box 660520, Miami, FL 33266, USA 16 17 Corresponding author: Alicia Toon 18 [email protected] Ph: +61 (0) 411954179 19 Goddard Building, The University of Queensland, School of Biological Sciences, Brisbane, 20 Qld, 4072, Australia. 21 22 23 24 25 26 27 28 29 30 Manuscript Author 31 This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/AEC.12925 This article is protected by copyright. All rights reserved 32 33 Acknowledgements 34 We would like to thank Dean Brookes for discussions about genetic structure in cycad 35 pollinating thrips populations. Also, thanks to Mike Crisp for discussions about plant 36 diversification and Paul Forster for information on Australian cycads. This work was funded 37 by ARC Discovery Grant DP160102806. 38 39 Abstract 40 Most cycads have intimate associations with their insect pollinators that parallel those of 41 well-known flowering plants, such as sexually-deceptive orchids and the male wasps and 42 bees they deceive. -
Zamia-Nana.Pdf
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Phytotaxa 98 (2): 27–42 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2013 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.98.2.1 Clarification of Zamia acuminata and a new Zamia species from Coclé Province, Panama 1 2,3 4 2 ANDERS J. LINDSTRÖM , MICHAEL CALONJE , DENNIS STEVENSON , CHAD HUSBY & ALBERTO TAYLOR5 1 Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250, Thailand. E-mail: [email protected] 2 Montgomery Botanical Center, 11901 Old Cutler Road, Miami, Florida 33156, U.S.A. 3 Florida International University, 1200 S.W. 8th Street, Miami, Florida 33199, U.S.A. 4 New York Botanical Garden, Bronx, NY 10458-5126, U.S.A. 5 Departamento de Botánica, Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Panamá, Panama. Abstract Zamia acuminata has remained an obscure, poorly understood species for over a century due to possibly misinterpreted or erroneous locality data on the unicate sterile type specimen, a very brief protologue description, the misidentification of the plants from El Valle de Antón in Panama as Z. acuminata, and the erroneous determinations of plants of Z. acuminata from Costa Rica as Z. fairchildiana. Recently collected material from San José Province in Costa Rica is here determined to be identical to the single sterile leaf material of the holotype of Zamia acuminata. We consider Z. -
Zamiaceae, Cycadales) and Evolution in Cycadales
The complete chloroplast genome of Microcycas calocoma (Miq.) A. DC. (Zamiaceae, Cycadales) and evolution in Cycadales Aimee Caye G. Chang1,2,3, Qiang Lai1, Tao Chen2, Tieyao Tu1, Yunhua Wang2, Esperanza Maribel G. Agoo4, Jun Duan1 and Nan Li2 1 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China 2 Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China 3 University of Chinese Academy of Sciences, Beijing, China 4 Department of Biology, De La Salle University, Manila, Philippines ABSTRACT Cycadales is an extant group of seed plants occurring in subtropical and tropical regions comprising putatively three families and 10 genera. At least one complete plastid genome sequence has been reported for all of the 10 genera except Microcycas, making it an ideal plant group to conduct comprehensive plastome comparisons at the genus level. This article reports for the first time the plastid genome of Microcycas calocoma. The plastid genome has a length of 165,688 bp with 134 annotated genes including 86 protein-coding genes, 47 non-coding RNA genes (39 tRNA and eight rRNA) and one pseudogene. Using global sequence variation analysis, the results showed that all cycad genomes share highly similar genomic profiles indicating significant slow evolution and little variation. However, identity matrices coinciding with the inverted repeat regions showed fewer similarities indicating that higher polymorphic events occur at those sites. Conserved non-coding regions also appear to be more divergent whereas variations in the exons were less discernible indicating that the latter comprises more conserved sequences. Submitted 5 September 2019 Phylogenetic analysis using 81 concatenated protein-coding genes of chloroplast (cp) Accepted 27 November 2019 genomes, obtained using maximum likelihood and Bayesian inference with high Published 13 January 2020 support values (>70% ML and = 1.0 BPP), confirms that Microcycas is closest to Corresponding authors Zamia and forms a monophyletic clade with Ceratozamia and Stangeria. -
Journal of the International Palm Society Vol. 46(1) March 2002
Journalof the InternationalPalm Society Vol.46(1) March 2002 THE INTERNATIONATPAIM SOCIETY,INC. The International Palm Society Palms(rormerrv o*')Fili?.,"" Journalof The Internation, An illustrated,peer-reviewed quarterly devoted to " informationabout palms and publishedin March,June, ffitt'# **,,,*,,nI:#.*g'i,.*r:r"'" Seotember and Decemberbv The lnternationalPalm nationalin scopewith worldwidemembership, and the formationof regionalor localchapters affiliated with the internationalroii"ty ir "n.ourug.i. Pleaseaddress all inquiriesregarding membership or informationabout Editors: Dransfield,Herbarium, Royal Botanic The-lnternationaiPalm Society Inc., P.O. :::i:ff:*::::lohn :::,I.^, -. "l, the socieryio -il;;;;k;;, Ri;;;;";, s,,i"y,r,ve :hi, u;t;J Kansas 660 44'88e7' usA' Kingdom,e-mail [email protected], tel.44- 181-332-5225,Fax 44-1 B1 -332-5278. lrr,itiJr,"-rence' ScottZona, Fairchild Tropical Carden, 11935 Old Cutler /310tuhburn' nou"on',., Road,Coral Cables (Miami), Florida 33156, USA, e-mail ?J#*;:, I!X':.:;:ii c'm'e'[email protected]. 1 -105-66l-1 65i ext. ;::r":ff::;;:;:ffi l1]l.l-'..*"'::;:';,^, 467Mann Library, y;fji#; 1485 3'U sA"e. ma i' lii:1L?,ililii :ii:fl 1,. "' I,lii,%S?l,:iixk l'[i: i :]?:,1?:i ":;ffi [l;1;l', ) 2418 S ta ffo rd s p ri n qs' [email protected]?li'ijffi tel. 61;, -7-3800-5526.l:,",:*i,ii ;tli i:l$i"il;* :i t'#,",lif T ffiil *i**i"*' rt;d;;;:' ^"* i:-::,',:"'ffil # ;,::'; :::"",, " :::,T:::::"",.i;.1i1,,ffi::::"672e Peac.ck ::1:::"".';J:::;::::ll.n, ** pu ". fi8fl3;'.?i3l,i'i; li:i'!:,' X:,1: ;l,lt; 8il' il'[f,,xl:,'.n"J,?:}#il',*"d:,:il;:, Treasurer: HowardWaddell, 6120 SW132 St.,Miami, OldCutler Road, Coral Cables (Miami), Florida 33156, sA,e-mai I hwaddell@prod isy.net, tel.